Разное

Что такое интерференция и дифракция? Что такое интерференция света.

В этой статье рассматривается такое явление физики, как интерференция: что такое, когда возникает и как применяется. Также подробно рассказывается о смежном понятии волновой физики - дифракции.

Виды волн

Когда в книге или в разговоре возникает слово «волна», то, как правило, сразу представляется море: синий простор, безмерная даль, одна за другой на берег набегают соленые валы. Житель степей представит себе другой вид: безбрежный простор травы, она колышется под ласковым ветерком. Кто-то еще вспомнит волны, рассматривая складки тяжелой портьеры или трепетание флага в солнечный день. Математик подумает о синусоиде, любитель радио - об электромагнитных колебаниях. Все они имеют различную природу и относятся к разным видам. Но неоспоримо одно: волна - это состояние отклонения от равновесия, превращения какого-то «гладкого» закона в колебательный. Именно для них применимо такое явление, как интерференция. Что такое и как она возникает, рассмотрим чуть позже. Сначала разберёмся, какими бывают волны. Перечислим следующие виды:

  • механические;
  • химические;
  • электромагнитные;
  • гравитационные;
  • спиновые;
  • вероятностные.

С точки зрения физики, волны переносят энергию. Но случается, что перемещается и масса. Отвечая на вопрос о том, что такое интерференция в физике, следует отметить, что она характерна для волн абсолютно любой природы.

Признаки различия волн

Как ни странно, но единого определения волны не существует. Их виды настолько разнообразны, что только типов классификации более десятка. По каким же признакам различают волны?

  1. По способу распространения в среде (бегущие или стоячие).
  2. По характеру самой волны (колебательные и солитоны отличны именно по этому признаку).
  3. По типу распределения в среде (продольные, поперечные).
  4. По степени линейности (линейные или нелинейные).
  5. По свойствам среды, в которой они распространяются (дискретные, непрерывные).
  6. По форме (плоские, сферические, спиральные).
  7. По особенностям физической среды распространения (механические, электромагнитные, гравитационные).
  8. По направлению колебания частиц среды (волны сжатия или сдвига).
  9. По времени, которое требуется на возбуждение среды (одиночные, монохроматические, волновой пакет).

И к любому типу этих возмущений среды применима интерференция. Что такое особенное содержится в этом понятии и почему именно это явление делает наш мир таким, какой он есть, расскажем после приведения характеристик волны.

Характеристики волны

Вне зависимости от типа и вида волн, у них всех есть общие характеристики. Вот список:

  1. Гребень - это своего рода максимум. Для волн сжатия это место наибольшей плотности среды. Представляет собой наибольшее положительное отклонение колебания от состояния равновесия.
  2. Ложбина (в некоторых случаях долина) - это обратное гребню понятие. Минимум, наибольшее отрицательное отклонение от состояния равновесия.
  3. Временная периодичность, или частота - это время, за которое волна пройдет от одного максимума к другому.
  4. Пространственная периодичность, или длина волны - это расстояние между соседними пиками.
  5. Амплитуда - это высота пиков. Именно данное определение понадобится, чтобы разобраться, что такое интерференция волн.

Мы очень подробно рассмотрели волну, ее характеристики и различные классификации, ибо понятие «интерференция» невозможно объяснить без четкого понимания такого явления, как возмущение среды. Напоминаем, что интерференция имеет смысл только для волн.

Взаимодействие волн

Теперь мы вплотную подошли к понятию «интерференция»: что такое, когда возникает и как ее определить. Все перечисленные выше виды, типы и характеристики волн относились к идеальному случаю. Это были описания «сферического коня в вакууме», то есть неких теоретических конструкций, невозможных в реальном мире. Но на практике все пространство вокруг пронизано различными волнами. Свет, звук, тепло, радио, химические процессы - это среды. И все эти волны взаимодействуют. Надо отметить одну особенность: чтобы они могли повлиять друг на друга, у них должны быть схожие характеристики.

Волны звука никоим образом не смогут интерферировать со светом, а радиоволны никак не взаимодействуют с ветром. Конечно, влияние все равно есть, но оно настолько мало, что его действие просто не учитывается. Другими словами, при объяснении, что такое интерференция света, предполагается, что один фотон влияет на другой при встрече. Итак, подробнее.

Интерференция

Для многих видов волн действует принцип суперпозиции: встречаясь в одной точке пространства, они взаимодействуют. Обмен энергией отображается на изменении амплитуды. Закон взаимодействия следующий: если встречаются в одной точке два максимума, то в конечной волне интенсивность максимума увеличивается вдвое; если встречаются максимум и минимум, то итоговая амплитуда обращается в ноль. Это и есть наглядный ответ на вопрос о том, что такое интерференция света и звука. По сути, это явление наложения.

Интерференция волн с разными характеристиками

Описанное выше событие представляет встречу двух одинаковых волн в линейном пространстве. Однако две встречные волны могут иметь разные частоты, амплитуды, длины. Как представить итоговую картину в таком случае? Ответ кроется в том, что результат будет не совсем похож на волну. То есть строгий порядок чередования максимумов и минимумов будет нарушен: в какой-то момент амплитуда будет максимальной, в следующий - уже меньше, потом встретятся максимум и минимум и результат обратится в ноль. Однако, какими бы сильными ни были различия двух волн, амплитуда все равно рано или поздно повторится. В математике принято говорить о бесконечности, но в реальности силы трения и инерция могут остановить само существование результирующей волны до того, как картина пиков, долин и равнин повторится.

Интерференция волн, встречающихся под углом

Но, помимо собственных характеристик, у реальных волн может различаться положение в пространстве. Например, при рассмотрении вопроса о том, что такое интерференция звука, это необходимо учитывать. Представьте: идет мальчик и дует в свистульку. Он посылает звуковую волну впереди себя. А мимо него проезжает другой мальчик на велосипеде и звенит в звонок, чтобы пешеход посторонился. В месте встречи этих двух звуковых волн они пересекаются под некоторым углом. Как рассчитать амплитуду и форму конечного колебания воздуха, который долетит, например, до ближайшей торговки семечками бабушки Маши? Тут в силу вступает векторная составляющая звуковой волны. И складывать или вычитать в данном случае надо не только величины амплитуды, но и векторы распространения этих колебаний. Надеемся, что бабушка Маша при этом не будет сильно кричать на шумящих ребят.

Интерференция света с разной поляризацией

Бывает и так, что в одной точке встречаются фотоны разной поляризации. В этом случае тоже следует учитывать векторную составляющую электромагнитных колебаний. Если они не взаимно перпендикулярны или один из пучков света имеет круговую или эллиптическую поляризацию, то взаимодействие вполне возможно. На этом принципе строится несколько способов определения оптической чистоты кристаллов: в перпендикулярно поляризованных пучках не должно быть никакого взаимодействия. Если картина искажается, то кристалл неидеален, он изменяет поляризацию пучков, а значит, выращен неправильно.

Интерференция и дифракция

Взаимодействие двух пучков света приводит к их интерференции, в итоге наблюдатель видит ряд светлых (максимумов) и темных (минимумов) полос или колец. А вот взаимодействие света и вещества сопровождается другим явлением - дифракцией. Оно основано на том, что свет разной длины волны иначе преломляется средой. Например, если длина волны 300 нанометров, то угол отклонения составляет 10 градусов, а если 500 нанометров - уже 12. Таким образом, когда на призму из кварца падает свет от солнечного луча, красный преломляется не так, как фиолетовый (их длины волн различаются), и наблюдатель видит радугу. Это ответ на вопрос о том, что такое интерференция и дифракция света и чем они отличаются. Если направить на ту же призму монохроматическое излучение от лазера, никакой радуги не будет, так как нет фотонов различной длины волны. Просто луч отклонится от первоначального направления распространения на некоторый угол, и все.

Применение явления интерференции на практике

Возможностей получить практическую пользу из этого сугубо теоретического явления очень много. Здесь будут перечислены лишь основные из них:

  1. Исследование качества кристаллов. Чуть выше мы рассказывали об этом.
  2. Выявление погрешностей линз. Часто они должны быть отшлифованы в идеальной сферической форме. Наличие каких-либо дефектов обнаруживают именно с помощью явления интерференции.
  3. Определение толщины пленок. В некоторых видах производства очень много значит постоянная толщина пленки, например пластиковой. Определить ее качество позволяет именно явление интерференции вместе с дифракцией.
  4. Просветление оптики. Очки, линзы фотоаппаратов и микроскопов покрывают тонкой пленкой. Таким образом, электромагнитные волны определенной длины просто отражаются и накладываются сами на себя, уменьшая помехи. Чаще всего просветление делается в зеленой части оптического спектра, так как именно эту область человеческий глаз воспринимает лучше всего.
  5. Изучение космоса. Зная законы интерференции, астрономы способны разделить спектры двух близко расположенных звезд и определить их составы и расстояние до Земли.
  6. Теоретические исследования. Когда-то именно с помощью явления интерференции удалось доказать волновую природу элементарных частиц, таких как электроны и протоны. Этим была подтверждена гипотеза корпускулярно-волнового дуализма микромира и положено начало квантовой эре.

Надеемся, что с данной статьёй ваши познания о наложении когерентных (испускаемых источниками, имеющими постоянную разность фаз и одинаковую частоту) волн значительно расширились. Это явление и называется интерференцией.

Интерференция I Интерфере́нция (от лат. inter - взаимно, между собой и ferio - ударяю, поражаю)

1) в биологии - влияние перекреста (Кроссинговер а) гомологичных хромосом (См. Хромосомы) в одном участке на появление новых перекрестов в близлежащих к нему участках. Чаще этот вид И. препятствует возникновению нового перекреста в соседнем участке, поэтому в опытах процент двойных кроссоверных особей, как правило, оказывается ниже теоретически ожидаемого. Особенно сильно И. подавляет двойной кроссинговер при малых расстояниях между Ген ами. 2) В медицине И. вирусов - подавление действия одного вируса другим при смешанной инфекции. При этом первый вирус именуется интерферирующим, а второй - претендующим.

II Интерфере́нция

волн, сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны. И. характерна для всяких волн независимо от их природы: для волн на поверхности жидкости, упругих (например, звуковых) волн, электромагнитных (например, радиоволн или световых) волн.

Если в пространстве распространяются две волны, то в каждой точке результирующее колебание представляет собой геометрическую сумму колебаний, соответствующих каждой из складывающихся волн. Этот так называемый принцип суперпозиции соблюдается обычно с большой точностью и нарушается только при распространении волн в какой-либо среде, если амплитуда (интенсивность) волн очень велика (см. Нелинейная оптика , Нелинейная акустика). И. волн возможна, если они когерентны (см. Когерентность).

Простейший случай И. - сложение двух волн одинаковой частоты при совпадении направления колебаний в складывающихся волнах. В этом случае, если колебания происходят по синусоидальному (гармоническому) закону, амплитуда результирующей волны в какой-либо точке пространства

где A 1 и A 2 - амплитуды складывающихся волн, а φ - разность фаз между ними в рассматриваемой точке. Если волны когерентны, то разность фаз φ остаётся неизменной в данной точке, но может изменяться от точки к точке и в пространстве получается некоторое распределение амплитуд результирующей волны с чередующимися максимумами и минимумами. Если амплитуды складывающихся волн одинаковы: A 1 = A 2 , то максимальная амплитуда равна удвоенной амплитуде каждой волны, а минимальная - равна нулю. Геометрические места равной разности фаз, в частности соответствующей максимумам или минимумам, представляют собой поверхности, зависящие от свойств и расположения источников, излучающих складывающиеся волны. В случае двух точечных источников, излучающих сферические волны, эти поверхности - гиперболоиды вращения.

Другой важный случай И. - сложение двух плоских волн, распространяющихся в противоположных направлениях (например, прямой и отражённой). В этом случае получаются Стоячие волны .

Среднее за период значение потока энергии в волне пропорционально квадрату амплитуды. Поэтому, как следует из выражения для результирующей амплитуды, при И. происходит перераспределение потока энергии волны в пространстве. Характерное для И. распределение амплитуд с чередующимися максимумами и минимумами остаётся неподвижным в пространстве (или перемещается столь медленно, что за время, необходимое для наблюдений, максимумы и минимумы не успевают сместиться на величину, сравнимую с расстоянием между ними) и его можно наблюдать только в случае, если волны когерентны. Если волны не когерентны, то разность фаз φ быстро и беспорядочно изменяется, принимая все возможные значения, так что среднее значение cos φ = 0. В этом случае среднее значение амплитуды результирующей волны оказывается одинаковым в различных точках, максимумы и минимумы размываются и интерференционная картина исчезает. Средний квадрат результирующей амплитуды при этом равен сумме средних квадратов амплитуд складывающихся волн, т. е. при сложении волн происходит сложение потоков энергии или интенсивностей.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Интерференция" в других словарях:

    Интерференция … Орфографический словарь-справочник

    Интерференция: Интерференция (физика) изменение в характере звуковых, тепловых, световых и электрических явлений, объясняемое колебательным движением: в первом случае частиц звучащего тела, в остальных трех колебанием. Интерференция… … Википедия

    интерференция - (от лат. inter между, ferens (ferentis) несущий) ухудшение сохранения запоминаемого материала в результате воздействия (наложения) другого материала, с которым оперирует субъект. И. изучается в контексте исследований памяти, процессов научения (в … Большая психологическая энциклопедия

    - (ново лат., от лат. inter между, и fero несу), взаимодействие световых, звуковых в др. волн. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИНТЕРФЕРЕНЦИЯ [Словарь иностранных слов русского языка

    ИНТЕРФЕРЕНЦИЯ, взаимодействие двух или более волн, например, звуковых или световых, в результате чего создаются помехи. Лучи полностью или частично усиливают или ослабляют друг друга, приводя к искажениям. Конструктивная интерференция это… … Научно-технический энциклопедический словарь

    Влияние, радиоинтерференция, наложение Словарь русских синонимов. интерференция сущ., кол во синонимов: 3 влияние (17) … Словарь синонимов

    Интерференция. См. интерференция хиазм. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

    интерференция - и, ж. interférence, нем. Interferenz <лат. inter между + ferens (ferentis несущий. физ. Явление взаимодействия звуковых, световых или иных волн, исходящих из разных источников. Цветное фотографирование основано на интерференции. Уш. 1934.… … Исторический словарь галлицизмов русского языка

    - (от лат. inter взаимно, между собой и ferio ударяю, поражаю) взаимоподавление одновременно осуществляющихся процессов, прежде всего относящихся к познавательной сфере, обусловленное ограниченным объемом распределяемого внимания … Психологический словарь

    - [тэ], интеференции, жен. (франц. interference) (физ.). Явление взаимодействия звуковых, световых или иных волн, исходящих из разных источников. Цветное фотографирование основано на интерференции. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    - (Interference) явление сложения двух волн, при котором они либо усиливают, либо ослабляют (или совсем уничтожают) друг друга, в зависимости от соотношения между фазами колебаний, с которыми приходит в данную точку каждая из волн. Взаимное… … Морской словарь

Книги

  • Интерференция в переводе. На материале профессионально ориентированной межкультурной коммуникации и перевода в сфере профессиональной коммуникации , В. В. Алимов. В настоящем пособии рассматриваются вопросы интерференции и перевода, профессионально ориентированной межкультурной коммуникации и перевода в сфере профессиональной коммуникации.…

Интерференция — взаимное усиление или ослабление двух или большего числа волн при их наложении друг на друга.

В результате интерференции происходит перерас-пределение энергии светового излучения в пространстве. Устойчивая (стационарная, постоянная во времени) интер-ференционная картина наблюдается при сложении коге-рентных волн.

Латинское слово « cohaerens» означает «находя-щийся в связи». И в пол-ном соответствии с этим значением под когерент-ностью понимают корре-лированное протекание во времени и простран-стве нескольких волно-вых процессов.

Требование когерентности волн — ключе-вое при рассмотрении интерференции. Разберем его на примере сложения двух волн одинаковой частоты. Пусть в некоторой точке пространства они возбуждают одинаково направленные (E̅ 1 E̅ 2 ) колебания: E̅ 1 sin(ω̅ t + φ 1 -) и E̅ 2 sin(ω̅ t + φ 2 -). Тогда величина амплитуды результирующе-го колебания sin(ω̅ t + φ) равна

E = √(E 1 2 + E 2 2 + 2 E 1 E 2 cosδ),

где δ = φ 1 — φ 2 . Если разность фаз δ постоянна во времени, то волны называются когерентными .

Для некогерентных волн δ случайным образом изменяется во времени, поэтому среднее значение cosδ равно нулю. Поскольку интенсив-ность волны пропорциональна квадрату амплитуды, то в случае сложения некогерентных волн интенсивность результирующей волны I просто равна сумме интенсивно-стей каждой из волн:

I = I 1 + I 2 .

При сложении же коге-рентных волн интенсивность результирующего колебания

I = I 1 + I 2 + 2√(I 1 I 2 cosδ ),

в зависимости от значения cosδ , мо-жет принимать значения и большие, и меньшие, чем I 1 + I 2 . Так как значение δ в общем случае зависит от точки наблю-дения, то и интенсивность результирующей волны будет различной в разных точках. Именно это имелось в виду, ко-гда выше говорилось о перераспределении энергии в про-странстве при интерференции волн.

Излучение с высокой степенью когерентности получают с помощью лазеров . Но если нет лазера, когерентные волны можно получить, разделив одну волну на несколько. Обыч-но используют два способа «деления» — деление волнового фронта и деление амплитуды. При делении волнового фронта интерферируют волновые пучки, первоначально распространявшиеся от одного источника в разных напра-влениях, которые затем с помощью оптических приборов сводят в одной области пространства (ее называют полем интерференции ). Для этого используют бизеркала и би-призмы Френеля , билинзы Бийе и др.

Чтобы перечислить «цве-та» различных участков оптического диапазона в порядке убывания длины волны — красный, оран-жевый, желтый, зеленый, голубой, синий, фиолето-вый, достаточно вспом-нить фразу: «Каждый охотник желает знать, где сидит фазан».

При амплитудном де-лении волна разделяется на полупрозрачной границе двух сред. Затем, в результате последующих отражений и прело-млений, разделенные части волны встречаются и интерфе-рируют. Именно так окрашиваются в разные цвета мыль-ные пузыри и тонкие масляные пленки на воде, крылья стрекозы и оксидные пленки на металлах и оконных стек-лах. Важно, что интерферировать должны дуги волн, испу-щенные в одном акте излучения атома или молекулы, т. е. части волны должны «недолго» двигаться раздельно, иначе в точку встречи уже придут волны, испущенные раз-ными атомами. А так как атомы излучают спонтанно (если не созданы специальные условия, как в лазерах), то эти вол-ны будут заведомо некогерентны. В лазерах работает вынужденное излучение и этим достигается высокая степень когерентности. Материал с сайта

Явление интерференции света в XVII в. исследовал Ньютон. Он наблюдал ин-терференцию света в тон-ком воздушном зазоре между стеклянной плас-тинкой и положенной на нее линзой. Получающую-ся в таком опыте интерфе-ренционную картину так и называют — кольца Ньюто-на . Однако Ньютон не смог внятно объяснить по-явление колец в рамках своей корпускулярной те-ории света. Лишь в начале XIX столетия сначала Т. Юнг, а затем О. Френель сумели объяснить образо-вание интерференцион-ных картин. И тот, и дру-гой были сторонниками волновой теории света.

В опыте Юнга (а) использовано деление волнового фронта. Два круглых или щелевидных отверстия служили источником когерентных волн. S - дуговая лампа; S 0 - щель шириной 0,25 мм; S 1 и S 2 - щели шириной 0,1 мм на расстоянии 0,7 мм. На рис. (б) показана интерференционная картина, наблюдаемая по схеме Юнга

На этой странице материал по темам:

При прохождении электромагнитной волны через границу раздела сред происходит ее отражение и преломление.

Закон отражения: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раз­де­ла двух сред в точке падения. Угол падения равен углу отражения, (рис.1.1).

Закон преломления: луч пада­ю­щий, луч преломленный и перпендикуляр, про­ве­денный к границе раздела в точке падения, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред

где n 21 относительный показатель преломления второй среды относительно первой.

Для установления причин преломления запишем для треугольников ABC иACD (см. рис. 1.1) соотношения:ВС =AC sini 1 ,AD =AC sini 2 , тогда отношениеBC /AD = sini 1 /sini 2 . C учетом времени перехода фронта волныt и скоростей ее распространенияv 1 иv 2 соответственно в средах 1 и 2 имеемBC =v 1 t иAD =v 2 t , откуда

Таким образом, свет преломляется из-за различной скорости волн в разных средах. Абсолютный показатель преломления среды n показывает, во сколько раз скорость света в среде меньше, чем скорость света в вакууме:n = c /v .

В соответствии с электромагнитной природой скорость света и показатель преломления зависят от электромагнитных свойств среды (ее диэлектрической  0 и магнитной 0 проницаемости)

При прохождении волны через границу раздела сред (рис. 1.2) изменяется длина волны. Действительно, при v 2 < v 1 (v 1 =c ) для первой среды с =, для второй средыv =, тогда

На отрезки AD иBC (см. рис. 1.1) укладывается одно и то же количество волн.

Рассмотрим изменение плоской бегущей волны при переходе в другую среду. В вакууме

т.е. фаза волны зависит не от координаты x , а от оптической длины путиnx .

При отражении волны от границы раздела сред, когда волна проходит из оптически более плотной среды 1 в оптически менее плотную среду 2 (n 1 >n 2) оптическая разность хода двух лучейL =n x = = 0. При отражении от оптически более плотной среды (рис. 1.3) фаза скачком меняется на, аL на/2, т.е. происходит потеря полуволны.

1.2. Интерференция света и условия её наблюдения. Когерентные источники света

При наложении волн в пространстве имеет место явление интерференции, заключающееся в том, что в одних местах волны усиливают друг друга, а в других ослабляют. Результаты такого сложения имеют общие закономерности независимо от природы волнового процесса.

Интерференцией света называется пространственное пере­распределение энергии светового излучения при наложении двух или нескольких световых волн, в результате чего в одних местах возникают максимумы (светлые пятна), а в других минимумы (темные пятна) интенсивности света.

Повседневный опыт убеждает нас в том, что обычные источники света (например, лампочки накаливания) явления интерференции не дают. В чём причина этого? Какими должны быть источники световых волн, чтобы возникало явление интерференции?

Необходимым условием интерференции волн являетсяихкогерент­ность, т.е. согласованное протекание во времени и пространстве несколькихколебательных или волновых процессов.Условию когерентности удовлетворяютмонохроматические волны – неограниченные в пространстве волны одной определенной и строго постоянной частоты (= const).

Реальные световые волны не являются строго монохроматическими. В силу фундаментальных физических причин излучение всегда имеет статистический характер. Атомы светового источника излучают независимо друг от друга в случайные моменты времени, и излучение каждого атома длится очень короткое время (τ ≤ 10 –8 с). Результирующее излучение источника в каждый момент времени состоит из вкладов огромного числа атомов. Через время порядка τ вся совокупность излучающих атомов обновляется. Поэтому суммарное излучение будет иметь другую амплитуду и, что особенно важно, другую фазу. Фаза волны, излучаемой реальным источником света, остается приблизительно постоянной только на интервалах времени порядка τ.

Прерывистое излучение света атомами в виде отдельных коротких импульсов называется волновым цугом . Средняя продолжительность одного цуга называется временем когерентности τ ког. В соответствии с условием временной когерентности время когерентности не может превышать время излучения:

τ ког < τ . (1.4)

При распространении волны фаза колебаний сохраняется только за время когерентности, за это время волна распространяется в вакууме на расстояние l ког = с τ ког – длины когерентности (длины цуга). Длина когерентности l ког есть расстояние, при прохождении которого две или несколько волн утрачивают когерентность. В соответствии с условием пространственной когерентности оптическая разность хода не может превышать длину когерентности:

L < l ког (1.5)

Волны, испускаемые двумя независимыми источ­никами света (даже двумя независимыми атомами), не когерентны, так как разность фаз между излучением этих источников хаотически изме­няется каждые 10 -8 с. Это приводит к усреднению интенсивности в каждой точке пространства. Следовательно, некогерентные лучи не создают устойчивой, неизменной во времени интерференционной картины.

Более того, поскольку цуги волн, излучаемые одним и тем же атомом в разные моменты времени (t > 10 -8 с), отличаются часто­той и фазой, то, очевидно, интерференция произойдет только при встрече волн, образуемых из одного и того же цуга.

Основная трудность в осуществлении явления интерференции све­та заключается в получении когерентных световых волн. Как было объяснено выше, для этого непригодны излучения не только двух различных макроскопических источников света (исключение состав­ляют лазеры), но и различных атомов одного и того же источника. Поэтому остается лишь одна возможность - каким-либо способом раз­делить свет, излучаемый каждым источником, на две группы волн, которые в силу общности происхождения должны быть когерентными и при наложении будут интерферировать. Отсюда все методы получения когерентных источников света сводятся к одной идее  разделению одного пучка от источника на две части и дальнейшемуих сведению в одну точку. Практически это можно осуществить с помощью щелей (метод Юнга), зеркал (метод зеркал Френеля), преломляю­щих тел (метод бипризмы Френеля) и т.д.

В качестве примера рассмотрим метод Юнга. Источником света служит ярко освещенная щель S (рис.1.1), от которой световая вол­на падает на две узкие равноудаленные щели S 1 и S 2 , параллель­ные щели S. Таким образом, щели S 1 и S 2 играют роль когерент­ных источников. Интерференционная картина (область ВС) наблюда­ется на экране Э, расположенном на некотором расстоянии парал­лельно S 1 и S 2 . Юнгу принадлежит первое наблюдение явления интерференции.

Интерференционная картина на экране (см. рис. 1.4) имеет вид полос, параллельных щели. Если источник S излучает монохромати­ческий свет (одного цвета одинаковой частоты ν), то интерфе­ренционная картина представляет собой чередование светлых и тем­ных полос это максимумы иминимумыинтерференции.

От чего зависит результат интерференции в любой точке экрана? В каких случаях волны будут гасить друг друга, в каких – усиливать?

Рассмотрим два случая:

1)свет распространяется в вакууме (n 0 = 1);

2)свет распространяется в средах с разными показателями пре­ломления (n 1 ≠ n 2 1).

1. Пусть оба когерентных луча от источников S 1 и S 2 про­ходят путиl 1 иl 2 до встречи в т.М экрана в вакууме (рис. 1.5). В этой случаеl 1 иl 2 -геометрические пути лучей. Рассчитаем резуль­тат наложения двух синусоидальных когерентных волн в произвольной точкеM экрана. Сделаем это для электрического вектора (не следует забывать о том, что в однородной среде интенсивность света пропорциональна квадрату амплитуды вектора напряженностиI ≈ E 2).

Колебания, приходящие в точку М от источников S 1 и S 2 , опи­сываются уравнениями:

,

где λ 0  длина волны в вакууме.

По принципу суперпозиции волн ам­плитуда результирующего колебания в т. М определяется формулой

для интенсивностей

где и (1.8)

фазы складываемых колебаний.

Из выражения (1.7) следует, что величина амплитуды результиру­ющего колебания Е 0 , а, значит и интенсивности, зависит только отразности фаз (φ 1 –φ 2)складываемых колебаний.

Итак, волны называются когерентными, если в произволь­ной точке их встречи разность фаз колебаний остается постоянной во времени.

При этом возможны два предельных ва­рианта.

а ) (φ 1  φ 2) = ±2k π (k = 0, 1, 2, ...), (1.9)

cos (φ 1 – φ 2) = 1; Е 0 = Е 01 + Е 02 ; ,

т.е. амплитуда и интенсивность результирующего колебания максимальна (в случае E 01 = E 02 E 0 = 2E 01 , , a I = 4I 01).

Из уравнений (1.6) находим разность фаз

где Δl= (l 2 – l 1) геометрическая разность хода волн от источников S 1 и S 2 до т. M экрана (см. рис. 1.5).

Из фор­мул (1.9) и (1.10) следует, что условие интерференционного максимума

где k  порядок интерференционного максиму­ма (k = 0, 1, 2, …, при k = 0 наблюдают максимум в центре экрана).

б) (φ 1 – φ 2) = ± (2k + 1)π (k = 0, 1, 2, ...), (1.12)

cos (φ 1 – φ 2) = – 1; Е 0 = Е 01 – Е 02 ; ,

т.е. амплитуда результирующего колебания, а, следовательно, и интенсивность – минимальна (в случае E 01 = E 02 E 0 = 0 и I = 0).

Из формул (1.10) и (1.11) следует условие интерференционного минимума

где k – порядок интерференци­онного минимума.

2. Если когерентные лучи проходят свои пути до точки М в раз­ных средах: первый – путь l 1 в среде с показателем преломления n 1 , второй – путь l 2 , в среде с показателем преломления n 2 , то условия образования максимумов и минимумов интерференции бу­дут зависеть не от геометрической разности хода Δl = (l 2 – l 1), а от оптической разности хода

ΔL = L 2 – L 1 = l 2 n 2 – l 1 n 1 , (1.14)

где L 1 , и L 2 – оптические пути лучей 1 и 2, L 1 = l 1 п 1 ; L 2 = l 2 n 2 . В этом случае разность фаз складываемых волн

где с – скорость света в вакууме, v – скорость света в среде; λ – длина волны, λ = v/;  – частота. Для вакуума λ 0 = с/, а для среды с показателем преломления n λ = λ 0 /n .

Приравняв поочередно (1.11) и (1.12) к (1.15), получим условие ин­терференционных максимумов:

и интерференционных минимумов:

где k = 0, 1, 2, 3, … .

Итак, в тех местах на экране, до которых в оптической разно­сти хода лучей укладывается четное число полуволн, колебания, приходящие от обоих источников, складываются, амплитуда удваива­ется, а интенсивность возрастает в 4раза. В тех местах экрана, до которых в оптичес­кой разности хода укладывается нечетное число полуволн, колеба­ния приходят в противоположной фазе и полностью гасят друг друга.

П р и м е ч а н и я:

1. Из формулы (1.15) обнаруживается связь между разностью фаз и оптической разностью хода:

2. Монохроматическим называют излучение одной длины волны λ = соnst (точнее узкого интервала длин волн). Такой свет воспринимается как одноцветный. Белый свет представлен набором длин волн от фиолетового до красного. Если источник S излучает свет не монохроматический, а белый, то интерфе­ренционные максимумы имеют вид радужных полос (кроме центрального максимума, где k = 0). Это объясняется тем, что условие максиму­ма интерференции (1.16) для данной длины волны выполняется только в определенной точке экрана. Поэтому белый свет в резуль­тате интерференции разлагается в интерференционный спектр. В цент­ре интерференционной картины, где k = 0, результат интерференции не зависит от длины волны λ .

Результат расчета интерференционной картины от двух когерентных источни­ков можно привести на примере опыта Юнга. Щели S 1 и S 2 (рис. 1.6) находятся на расстоянии d друг от друга и являются когерентными источниками света. Интерференция наблюдается в произвольной точке M экрана, расположенного параллельно обеим щелям на расстоянии L , причем L >> d . Начало отсчета выбрано в т. О экрана, расположенной симметрично относительно щелей S 1 и S 2 .

Интенсивность в любой точке М экрана, лежащей на расстоянии х от точки 0, определяется разностью хода Δl = l 2  l 1 (см. рис. 1.6).

Максимумы интен­сивности будут наблюдаться при

x max = ± kL λ 0 /d (k = 0, 1, 2, ...),(1.18)

минимумы интенсивности – при

x min = ± (2k+ 1)L λ 0 /2d (k = 0, 1, 2, ...).(1.19)

Расстояние между двумя соседнимимаксимумами илиминимумами,называемое шириной интерференционной полосы,

Δx = L λ 0 /d . (1.20)

Из формулы (1.20)видно, что ширина интерференционной полосы Δх не зависит от порядка интерференции (величины k )и является постоянной для данных L , d. и λ 0 .По измеренным значениямL , d. иλ 0 ,используя (1.20),можно экспериментально опреде­лить длину световой волны λ 0 .

«Физика - 11 класс»

Если свет представляет собой поток волн, то должно наблюдаться явление интерференции света. Однако получить интерференционную картину (чередование максимумов и минимумов освещенности) с помощью двух независимых источников света, например двух электрических лампочек, невозможно. Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.

Выясним, в чем причина этого и при каких условиях можно наблюдать интерференцию света.


Условие когерентности световых волн

Причина отсутствия интерференционной картины в опыте с двумя лампочками в том, что световые волны, излучаемые независимыми источниками, не согласованы друг с другом. Для получения же устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины волн и постоянную во времени разность фаз в любой точке пространства. Напомним, что такие согласованные волны с одинаковыми длинами волн и постоянной разностью фаз называются когерентными.

Почти точного равенства длин волн от двух источников добиться нетрудно. Для этого достаточно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но невозможно осуществить постоянство разности фаз от двух независимых источников. Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн, имеющими обычно длину около метра. И такие цуги волн от обоих источников налагаются друг на друга. В результате амплитуда колебаний в любой точке пространства хаотично меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты относительно друг друга по фазе. Волны от различных источников света некогерентны из-за того, что разность фаз волн не остается постоянной (исключение составляют квантовые источники света - лазеры, созданные в 1960 г.) Никакой устойчивой картины с определенным распределением максимумов и минимумов освещенности в пространстве не наблюдается.


Интерференция в тонких пленках

Тем не менее интерференцию света удается наблюдать. Хотя ее и наблюдали очень давно, но только не придавали этому значения.

Вы тоже много раз видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина либо нефти на поверхности воды. «Мыльный пузырь, витая в воздухе... зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен). Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн 1 и 2 (рис. 8.48), одна из которых (1) отражается от наружной поверхности пленки, а другая (2) - от внутренней. При этом происходит интерференция световых волн - сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат интерференции (усиление или ослабление результирующих колебаний) зависит от угла падения света на пленку, ее толщины и длины волны света. Усиление света произойдет в том случае, если преломленная волна 2 отстанет от отраженной волны 1 на целое число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, возникает из-за того, что они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два цуга, а затем эти части сводятся вместе и интерферируют.

Юнг понял также, что различие в цвете связано с различием в длине волны (или частоте) световых волн. Световым пучкам различного цвета соответствуют волны с разной длиной волны X. Для взаимного усиления волн, отличающихся друг от друга длиной волны (углы падения предполагаются одинаковыми), требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Кольца Ньютона

Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плосковыпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. Эта интерференционная картина имеет вид концентрических колец, получивших название колец Ньютона.

Возьмите плосковыпуклую линзу с малой кривизной сферической поверхности и положите ее выпуклостью вниз на стеклянную пластину. Внимательно разглядывая плоскую поверхность линзы (лучше через лупу), вы обнаружите в месте соприкосновения линзы и пластины темное пятно и вокруг него совокупность маленьких радужных колец. Это и есть кольца Ньютона. Ньютон наблюдал и исследовал их не только в белом свете, но и при освещении линзы одноцветным (монохроматическим) пучком. Оказалось, что радиусы колец одного и того же порядкового номера увеличиваются при переходе от фиолетового конца спектра к красному; красные кольца имеют максимальный радиус. Расстояния между соседними кольцами уменьшаются с увеличением их радиусов.

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны. Рассмотрим случай, когда волна определенной длины волны падает почти перпендикулярно на плосковыпуклую линзу. Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе сред стекло - воздух, а волна 2 - в результате отражения от пластины на границе сред воздух - стекло. Эти волны когерентны: они имеют одинаковую длину волны и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах, и волны погасят друг друга.

Если известен радиус кривизны R выпуклой поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины волны λ, гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Ведь линии постоянной толщины воздушной прослойки представляют собой окружности. Измерив радиусы колец, можно вычислить длины волн.


Длина световой волны

В результате измерений было установлено, что для красного света λ кр = 8 10 -7 м, а для фиолетового - λ ф = 4 10 -7 м. Длины волн, соответствующие другим цветам спектра, принимают промежуточные значения. Для любого цвета длина световой волны очень мала. Поясним это на простом примере. Представьте себе среднюю морскую волну длиной волны в несколько метров, которая увеличилась настолько, что заняла весь Атлантический океан от берегов Америки до Европы. Длина световой волны, увеличенной в той же пропорции лишь ненамного превысила бы ширину этой страницы.

Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину волны. Подобно тому как высота звука определяется его частотой, цвет света определяется частотой колебаний или длиной волны.

В природе нет никаких красок, есть лишь волны разных длин волн. Глаз - сложный физический прибор, способный обнаруживать различие в цвете, которому соответствует весьма незначительная (около 10 -6 см) разница в длинах световых волн. Интересно, что большинство животных не способны различать цвета. Они всегда видят черно-белую картину. Не различают цвета также дальтоники - люди, страдающие цветовой слепотой.

При переходе света из одной среды в другую длина волны изменяется. Это можно увидеть. Заполним водой или другой прозрачной жидкостью с показателем преломления п воздушную прослойку между линзой и пластиной. Радиусы интерференционных колец уменьшатся.

Почему это происходит? Мы знаем, что при переходе света из вакуума в какую-нибудь среду скорость света уменьшается в n раз. Так как υ = λν, то при этом должна уменьшиться в n раз либо частота ν, либо длина волны λ. Но радиусы колец зависят от длины волны. Следовательно, когда свет входит в среду, изменяется в n раз именно длина волны, а не частота.


Интерференция электромагнитных волн

В опытах с генератором СВЧ можно наблюдать интерференцию электромагнитных волн (радиоволн).

Генератор и приемник располагают друг против друга. Затем подносят снизу металлическую пластину в горизонтальном положении. Постепенно поднимая пластину, обнаруживают поочередное ослабление и усиление звука.

Явление объясняется следующим образом. Часть волны из рупора генератора попадает непосредственно в приемный рупор. Другая же ее часть отражается от металлической пластины. Меняя расположение пластины, мы изменяем разность хода прямой и отраженной волн. Вследствие этого волны либо усиливают, либо ослабляют друг друга в зависимости от того, равна разность хода целому числу длин волн или нечетному числу полуволн.

Наблюдение интерференции света доказывает, что свет при распространении проявляет волновые свойства. Интерференционные опыты позволяют измерить длину световой волны: она очень мала - от 4 10 -7 до 8 10 -7 м.