Собственный опыт

Длина векторного произведения равна площади параллелограмма. Векторное произведение векторов онлайн

СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ТРЕХ ВЕКТОРОВ И ЕГО СВОЙСТВА

Смешанным произведением трёх векторов называют число, равное . Обозначается . Здесь первые два вектора умножаются векторно и затем полученный вектор умножается скалярно на третий вектор . Очевидно, такое произведение есть некоторое число.

Рассмотрим свойства смешанного произведения.

  1. Геометрический смысл смешанного произведения. Смешанное произведение 3-х векторов с точностью до знака равно объёму параллелепипеда, построенного на этих векторах, как на рёбрах, т.е. .

    Таким образом, и .

    Доказательство . Отложим векторы от общего начала и построим на них параллелепипед. Обозначим и заметим, что . По определению скалярного произведения

    Предполагая, что и обозначив через h высоту параллелепипеда, находим .

    Таким образом, при

    Если же , то и . Следовательно, .

    Объединяя оба эти случая, получаем или .

    Из доказательства этого свойства в частности следует, что если тройка векторов правая, то смешанное произведение , а если – левая, то .

  2. Для любых векторов , , справедливо равенство

    Доказательство этого свойства следует из свойства 1. Действительно, легко показать, что и . Причём знаки "+" и "–" берутся одновременно, т.к. углы между векторами и и и одновременно острые или тупые.

  3. При перестановке любых двух сомножителей смешанное произведение меняет знак.

    Действительно, если рассмотрим смешанное произведение , то, например, или

  4. Смешанное произведение тогда и только тогда, когда один из сомножителей равен нулю или векторы – компланарны.

    Доказательство .

    Т.о., необходимым и достаточным условием компланарности 3-х векторов является равенство нулю их смешанного произведения. Кроме того, отсюда следует, что три вектора образуют базис в пространстве, если .

    Если векторы заданы в координатной форме , то можно показать, что их смешанное произведение находится по формуле:

    .

    Т. о., смешанное произведение равно определителю третьего порядка, у которого в первой строке стоят координаты первого вектора, во второй строке – координаты второго вектора и в третьей строке – третьего вектора.

    Примеры.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

Уравнение F(x, y, z) = 0 определяет в пространстве Oxyz некоторую поверхность, т.е. геометрическое место точек, координаты которых x, y, z удовлетворяют этому уравнению. Это уравнение называется уравнением поверхности, а x, y, z – текущими координатами.

Однако, часто поверхность задаётся не уравнением, а как множество точек пространства, обладающих тем или иным свойством. В этом случае требуется найти уравнение поверхности, исходя из её геометрических свойств.


ПЛОСКОСТЬ.

НОРМАЛЬНЫЙ ВЕКТОР ПЛОСКОСТИ.

УРАВНЕНИЕ ПЛОСКОСТИ, ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ

Рассмотрим в пространстве произвольную плоскостьσ. Её положение определяется заданием вектора , перпендикулярного этой плоскости, и некоторой фиксированной точки M 0 (x 0 , y 0 , z 0 ), лежащей в плоскости σ.

Вектор перпендикулярный плоскости σ, называется нормальным вектором этой плоскости. Пусть вектор имеет координаты .

Выведем уравнение плоскости σ, проходящей через данную точку M 0 и имеющей нормальный вектор . Для этого возьмём на плоскости σ произвольную точку M(x, y, z) и рассмотрим вектор .

Для любой точки M Î σ вектор .Поэтому их скалярное произведение равно нулю . Это равенство – условие того, что точка M Î σ. Оно справедливо для всех точек этой плоскости и нарушается, как только точка M окажется вне плоскости σ.

Если обозначить через радиус-вектор точки M , – радиус-вектор точкиM 0 , то и уравнение можно записать в виде

Это уравнение называется векторным уравнением плоскости. Запишем его в координатной форме. Так как , то

Итак, мы получили уравнение плоскости, проходящей через данную точку. Таким образом, для того чтобы составить уравнение плоскости, нужно знать координаты нормального вектора и координаты некоторой точки, лежащей на плоскости.

Заметим, что уравнение плоскости является уравнением 1-ой степени относительно текущих координат x, y и z .

Примеры.

ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ

Можно показать, что любое уравнение первой степени относительно декартовых координат x, y, z представляет собой уравнение некоторой плоскости. Это уравнение записывается в виде:

Ax+By+Cz+D =0

и называется общим уравнением плоскости, причём координаты A, B, C здесь являются координатами нормального вектора плоскости.

Рассмотрим частные случаи общего уравнения. Выясним, как располагается плоскость относительно системы координат, если один или несколько коэффициентов уравнения обращаются в ноль.

A – это длина отрезка, отсекаемого плоскостью на оси Ox . Аналогично, можно показать, что b и c – длины отрезков, отсекаемых рассматриваемой плоскостью на осях Oy и Oz .

Уравнением плоскости в отрезках удобно пользоваться для построения плоскостей.

Определение. Векторным произведением вектора а на вектор b называется вектор, обозначаемый символом [«, Ь] (или л х Ь), такой, что 1) длина вектора [а, b] равна (р, где у - угол между векторами а и b (рис.31); 2) вектор [а, Ь) перпендикулярен векторам а и Ь,т.е. перпендикулярен плоскости этих векторов; 3) вектор [а, Ь] направлен так, что из конца этого вектора кратчайший поворот от а к b виден происходящим против часовой стрелки (рис. 32). Рис. 32 Рис.31 Иными словами, векторы a, b и [а,Ь) образуют правую тройку векторов, т.е. расположены так, как большой, указательный и средний пальцы правой руки. В случае, если векторы а и b коллинеарны, будем считать, что [а, Ь] = 0. По определению длина векторного произведения численно равна площади Sa параллелограмма (рис. 33), построенного на перемножаемых векторах а и b как на сторонах: 6.1. Свойства векторного произведения 1. Векторное произведение равно нулевому вектору тогда и толькотогда, когда по крайней мере один из перемножаемых векторов является нулевым или когда эти векторы коллинеарны (если векторы а и b коллинеарны, то угол между ними равен либо 0, либо 7г). Это легко получить из того, что Если считать нулевой вектор коллинсарным любому вектору, то условие коллинеарности векторов а и b можно выразить так 2. Векторное произведение антикоммутативно, т. е. всегда. В самом деле, векторы (а, Ь) и имеют одинаковую длину и коллинеарны. Направления же этих векторов противоположны, так как из конца вектора [а, Ь] кратчайший поворот от а к b будет виден происходящим против часовой стрелки, а из конца вектора [Ь, а] - по часовой стрелке (рис. 34). 3. Векторное произведение обладает распределительным свойством по отношению к сложению 4. Числовой множитель Л можно выносить за знак векторного произведения 6.2. Векторное произведение векторов, заданных координатами Пусть векторы а и Ь заданы своими координатами в базисе. Пользуясь распределительным свойством векторного произведения, находим Векторное произведение векторов заданных координатами. Смешанное произведение. Выпишем векторные произведения координатных ортов (рис. 35): Поэтому для векторного произведения векторов а и b получаем из формулы (3) следующее выражение Формулу (4) можно записать в символической, легко запоминающейся форме, если воспользоваться определителем 3-го порядка: Разлагая этот определитель по элементам 1-й строки, получим (4). Примеры. 1. Найти площадь параллелограмма, построенного на векторах Искомая площадь Поэтому находим = откуда 2. Найти площадь треугольника (рис. 36). Ясно, что площадь б"д треугольника ОАО равна половине площади S параллелограмма О АС В. Вычисляя векторное произведение (а, Ь| векторов а = OA и b = оЪ, получаем Отсюда Замечание. Векторное произведение не ассоциативно, т.е. равенство ((а, Ь),с) = [а, |Ь,с)) в обшем случае неверно. Например, при а = ss j имеем § 7. Смешанное произведение векторов Пусть имеем три вектора а, Ь и с. Перемножим векторы а и 1> вскторно. В результате получим вектор [а, 1>]. Умножим его скалярно на вектор с: (к Ь), с). Число ([а, Ь], е) называется смешанным произведением векторов а, Ь. с и обозначается символом (а, 1), е). 7.1. Геометрический смысл смешанного произведения Отложим векторы а, b и с отобшей точки О (рис. 37). Если все четыре точки О, А, В, С лежат в одной плоскости (векторы a, b и с называются в этом случае компланарными), то смешанное произведение ([а, Ь], с) = 0. Это следует из того, что вектор [а, Ь| перпендикулярен плоскости, в которой лежат векторы а и 1», а значит, и вектору с. / Если же точки О, А, В, С не лежат в одной плос-кости (векторы a, b и с некомпланарны), построим на ребрах OA, OB и ОС параллелепипед (рис. 38 а). По определению векторного произведения имеем (a,b) = So с, где So - площадь параллелограмма OADB, а с - единичный вектор, перпендикулярный векторам а и Ь и такой, что тройка а, Ь, с - правая, т.е. векторы a, b и с расположены соответственно как большой, указательный и средний пальцы правой руки (рис. 38 б). Умножая обе части последнего равенства справа скалярно на вектор с, получаем, что Векторное произведение векторов заданных координатами. Смешанное произведение. Число ргс с равно высоте h построенного параллелепипеда, взятого со знаком «+», если угол между векторами с и с острый (тройка а, Ь, с - правая), и со знаком «-», если угол - тупой (тройка а, Ь, с - левая), так что Тем самым, смешанное произведение векторов а, Ь и с равно объему V параллелепипеда, построенного на этих векторах как на ребрах, если тройка а, Ъ, с - правая, и -V, если тройка а, Ь, с - левая. Исходя из геометрического смысла смешанного произведения, можно заключить, что, перемножая тс же векторы a, b и с в любом другом порядке, мы всегда будем получать либо +7, либо -К. Знак произ- Рис. 38 ведения будет зависеть лишь оттого, какую тройку образуют перемножаемые векторы - правую или левую. Если векторы а, Ь, с образуют правую тройку, то правыми будут также тройки Ь, с, а и с, а, Ь. В то же время все три тройки Ь, а, с; а, с, Ь и с, Ь, а - левые. Тем самым, (а,Ь, с) = (Ь,с, а) = (с,а,Ь) = -(Ь,а,с) = -(а,с,Ь) = -(с,Ь,а). Ешераз подчеркнем, что смешанное произведение векторов равно нулютогдаи только тогда, когда перемножаемые векторы а, Ь, с компланарны: {а, Ь, с компланарны} 7.2. Смешанное произведение в координатах Пусть векторы а, Ь, с заданы своими координатами в базисе i, j, k: а = {x\,y\,z]}, b= {x2,y2>z2}, c = {х3,уз,23}. Найдем выражение для их смешанного произведения (а, Ь, с). Имеем смешанное произведение векторов, заданныхсвоими координатами в базисе i, J, к, равно определителю третьего порядка, строки которого составлены соответственно из координат первого, второго и третьего из перемножаемых векторов. Необходимое и достаточное условие компланарности векторов а у\, Z|}, b = {хъ У2. 22}, с = {жз, уз, 23} запишется в следующем виде У| z, аг2 у2 -2 =0. Уз Пример. Проверить, компланарны ли векторы „ = {7,4,6}, Ь = {2, 1,1}, с = {19, II, 17}. Рассматриваемые векторы будут компланарны или некомпланарны в зависимости от того, будет равен нулю или нет определитель Разлагая его по элементам первой строки, получим Д = 7- 6- 4- 15 + 6-3 = 0^- векторы n, Ь, с компланарны. 7.3. Двойное векторное произведение Двойное векторное произведение [а, [Ь, с]] представляет собой вектор, перпендикулярный к векторам а и [Ь, с]. Поэтому он лежит в плоскости векторов b и с и может быть разложен по этим векторам. Можно показать, что справедлива формула [а, [!>, с]] = Ь(а, е) - с(а, Ъ). Упражнения 1. Три вектора АВ = с, Ж? = о и СА = b служат сторонами треугольника. Выразить через a, b и с векторы, совпадающие с медианами AM, DN, CP треугольника. 2. Каким условием должны быть связаны векторы р и q, чтобы вектор р + q делил угол между ними пополам? Предполагается, что все три вектора отнесены к общему началу. 3. Вычислите длину диагоналей параллелограмма, построенного на векторах а = 5р + 2q и b = р - 3q, если известно, что |р| = 2v/2, |q| = 3 H-(p7ci) = f. 4. Обозначив через а и b стороны ромба, выходящие из общей вершины, докажите, что диагонали ромба взаимно перпендикулярны. 5. Вычислите скалярное произведение векторов а = 4i + 7j + 3k и b = 31 - 5j + k. 6. Найдите единичный вектор а0, параллельный вектору а = {6, 7, -6}. 7. Найдите проекцию вектора a = l+ j- kHa вектор b = 21 - j - 3k. 8. Найдите косинус угла между векторами IS «ж,если А(-4,0,4), В(-1,6,7), С(1,10.9). 9. Найдите единичный вектор р°, одновременно перпендикулярный вектору а = {3, 6, 8} и оси Ох. 10. Вычислите синус угла между диагоналями параллелофамма, построенного на векторах a = 2i+J-k, b=i-3j + k как на сторонах. Вычислите высоту h параллелепипеда, построенного на векторах а = 31 + 2j - 5k, b = i- j + 4knc = i-3j + к, если за основание взят параллелограмм, построенный на векторах а и I). Ответы