Собственный опыт

Изменение энтропии при постоянном давлении. Вычисление изменения энтропии в различных процессах

В предыдущем разделе мы исходили из того основного предположения, что для любой системы существует параметр, называемый энтропией и обозначаемый S. При малых величинах теплового взаимодействия соответствующее дифференциальное изменение энтропии dS составляет . Используем далее это определение для вычисления изменений энтропии в некоторых простых и известных процессах.

Изменение энтропии при таянии льда. Предположим, что в жаркий летний день мы принесли на пикник термос, наполненный смесью льда и воды. Поскольку изоляция термоса не идеальна, лед будет постепенно таять. Однако таяние происходит медленно, температура в термосе будет оставаться практически неизменной и равной 0°С. Подсчитаем изменение энтропии, соответствующее таянию 1 моль (или 18 г) льда. Табличное значение теплоты плавления льда составляет 79,67 кал/г, что дает около 1434 кал/моль. Тогда можно записать

Как и ранее, обозначает просто суммирование бесконечно малых величин - интегрирование (или суммирование) всех величин , соответствующих каждому малому количеству теплоты . Интегрирование выполняется в этом случае особенно просто потому, что температура Т не меняется в ходе процесса плавления. Поэтому множитель 1/Т можно вынести из-под знака интеграла, так что он становится просто множителем при последнее выражение представляет собой фактически теплоту фазового перехода (плавления) льда кал/моль. Соотношение (19) означает, что энтропия 1 моль воды при 273 К на 5,27 кал/К превышает энтропию 1 моль льда при той же температуре.

Верь, когда растает лед. Энтропия возрастет.

Наоборот, если у воды при температуре 273 К отобрать достаточно теплоты - чтобы образовался 1 моль льда при 273 К, энтропия системы понизится на .

Заметим, что всюду в этом разделе мы использовали абсолютную температуру по Кельвину в знаменателе отношения . Можно было бы использовать и абсолютную шкалу Рэнкина, если измерять при этом количество теплоты в б.т. е. Очевидно, что в знаменателе выражения нельзя использовать температуры по шкалам Цельсия или Фаренгейта (как это иногда пытаются делать даже подготовленные студенты). Так, например, используя шкалу Цельсия, в рассматриваемом случае мы пришли бы к абсурдному результату (знаменатель выражения обратился бы в нуль). Заметим, что единицы, в которых выражается изменение энтропии, совпадают с единицами, в которых измеряется молярная теплоемкость Изменение энтропии при таянии 1 моль льда при точке замерзания в нормальных условиях составляет 5,27 кал/(моль К).

Изменение энтропии при кипении воды. Другой хорошо знакомый процесс, идущий при определенной температуре, - это переход жидкой воды в пар при давлении 1 атм. Температура, при которой вода кипит при нормальных условиях, равна по определению 100°С, или 373 К. Теплота испарения при такой температуре составляет 539 кал/г, или 9702 кал/моль. Тогда изменение энтропии, соответствующее испарению 1 моль воды при нормальных условиях, равно

Это вычисление оказалось столь простым потому, что температура не менялась в ходе процесса.

Заметим, что изменение энтропии в процессе испарения воды почти в 5 раз превышает изменение энтропии в процессе таяния льда. Значение несколько превышает обычные для подобных ситуаций значения и указывает на необычные свойства такого вещества, как вода. У многих «нормальных» (неполярных) жидкостей изменение энтропии при испарении составляет Это правило было получено эмпирически английским физиком Фредериком Троутоном (1863-1922) и носит название «правило Троутона». Оно дает способ оценки теплоты испарения данного вещества, если известна температура, при которой оно кипит при нормальных условиях.

Чтобы найти приближенное значение теплоты испарения, достаточно умножить температуру кипения (выраженную в Кельвинах) на постоянную Гроутона.

Изменение энтропии в процессе изотермического расширения идеального газа. Существует еще один процесс при постоянной температуре, который уже не раз встречался нам ранее, - это процесс обратимого изотермического расширения идеального газа. Если наряду с тепловым имеется лишь обычное механическое взаимодействие (так что элементарная работа выражается формулой первое начало термодинамики для 1 моль идеального газа можно записать в виде

(здесь учтено, что ). Используя уравнение pV = RT, можно при dT = 0 (условие постоянства температуры) написать

Интегрировать это выражение нам приходилось в гл. 4, так что здесь сразу приведем результат:

Поскольку температура T остается постоянной, выражение для соответствующего изменения энтропии имеет вид

Как известно, газовая постоянная R имеет размерность кал/(моль К), а множитель, содержащий логарифм, - безразмерное число, так что размерности в левой и правой частях соотношения (24) совпадают. Таким образом, увеличение объема (т. е. расширение) при постоянной температуре сопровождается ростом энтропии.

Вернемся к случаю кипения воды. Пусть испарился 1 моль воды; 1 моль идеального газа, как мы помним, при нормальных условиях (давлении 1 атм и температуре 273 К) занимает объем около 22 400 см3. При 373 К соответствующий объем будет равен 22 400 (373/273), или примерно 30 600 см3. До испарения 1 моль жидкости занимал объем около таким образом, отношение составляет Согласно равенству (24), изменение энтропии, соответствующее изменению объема за счет испарения, составляет R ln 1700. Учитывая, что значение R примерно равно , искомое изменение энтропии составляет примерно 14,88 кал/(моль К).

Подсчитывая в предыдущем разделе полное изменение энтропии в течение всего процесса испарения 1 моль воды, мы получили значение 26,0 кал/(моль К). Как мы убедились теперь, чуть более половины этого значения связано с изменением объема при переходе жидкости в пар.

Изменения энтропии, обусловленные изменениями температуры. До сих пор все наши вычисления изменения энтропии проводились для тепловых взаимодействий при постоянной температуре. Рассмотрим теперь более обычный и несколько более сложный случай, когда обратимое нагревание приводит к изменению температуры. Если нагревание происходит при постоянном объеме, то. согласно определению удельной теплоемкости при постоянном объеме , имеем . Тогда

Интегрируя это выражение по конечному интервалу температур, получаем

Здесь предполагалось, что теплоемкость не зависит от температуры и ее можно вынести за знак интеграла. Существенно, что, отождествляя

мы снимаем ограничеиие об обратимости процесса нагревания, а также об однородности температуры в процессе нагревания. Нам необходимо знать температуру системы только в начале и в конце процесса нагревания. Иными словами, существенно лишь, чтобы тепловое равновесие существовало в начальном и конечном состояниях: промежуточные состояния не играют роли.

В более обычном и практически значительно легче осуществляемом случае нагревания при постоянном давлении имеем . Буквально повторяя все приведенные выше рассуждения, получаем

2. Нагревание воды при 1 атм от 273 К до 373 К:

3. Переход вода-пар при 1 атм и 373 К:

Таким образом, результирующее изменение энтропии при превращении 1 моль льда, имеющего температуру 273 К, в пар при 373 К составляет

Энтропия является понятием, которое было введено в термодинамике. С помощью данной величины определяется мера рассеивания энергии. Любая система испытывает противоборство, которое возникает между теплом и силовым полем. Увеличение температуры приводит к снижению степени упорядоченности. Для определения меры беспорядка и введена величина, называемая энтропией. Она характеризует степень обмена потоками энергии как в замкнутых, так и в открытых системах.

Изменение энтропии при изолированных схемах происходит в сторону увеличения вместе с ростом тепла. Максимального своего значения эта мера беспорядка достигает в состоянии, характеризующемся термодинамическим равновесием, которое является наиболее хаотичным.

Если система является открытой и при этом неравновесной, то изменение энтропии происходит в сторону снижения. Величина данной меры в этом варианте характеризуется формулой. Для ее получения производится суммирование двух величин:
- потока энтропии, происходящего за счет обмена тепла и веществ с внешней средой;
- величины изменения показателя хаотичного движения внутри системы.

Изменение энтропии происходит в любой среде, где протекают биологические, химические и физические процессы. Это явление реализуется с определенной скоростью. Изменение энтропии может быть величиной положительной - в таком случае происходит приток данного показателя в систему из внешней среды. Возможны случаи, когда величина, указывающая на изменение энтропии, определена со знаком "минус". Такое числовое значение указывает на отток энтропии. Система может находиться в В таком случае количество произведенной энтропии компенсируется оттоком данного показателя. Примером такой ситуации может служить состояние Оно неравновесно, но в то же время стационарно. Любой организм качает энтропию, обладающую отрицательным значением, из окружающей его среды. Выделение меры беспорядка из него может даже превышать величину поступления.

Производство энтропии происходит в любых сложных системах. В процессе эволюции между ними осуществляется обмен информацией. Например, когда теряются сведения о пространственном расположении ее молекул. Происходит процесс возрастания энтропии. Если жидкость замерзает, то снижается неопределенность расположения молекул. В данном случае энтропия снижается. Охлаждение жидкости вызывает снижение ее внутренней энергии. Однако когда температура достигнет определенного значения, несмотря на отвод от воды тепла, температура вещества остается неизменной. Это означает, что начинается переход к кристаллизации. Изменение энтропии при изотермическом процессе данного вида сопровождается снижением показателя меры хаотичности системы.

Практическим методом, позволяющим и теплоту плавления вещества, является проведение работ, результат которых - построение диаграммы отвердевания. Другими словами, на основе полученных в результате исследования данных можно начертить кривую, которая укажет на зависимость температуры вещества от времени. При этом внешние условия должны быть неизменными. Определить изменение энтропии возможно путем обработки данных графического изображения результатов опыта. На таких кривых всегда присутствует участок, на котором линия имеет горизонтальный промежуток. Температура, соответствующая данному отрезку, является температурой отвердевания.

Изменение любого вещества, сопровождающееся переходом из твердого тела в жидкость при температуре окружающей его среды, равной и наоборот, относят к фазовому изменению первого рода. При этом меняется плотность системы, ее и энтропия.

Второй закон термодинамики в виде , записанный для равновесных процессов, позволяет вычислить не абсолютное значение энтропии, а только разность энтропий в двух состояниях системы.

. (2.4)

Рассмотрим для 1 моля вещества :

а) Изотермические процессы (T = const ).

При постоянной температуре протекают процессы фазовых превращений веществ: плавление, испарение и другие. При равновесном протекании этих процессов давление сохраняется обычно постоянным, поэтому
и

, (2.5)

где
– энтальпия фазового перехода.

б) Изобарные процессы (р = const ).

Если нагревание происходит при постоянном давлении, то

, (2.6)

где n – число молей вещества. Тогда

. (2.7)

Пример 2.1. Определить изменение энтропии при нагреве 1 моль Al от 25 до 600 0 С, если для него в этом интервале теплоёмкость зависит от температуры следующим образом:

, (Дж/моль К).

Решение. Согласно уравнению (2.7) имеем:

,

(Дж/моль К).

с) Изохорные процессы (V = const ).

Если нагревание происходит при постоянном объёме, то

. (2.8)

. (2.9)

Для 1 моля идеального газа справедливо :

а) При изменении объёма и температуры

, (2.10)

с учетом, что
.

б) При изменении давления и температуры

. (2.11)

Для любого вещества при любой температуре можно определить и абсолютное значение энтропии, если воспользоваться постулатом Планка : энтропия правильно образованного кристалла любого индивидуального вещества при абсолютном нуле равна нулю.

Если вещество при температуре Т находится в газообразном состоянии, то его абсолютная энтропия может быть вычислена по формуле:

2.2.2. Расчёт изменения энтропии в ходе химической реакции.

Расчёт изменения энтропии в ходе химической реакции проводится по формуле:

где
- стандартные энтропии веществ приТ = 298,15 К.

Каждое вещество характеризуется стандартной энтропией
– энтропией 1 моль вещества при 298.15 К и давлении 1 атм. Значения энтропии имеют размерность Дж/(моль К) или кал/(моль К).Стандартные энтропии простых веществ не равны нулю.

2.2.3. Расчёт изменения энтропии в ходе самопроизвольных (необратимых) процессов.

Для необратимых процессов
и уравнение (2.4) не применимо. Энтропия – функция состояния и её изменение не зависит от пути процесса, а определяется конечным и начальным состоянием системы. Изменение энтропии в любом неравновесном процессе можно вычислить, заменяя его некоторой совокупностью равновесных процессов, просходящими между теми же начальными и конечными состояниями, для каждого из которых можно рассчитать значение
. Тогда:

. (2.14)

2.3. Энергия гиббса, энергия гельмгольца. Уравнение гиббса–гельмгольца.

В изолированных системах энтропия только увеличивается и при равновесии достигает максимума. Поэтому она может быть использована в качестве критерия протекания самопроизвольных процессов в таких системах. Однако на практике большинство процессов происходит в неизолированных системах, вследствие чего для них надо выбрать свои критерии направления самопроизвольных процессов и достижения равновесия в этих системах. Такими критериями являются другие термодинамические функции, отличные от энтропии и внутренней энергии. Они подобраны таким образом, что с их помощью можно определить в явной форме все термодинамические параметры изучаемой системы. Все они являются функциями состояния и при переходе системы из одного положения в другое меняются однозначно. При достижении системой равновесного состояния каждая из функций проходит через минимальное значение. Такие свойства обуславливают широкое применение этих функций при аналитическом методе решения различных задач термодинамических исследований.

Следует отметить, что такие функции часто называют характеристическими. Характеристической функцией называется такая функция состояния системы, посредством которой и её производных могут быть выражены в явной форме все термодинамические свойства системы.

Согласно первому закону термодинамики:

A = Q dU . (2.15)

Подставив сюда извесное соотношение Q ≤ TdS, получим

A ≤ TdS dU , (2.16)

где знак равенства относится к обратимым равновесным процессам, а знак неравенства - к необратимым. Проинтегрируем (2.16) при Т = const :

A T T (S 2 – S 1) – (U 2 – U 1) = (U 1 – TS 1) – (U 2 – TS 2). (2.17)

Функция (U TS ) играет большую роль при изучении равновесия в изотермических процессах. Её называют изохорно-изотермическим потенциалом или энергией Гельмгольца и обозначают символом F . При этом для всякого изотермического процесса:

dF = dU TdS , (2.18)

∆F = ∆U T∆S , (2.19)

а максимальная работа в изотермическом процессе

(A Т ) max = ∆F . (2.20)

Функция F определяет направление и предел течения самопроизвольных процессов, протекающих при постоянных температуре и объёме.

Близкой к изохорно-изотермическому потенциалу является функция, определяющая направление и предел самопроизвольного протекания процессов для систем, находящихся при постоянных температуре и давлении. Эта функция называется изобарно-изотер-мическим потенциалом или энергией Гиббса , обозначается символом G и определяется как

G = H TS . (2.21)

G = U TS + pV = F + pV . (2.22)

Пусть р = const, тогда

A T ≤ –∆F = F 1 – F 2 , (2.23)

A T + p (V 2 – V 1) F 1 – F 2 , (2.24)

A T ≤ (F 1 +pV 1) – (F 2 + pV 2) = G 1 – G 2 , (2.25)

где A T – полезная работа (любая работа кроме работы расширения). Тогда

A T ≤ –∆G . (2.26)

При этом для изотермических процессов

, (2.27)

и максимальная работа в изотермическом процессе

, (2.29)

т.е. максимальная полезная работа равна максимальной работе изотермического процесса за вычетом работы против сил внешнего давления. Функции G и F называются термодинамическими потенциалами , потому что в определённых условиях стремятся к минимуму при протекании самопроизвольных процессов.

Пусть
, тогда

. (2.30)

1). Система при T , V = const
, т. е. ΔF ≤ 0. Условие равновесия в изохорно-изотермической системе: dF = 0, ΔF = 0, F = F min .

2). Система при р , T = const . Тогда
Условие равновесия в изобарно-изотерми-ческой системе:dG = 0, ΔG = 0, G = G min .

Вывод: в системах, находящихся при постоянных температуре и объёме, самопроизвольно могут протекать только те процессы, которые сопровождаются уменьшением энергии Гельмгольца F , причем пределом их протекания, т.е. условием равновесия, является достижение некоторого минимального для данных условий значения функции F ; в системах же, находящихся при постоянных температуре и давлении, самопроизвольно могут протекать только те процессы, которые сопровождаются уменьшением энергии Гиббса G , причём пределом их протекания, т.е. условием равновесия, служит достижение некоторого минимального для данных условий значения функции G .

Получим соотношения, которые описывают зависимость
и
от температуры. В общем случае (и для химических реакций):

Функция состояния обладает свойствами полного дифференциала, т.е. если
, то

. (2.33)

С другой стороны:

F = U TS , (2.34)

dF = dU TdS SdT . (2.35)

С учетом того, что

dU = , (2.36)

получаем

. (2.37)

При сравнении уравнений (2.37) и (2.33) видно, что


, (2.38)

. (2.39)

Аналогично для
, получаем:

, (2.40)


, (2.41)

. (2.42)

Подставляя соотношения (2.39) и (2.42) в уравнения (2.31) и (2.32), соответственно, получаем:

, (2.43)

. (2.44)

Последние два равенства и есть искомые зависимости
и
от температуры и их называютуравнениями Гиббса-Гельмгольца .

Энтропия

Изменение энтальпии системы не может служить единственным критерием самопроизвольного осуществления химической реакции, поскольку многие эндотермические процессы протекают самопроизвольно. Иллюстрацией этого служит растворение некоторых солей (например, NH 4NO 3) в воде, сопровождающееся заметным охлаждением раствора. Необходимо учитывать еще один фактор, определяющий способность самопроизвольно переходить из более упорядоченного к менее упорядоченному (более хаотичному) состоянию.

Энтропия (S ) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики ).

Л. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W . Поскольку число частиц в системе велико (число Авогадро N A = 6,02∙10 23), то энтропия пропорциональна натуральному логарифму термодинамической вероятности состояния системы W :

Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль –1∙K –1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T . Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔS пл = ΔH пл/T пл Для химической реакции изменение энтропии аналогично изменению энтальпии

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q/T (приведенное тепло).

Здесь ΔS ° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. В табл. 4.1 приведены стандартные энтропии S ° некоторых веществ.

Соединение


(Дж∙моль –1∙K –1)

Соединение


(Дж∙моль –1∙K –1)

C (т)алмаз

C (т)графит

изо-C 4H 10(г)

Таблица 4.1.

Стандартные энтропии некоторых веществ.

Из табл. 4.1 следует, что энтропия зависит от:

  • Агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).
  • Изотопного состава (H 2O и D 2O).
  • Молекулярной массы однотипных соединений (CH 4, C 2H 6, н-C 4H 10).
  • Строения молекулы (н-C 4H 10, изо-C 4H 10).
  • Кристаллической структуры (аллотропии) – алмаз, графит.

Наконец, рис. 4.3 иллюстрирует зависимость энтропии от температуры.

Следовательно, стремление системы к беспорядку проявляется тем больше, чем выше температура. Произведение изменения энтропии системы на температуру T ΔS количественно оценивает эту тендецию и называется энтропийным фактором .

Задачи и тесты по теме "Химическая термодинамика. Энтропия"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Разность энтропий в двух состояниях вычисляется особенно просто, если обратимый переход из одного состояния в другое происходит при постоянной температуре. Это имеет место, например, при переходах из одного агрегатного состояния в другое, при фазовых переходах. Равновесные фазовые превращения (испарение, плавление, возгонка и т.д.) происходят в условиях постоянства температуры и давления. Эти процессы возможны только при подведении (или отводе) теплоты, затрачиваемой на проведения процесса.

Тогда формула (5) принимает вид

где - скрытая теплота фазового превращения. Формула (16) приложима для вычисления энтропии при обратимом плавлении тел, испарении, возгонке и т.д. При постоянном давлении скрытая теплота превращения равна изменению энтальпии. То есть, например, для фазового превращения - испарения формула (16) примет вид

, (17)

где
- энтальпия испарения, Дж;
- температура кипения, К.

4. Изменение энтропии идеального газа

4.1. Изменение энтропии чистого идеального газа при переходе его из одного состояния в другое

Рассмотрим принципы расчета изменений энтропии чистого идеального газа. Известно, что внутренняя энергия связана с изохорной теплоемкостью соотношением

(18)

Для закрытой системы без химического превращения фундаментальное уравнение Гиббса запишется как

(19)

Выразим в явном виде зависимость
:

. (20)

Или с учетом (18):

(21)

В зависимости от того, какие переменные мы примем за независимые в этом уравнении, у нас получится три разных выражения для расчета изменения энтропии идеального газа при переходе из одного состояния в другое. Примем для простоты, что теплоемкость не зависит от температуры в исследуемом интервале температур (от до), т. е.
. Учтем также, что мольная теплоемкость связана с полной теплоемкостью системы соотношением

, (22)

где - число молей вещества в системе, моль;- мольная изохорная теплоемкость, Дж/(К·моль).

1. Независимые переменные и:

Из уравнения (21) с использованием уравнения (22) и уравнения состояния идеального газа

(23)

получим уравнение

, (24)

которое после интегрирования в пределах от дои отдопримет вид

(25)

2. Независимые переменные и. Выразим в (21) объем через давление и температуру, тогда

(26)

Интегрирование (26) с учетом уравнения (13) дает другую форму выражения энтропии

(27)

3. Независимые переменные и. Аналогичным образом, используя уравнение состояния, выразим температуру через давление и объем.

(28)

Отсюда с учетом (13) после интегрирования:

(29)

4.2. Смешение идеальных газов при постоянных

температуре и давлении

Если молей одного идеального газа, занимающего объем, смешиваются смолями другого идеального газа, занимающего объем, то общий объем системы будет
, причем газы расширяются независимо друг от друга и занимают весь объем, поэтому общее изменение энтропии равно сумме изменений энтропии каждого газа:

(30)

Уравнение (30) можно записать иначе, используя определительное выражение для мольной доли компонента

(31)

Так как мольные доли всегда меньше единицы, то изменение энтропии всегда положительно, то есть идеальные газы всегда смешиваются необратимо.

Если же при тех же условиях смешиваются две порции одного и того же идеального газа, то уравнение (32) неприменимо. Никаких изменений в системе при смешивании не наблюдается, и изменение энтропии должно быть равно нулю. Тем не менее, формула (32) не содержит никаких индивидуальных параметров газа, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса .