Интернет

Кобальт металл. Кобальт

Кобальт (Со) - химический элемент, имеющий атомный номер 27. Атомная масса кобальта равняется 58,9332. Кобальт, распространенный в природе, состоит из 2-х стабильных нуклидов: 57Со (0,17% по массе) и 59Со (99,83% по массе). В периодической системе химических элементов Дмитрия Ивановича Менделеева кобальт находится в группе VIIIВ, а также вместе с никелем и железом образует в четвертом периоде в данной группе триаду близких по своим свойствам переходных металлов. Атом кобальта имеет конфигурацию двух внешних электронных слоев 3s2p6d74s2. Кобальт образует соединения по большей части в степени окисления +2 (вторая валентность), а реже образует соединения в степени окисления +3 (третья валентность), ну и крайне редко образует соединения в степенях окисления +5, +4, и +1 (соответственно, пятая, четвертая и первая валентности).

Среди трех основных ферромагнитных металлов, т.е. железа, кобальта и никеля -кобальт обладает наивысшей точкой Кюри, то есть температурой, при которой металлическое вещество утрачивает свои магнитные свойства. Для никеля точка Кюри равна температуре всего в 358°С, для железа это 770°С, и лишь у кобальта данная точка достигает отметки в 1130°С. Т.к. магниты используются самых разных условиях, в т.ч. при очень высоких температурах, кобальту было суждено стать важнейшим компонентом состава магнитных сталей.

Металлический кобальт индустриальным образом получают восстановлением окиси кобальта углем, в редких случаях окисью углерода либо углеводородами.

Большую часть получаемого промышленным путем кобальта расходуют на приготовление разных сплавов. Как и вольфрам, кобальт незаменим в металлообработке. Металл является важнейшей частью быстрорежущих инструментальных сталей. Карбид титана или вольфрама, т.е. основной компонент сверхтвердого сплава, спекают вместе с порошком кобальта. Кобальт присоединяет зерна карбидов, при этом он придает сплаву большую вязкость и уменьшает чувствительность сплава к ударам и толчкам.

Биологические свойства

Кобальт представляет собой минеральное вещество, являющееся составной частью витамина B12. Как правило, содержание кобальта измеряется в мкг (микрограммах). Кобальт незаменим для крови, а именно для красных кровяных телец. Поступление металла в организм должно происходить исключительно из пищевых источников. В организме здорового среднего человека (с массой тела 70 килограмм) содержится примерно 14 мг кобальта. Ежедневная потребность человека в кобальте составляет 40-70 мкг. Металл обычно накапливается в крови, костной ткани, селезенке, печени, яичниках, гипофизе. Кобальт содержится в хлебе и хлебобулочной выпечке, молоке, бобовых, печени, овощах.

Для живого организма выяснена главная роль солей кобальта. Они принимают участие в образовании витамина B12. Последнее время данный витамин стал привычным лечебным средством в медицинской практике, вводят его в мышцы больного, у которого в организме по каким-то причинам не достаточное количество кобальта.

Данная потребность гораздо выше у жвачных животных, к примеру, у обыкновенных дойных коров она составляет около 20 мг. Микроэлемент кобальт участвует также и в ферментативных процессах фиксации клубеньковыми бактериями атмосферного азота. Соединения кобальта в обязательном порядке входят в микроудобрения. Отсутствие кобальта способствует развитию акобальтоза.

Избыток кобальта вреден для человека. ПДК кобальтовой пыли в воздухе равен 0,5 мг/м³, допустимое содержание кобальтовых солей в питьевой воде составляет 0,01 мг/л. Крайне токсичны испарения октакарбонила кобальта - Со2(СО)8. Избыток кобальта иногда может создать нарушение метаболизма йода внутри щитовидной железы. Избыток кобальта устраняется при помощи хелатирующих препаратов, которые содержат цистеин-N, ацетил-L, симптоматические средства.

Кобальт в медицине используется, в лечении радиоактивным излучением злокачественных опухолей. На данный момент для облучения тканей, пораженных раком, применяется радиоактивный изотоп кобальта 60Со, который дает самое однородное излучение (в случаях, когда подобное лечение возможно).

Оценка уровня содержания кобальта в человеческом организме проводится по результатам анализов мочи и крови. В среднем содержание кобальта в кровяной плазме у здорового человека равняется 0,05-0,1 мкг/л, а в моче - около 0,1-1,0 мкг/л.

Причины дефицита кобальта:

  • -Глистная инвазия.
  • -Понижение функции поджелудочной железы.
  • -Понижение кислотности желудочного сока.
  • -Нарушение обмена кобальта.
  • -Дефицит витамина В 12 .
  • -Недостаточное поступление кобальта.
  • Повышенное содержание железа и белка в пище замедляет усвоение кобальта, а медь и цинк напротив, усиливают данный процесс.

При лечении больных с дефицитной анемией B12 применяются цианокобаламин и коамид. В последнее время были разработаны средства коррекции дефицита кобальта, основаны на его аспарагинате. В случае легкого протекания анемии, иногда эффективным может быть рацион, обогащенный витамином B 12 (сердце, печень, почки, кровяная колбаса, листовая зелень).

Учеными был найден египетский стеклянный кувшин, окрашенный солями кобальта, который относится к ХV веку до нашей эры, а еще голубые кирпичи стекловидной формы, которые также содержат кобальт.

Внутри гробницы египетского фараона Тутанхамона нашли огромное количество предметов, изготовленных из синего стекла. Как ни странно, лишь один из предметов оказался окрашен кобальтом, а все остальные были окрашены медью.

Все месторождения, богатые кобальтом, на сегодняшний день практически полностью исчерпаны.

Кобальт упоминался у Парацельса, Бирингуччо, Василия Валентина и других авторов середины XV - конца XVII веков. В "Лексиконе Алхимиков" Руланда (датированного 1612 годом) о кобальте говорятся примерно такие слова: "Кобол кобальт (от Koboltum, Kobaltum) либо коллет (от Colletum) – это металлическая материя, которая чернее железа и свинца, при нагревании растягивающаяся. Кобальт -это черная материя, чем-то похожая своим цветом на золу. Ее можно лить и ковать, в то же время она не имеет металлического блеска, она представляет собой вредную примесь, которая при плавке уводит вместе с дымом и хорошую руду". Как можно догадаться, речь здесь идет о металлическом кобальте.

В 60-х гг. соли кобальта использовали некоторые пивоваренные компании для стабилизации пены. Выпивавшие более 4-х литров пива в сутки регулярно получали сильные побочные эффекты сердца, а, в некоторых случаях, подобное приводило к летальному исходу. Существовали случаи так называемой кобальтовой кардиомиопатии, связанной с употреблением пива. Такие случаи с 64 по 66 гг. происходили в Миннеаполисе (штат Миннесота), Омахе (штат Небраска), Квебеке (Канада) и Левене (Бельгия). С того времени использование кобальта в пивоварении было прекращено, а в настоящее время добавление кобальта в пиво является незаконным.

Кобальт необходим человеческому организму для усвоения витамина В12. Металл участвует в регенерации мускулатуры и кроветворении.

История

Несколько столетий назад немецкая Саксония была крупным по тем временам центром по добыче меди, серебра и др. цветных металлов. В здешних рудниках находили руду, которая по своим внешним признакам была серебряной, но во время плавки не удавалось получить драгоценный металл. При обжиге руды выделялся ядовитый газ, который отравлял рабочих. Эти неприятности саксонцы объясняли вмешательством темной силы, коварного гнома кобольда. Он же был причиной и других опасностей, подкарауливающих в подземельях рудокопов. В то времена в Германии даже читали молитвы в церквях о спасении от духа кобольда горняков. А со временем, когда рудокопы научились отличать опасную руду от серебряной, ее стали называть «кобольд».

Шведский ученый-химик Георг Брандт в 1735 году выделил из «нечистой» руды неизвестный металл серого цвета со слабым розовым оттенком. Название «кобольд», либо «кобальт», осталось и за металлом.

В диссертации Брандта, говорилось, о том, что из кобальта можно изготавливать сафру, т.е. краску, которая придает стеклу очень красивый и глубокий синий цвет. Еще в Древнем Египте по тщательно скрываемым рецептам изготавливали синее стекло.

В средних веках Венецианская республика была европейским лидером по производству стекла. Дабы оградить секреты изготовления цветных стекол от чужих ушей, в XII в. правительство Венеции законодательно перевело все существующие стекольные фабрики на остров Мурано. О конфиденциальности технологий производства муранского стекла ходят настоящие легенды. Однажды с острова Мурано сбежал подмастерье Джиорджио Белерино, вскоре в одном немецком городке сгорела стекольная мастерская. Владельца звали Белерино, он был заколот кинжалом.

Все-таки, секреты изготовления цветного стекла распространялись и в другие государства. В 1520 году в Германии Вейденхаммер нашел метод приготовления краски для синего стекла и стал продавать ее «по дорогой цене» венецианскому правительству. Спустя 20 лет Шюрер, богемский стекольный мастер, также стал производить синюю краску из известной лишь ему одному руды. После такую краску стали изготовлять в Голландии. Писали, что стекло окрашивали «цаффером», но из чео состоял данный продукт - было секретом. Лишь спустя столетие известный ученый химик Иоганн Кункель в 1679 г. подробно описал получение краски, но по-прежнему оставалось загадкой, из какой руды ее делают, где искать эту руду и какая часть руды имеет красящее свойство.

Только исследования Брандта выяснили, что цаффер или сафр, – продукт, получаемый в результате прокаливания богатой кобальтом руды, который содержит окислы кобальта, а также окислы других металлов. Затем цаффер сплавленный с поташем и песком образовывал смальту, представляющую собой стекольную краску. В смальте содержалось немного кобальта – не более 2-7%. Зато красящее свойство окиси кобальта оказалось большим: даже 0,0001% ее в составе шихты придает голубоватый оттенок стеклу.

Один французский химик в 1737 году открыл свойство солей кобальта окрашиваться в результате нагревания. Он использовал соли как симпатические чернила. Сейчас даная особенность имеет практическое значение в технике. При помощи раствора солей кобальта метят фарфоровые тигли. В результате прогрева метка начинает четко выступать на поверхности фарфора.

Стекла, окрашенные окисью кобальта, не имеют соперников по прозрачности. Для фотохимических исследований иногда нужны стекла, не пропускающие желтые и оранжевые лучи. Данному условию на 100% отвечают кобальто-рубиновые стекла. Для этого на синее стекло, окрашенное кобальтом, накладывают нагретое, стекло, окрашенное соединениями меди в красный цвет. Известно применение кобальтовой окиси для придания красивого цвета эмалированным и фарфоровым изделиям.

Нахождение в природе

Содержание кобальта в составе земной коры составляет ничтожную долю, примерно 0,003% по массе. Но огромная часть кобальта располагается в самом центре ядра Земли, где в основном преобладают химические элементы группы железа. Кобальта в литосфере находится в среднем примерно 0,003 % по массе, соединения кобальта находятся в железных метеоритах (около 0,6%) и каменных метеоритах (около 0,08%). Ничтожно малые количества кобальта содержатся в воде мировых океанов ((1-7)·10-10 % кобальта.), а также в минеральных источниках.

Кобальт находится в составе более чем тридцати минералов, к которым относится линнеит Co3S4, карролит CuCo2SO4, кобальтин CoAsS, смальтит СоAs2, сферокобальтит CoCO3, скуттерудит CoAs3, шмальтинхлоантин (Co, Ni, Fe) As3, саффлорит (Co, Fe) As2 и многие другие. Как правило, в природе кобальту сопутствуют его соседи, элементы четвертого периода - медь, никель, марганец и железо. В морской воде содержится около (1-7)·10-10 % кобальта.

При помощи спектрального анализа ученые установили нгаличие кобальта в атмосфере Солнца, а также в атмосферах различных звезд. В природе существует два стабильных изотопа кобальта: 57Со и 59Со. Точное содержание кобальта в земной коре составляет 4*10-3%. Изредка кобальт

В ничтожно малых количествах кобальт находится в тканях растений и животных, в частности, кобальт входит в состав такого витамина, как В12 (C63H88O14N14PCo).

Металлический кобальт получают путем восстановления оксидов, комплексных соединений (Cl2, CO3), солей, окисью углерода,водородом, углеродом либо метаном (в процессе нагревания), кремне- или алюмотермическим восстановлением кобальт-оксидов, термическим разложением электролизом водных растворов солей CoSO4*7H2O, Co4(CO)12,и карбонилов Co2(CO)8, либо (NH4)2SO4*CoSO4*6H2O.

В земной коре кобальт мигрирует в магмах, холодных и горячих водах. Кобальт при магматической дифференциации накапливается в основной своей массе в верхней мантии, т.е. среднее содержание кобальта в ультраосновных породах составляет 2·10-2% . Связано с магматическими процессами также и образование ликвационных месторождений руд кобальта, как их принято называть. Кобальт, в процессе концентрации из горячих подземных вод, способен образовывать гидротермальные месторождения. В таких месторождениях кобальт связан связан с Cu, Ni, S и As.

Кобальт преимущественно рассеивается в биосфере, тем не менее, на таких участках, на которых присутствуют растения - концентраторы Кобальта, могут образовываться месторождения кобальта. В самой верхней части земной коры нашей планеты наблюдается дифференциация Кобальта: в сланцах и глинах кобальта содержится в среднем 2·10-3%, в известняках 1·10-5, в песчаниках 3·10-5. Песчаные почвы в лесных районах наиболее бедны кобальтом. В поверхностных водах мало кобальта, в мировом океане его содержание составляет всего лишь 5·10-8% . Т.к. кобальт слабый водный мигрант, металл имеет свойство легко переходить в осадки, при этом адсорбируясь гидрооксидами марганца, а также глинами и другими высокодисперсными минералами.

Применение

Большую часть получаемого промышленным путем кобальта расходуют на приготовление разных сплавов. Как и вольфрам, кобальт незаменим в металлообработке. Металл является важнейшей частью быстрорежущих инструментальных сталей. Карбид титана или вольфрама, т.е. основной компонент сверхтвердого сплава, спекают вместе с порошком кобальта. Кобальт присоединяет зерна карбидов, при этом он придает сплаву большую вязкость и уменьшает чувствительность сплава к ударам и толчкам.

Подобные твердые сплавы служат не только лишь для изготовления специальных режущих инструментов. В некоторых случаях твердый сплав приходится наваривать на детали, которые подвержены сильному износу во время работы машины. Подобный сплав на основе кобальта способен повысить срок эксплуатации детали из стали от 4 до 8 раз. Добавки кобальта позволяют повысить жаропрочность сплава, обеспечивают улучшение механических и других свойств стали.

Такую способность, как сохранение магнитных свойств после неоднократного намагничивания, имеют лишь немногим металлы, в их числе и кобальт. К сплавам и сталям, из которых изготовляются магниты, предъявляются особо важные технические требования: они обязаны обладать крупной коэрцитивной силой, или говоря другими словами сопротивлением размагничиванию. Изготавливаемые магниты обязаны быть устойчивыми и в отношении температурных воздействий, устойчивыми к вибрации (это особо важно в различных моторах), должны поддаваться механической обработке.

При воздействии тепла намагниченный металл обычно теряет свои ферромагнитные свойства. Это происходит при разной температуре (точка Кюри): для железа порогом является Т = 769°C, для никеля Т = 358°C, ну а для кобальта температура достигает величины в 1121°C. В далеком 1917 году в Японии запатентовали сплав стали с высокими магнитными свойствами. Основным компонентом обновленной стали, которая получила название «японская», является кобальт в огромном количестве, вплоть до 60%. Хром вольфрам или молибден придают высокую твердость магнитной стали, ну а кобальт повышает коэрцитивную силу сплава в 3 с половиной раза. Изготовленные из такой стали магниты получаются от 3 до 4 раз компактнее и короче. Есть еще одно очень важное свойство: вольфрамовая сталь под действием вибраций теряет магнитные свойства примерно на 1/3, а кобальтовые стали всего лишь на 2-3,5%.

В автоматике, магнитные устройства кобальта применяются на каждом шагу. Лучшими магнитными материалами являются кобальтовые сплавы и стали. Свойство не размагничивания кобальта под действием высоких температур и вибраций играет немаловажную роль и космической, и для ракетной техники.

Сплавы кобальта используются в производстве сердечников электромоторов, применяются они в трансформаторах, а также в др. электротехнических устройствах. При изготовлении головок магнитной записи применяются магнитомягкие кобальтовые сплавы. Магнитотвердые кобальтовые сплавы, как PrCo5, SmCo5, и другие, имеющие большую магнитную энергию, используются в приборостроении. При изготовлении постоянных магнитов применяются сплавы, м содержанием 52 % кобальта, а также и 5-14 % ванадия либо хрома (викаллои).

Кобальт, как и некоторые соединения металла, служит катализатором. Соединения кобальта, при введении их в стекла при варке, придают красивый кобальтовый (синий) цвет стеклянным изделиям. Соединения кобальта используются в качестве пигментов многих красителей. В производстве литиевых аккумуляторов применяется кобальтат лития, который служит высокоэффективным положительным электродом. Силицид кобальта является отличным термоэлектрическим материалом, он позволяет произвести термоэлектрогенераторы с очень высоким КПД.

Используется кобальт и в медицине, в лечении радиоактивным излучением злокачественных опухолей. На данный момент для облучения тканей, пораженных раком, применяется радиоактивный изотоп кобальта 60Со, который дает самое однородное излучение (в случаях, когда подобное лечение возможно).

Производство

Кобальт является относительно редким металлом, а все богатые месторождения кобальта на сегодняшний день практически полностью исчерпаны. Именно поэтому сырье, содержащее кобальт (в основном это никелевые руды, которые содержат кобальт в качестве примеси, а вот минералы кобальта встречаются крайне редко, они, как правило, не образуют значительных для промышленного производства рудных скоплений) изначально обогащают, затем получают из данного сырья концентрат. После с целью извлечения кобальта полученный концентрат либо обрабатывают раствором серной кислоты либо раствором аммиака, или методом пирометаллургии концентрат перерабатывается в металлический или сульфидный сплав. Данный сплав после получения выщелачивается при помощи серной кислоты.

В некоторых случаях для извлечения кобальта могут проводить сернокислотное, или как его называют «кучное», выщелачивание исходной руды (при этом измельченная руда размещается в высоких кучах, которые устанавливают на специальные бетонные площадки, а сверху все это поливают выщелачивающим раствором). В процессе очистки кобальта от нежелательных сопутствующих ему примесей начинают все более широко применять экстракцию.

Наиболее сложной задачей при отделении кобальта от сопутствующих примесей является отделение кобальта от максимально близкого к металлу по своим химическим свойствам другого металла - никеля. В процессе очистки кобальта от нежелательных сопутствующих ему примесей начинают все более широко применять экстракцию. Раствор, который содержит катионы двух данных металлов, зачастую обрабатывается мощными окислителями, например, хлором дибо гипохлоритом натрия NaOCl. Реакция:

2СоСl2 + NaOCl + 4NaOH + H2O 2Co(OH)3v + 5NaCl

Завершающий этап очистки кобальта (так называемое рафинирование) осуществляется при помощи электролиза сульфатного водного раствора кобальта, в который обычно добавляется борная кислота Н3ВО3.

Co(OH)3, представляющий собой чёрный осадок, прокаливается с целью удаления воды, ну а полученный в процессе очистки оксид Со3О4 восстанавливается углеродом либо водородом. Металлический кобальт, который содержит до 2% до 3% примесей (среди них обычно никель, медь, железо), может быть легко очищен электролизом.

Металлический кобальт индустриальным образом получают восстановлением окиси кобальта углем, в редких случаях окисью углерода либо углеводородами. Для всего этого необходимо приготовить массу из 2 частей патоки, 4 частей древесного угля, 95 частей CoO, а также достаточно большого количества воды. Данную массу перемешивают с помощью месильной машины, спрессовывают в металлических формах, а затем, после предварительной просушки разрезают на кубики и вторично просушивают. После кубики обсыпают порошком угля и накаливают до температуры 1220°С в восстановительном пламени, при этом металлы обуглероживаются и восстанавливаются. В конце концов, металл сплавляют в тиглях с присутствием окиси кобальта и буры при температуре от 1800 до 2000° с целью обезуглероживания металла. В белокалильном жару получаемый кобальт сваривается с сталью, при этом железо, которое с обеих сторон покрыто кобальтом, выкатывают в предельно тонкие листы.

Употребление металлического кобальта довольно ограничено. Его расходуют для приготовления феррокобальта, а также для получения стали с примесью кобальта, ну и для получения различных сплавов с медью. Кобальт употребляется еще и для кобальтирования металлов. Основной сферой использования кобальта является изготовление красок.

Физические свойства

Кобальт представляет собой твердый металл, который существует всего в двух модификациях. На температуре от комнатной вплоть до 427 °C более устойчива α-модификация. А на температуре от 427 °C вплоть до достижения температуры плавления (а именно 1494 °C) устойчива β-модификация (кубическая решетка, гранецентрированная). Кобальт является ферромагнетиком, точка Кюри у него составляет 1121 °C. У металла желтоватый оттенок, который придает ему тончайший слой оксидов.

Кобальт. Распространенный в природе, состоит из 2-х стабильных нуклидов: 57Со (0,17% по массе) и 59Со (99,83% по массе). В периодической системе химических элементов Дмитрия Ивановича Менделеева кобальт находится в группе VIIIВ, а также вместе с никелем и железом образует в четвертом периоде в данной группе триаду близких по своим свойствам переходных металлов. Атом кобальта имеет конфигурацию двух внешних электронных слоев 3s2p6d74s2. Кобальт образует соединения по большей части в степени окисления +2 (вторая валентность), а реже образует соединения в степени окисления +3 (третья валентность), ну и крайне редко образует соединения в степенях окисления +5, +4, и +1 (соответственно, пятая, четвертая и первая валентности).

У нейтрального атома кобальта радиус равен 0,125 нм, а радиус ионов (у которых координационное число равно 6) составляет Со4+ — 0,064 нм, Со3+ - 0,069 нм и Со2+ - 0,082 нм. Показатели энергии последовательной ионизации атома элемента кобальт составляют 7,865, 17,06, 33,50, 53,2 и 82,2 эВ. Электроотрицательность кобальта по шкале Полинга составляет 1,88. Кобальт - это тяжелый, серебристо-белый, блестящий металл с розоватым оттенком.

Хлорид кобальта - это кобальтовая соль хлороводородной (соляной) кислоты.

Хлорид кобальта относится к классу галогенидов кобальта. Соль имеет вид парамагнитных гигроскопичных блестящих голубых гексагональных кристаллов, цвет которых при обезвоживании становится синим.

У хлорида кобальта температура кипения составляет 1049°C, а температура плавления равна 735°C (в некоторых других источниках указывается 724 °C). Молярная электропроводность хлорида кобальта при бесконечном разведении и при температуре 25 °C составляет 260,7 Cм·см²/моль. Относительная плотность вещества (для сравнения вода = 1) равна 3.356.

При температуре 770°C давление паров хлорида кобальта составляет 5.33 кПа. Хлорид хорошо растворяется в воде, этиловом и метиловом спиртах, а также в ацетоне. Не растворяется хлорид кобальта в метилацетате и пиридине. Показатели растворимости в воде: при комнатной температуре 20 °C растворимость 52,9 г/100 мл, а при пониженной температуре 7 °C растворимость составляет уже 45,0 г/100 мл

Химические свойства

Компактный кобальт устойчив на воздухе, при нагревании свыше 300°C металл покрывается оксидной пленкой, которая представляет собой высокодисперсный кобальт пирофорен. Кобальт не взаимодействует с водой, парами воды в воздухе, растворами карбоновых и щелочей кислот. Поверхность кобальта пассивирует концентрированная азотная кислота, как и поверхность железа.

Кобальт располагается между никелем и железом в электрохимическом ряду напряжений различных металлов. Он взаимодействует практически со всеми остальными элементами. При нагревании кобальт соединяется с галогенами, образует галогениды. При воздействии фтора на порошковый кобальт либо СоСl2 кобальт восстанавливается до трехвалентного и образует фторид СоF3 . При нагревании кобальт действует с фосфором, серой, селеном, углеродом, мышьяком, сурьмой, бором и кремнием, причем проявляются валентности от +1 до +6. В последствие реакции свежевосстановленного порошка кобальта с Н2S образуются сульфиды. При Т = 400 °С образуется Со3S4, при Т = 700 °С образуется СоS. Образуется сульфид и во взаимодействии кобальта и сернистого ангидрида при Т = 800 °С.

В разбавленной соляной или серной кислоте кобальт растворяется медленно, выделяя водород и образовывая хлорид СоСl2 либо сульфат СоSO4. Разбавленная азотная кислота способна растворять кобальт и выделять оксиды азота и образовывать нитрат Со(NO3)2. Концентрированная же азотная кислота просто пассивирует кобальт. Соли кобальта растворимы в воде. Щелочи осаждают из водного раствора солей гидроксид Со(ОН)2 .

Существует несколько оксидов кобальта. СоО - оксид кобальта (II) обладает важнейшими свойствами. Существует он в 2-х полиморфных модификациях: форма а- (кубическая решетка), устойчива в температуре от комнатной вплоть до 985 °C, а форма b- (кубическая решетка) существует на высоких температурах. Оксид кобальта можно получать либо в результате нагревания в инертной атмосфере гидроксоркарбоната кобальта Со(ОН)2СоСО3, либо аккуратным восстановлением Со3О4.

Если гидроксид кобальта Со(ОН)2, его нитрат Со(NO3)2, либо гидроксокарбонат прокаливать на воздухе при Т = ~700°C, образуется Со3О4(CoO·Co2O3) оксид кобальта. Данный оксид по своему химическому поведению схож с Fe3О4. Эти оксиды относительно легко восстанавливаются до свободных металлов при помощи водорода:

Со3О4 + 4Н2 = 3Со + 4Н2О.

При прокаливании Со(ОН)2, Со(NO3)2 и т. д. на Т = 300°C получается еще 1 оксид кобальта — это Со2О3. При добавлении раствора щелочи в раствор соли кобальта(II) образуется легко окисляемый осадок Со(ОН)2. При нагреве на воздухе на температурах чуть выше 100°C Со(ОН)2 переходит в СоООН.

Если воздействовать щелочью на водные растворы солей 2-валентного кобальта с сильными окислителями, образуется Со(ОН)3.

При нагреве кобальт реагирует с фтором, образуя трифторид СоF3. Если же на СоО либо СоСО3 воздействовать газообразным HF, образуется еще 1 фторид кобальта, т.е. СоF2. При нагреве кобальта, он взаимодействует с бромом и хлором, образуя, дибромид СоBr2и дихлорид СоСl2. В реакции металлического кобальта и газообразного НI на температуре 400-500°C можно произвести дииодид кобальта СоI2.

Сплавление порошка серы и кобальта дает сульфид кобальта СоS серебристо-серой окраски (b-модификация). А если сквозь раствор соли кобальта(II) пропустить электрический ток сероводорода H2S, в осадок выпадет СоS - черный сульфид кобальта (a-модификация):

CoSO4 + H2S = CoS + H2SO4

Существуют соли кобальта, растворимые в воде- хлорид СоСl2, нитрат Со(NO3)2, сульфат СоSO4 и др. Разбавленные водные растворы данных солей имеют бледно-розовый цвет. Если эти соли растворить в ацетоне или спирте, возникает темно-синий раствор. Если добавить воду к данному раствору его цвет переходит в бледно-розовый.

Кобальт - серебристо-белый, с некоторым желтоватым оттенком, металл. В таблице Менделеева кобальт обозначается символом Co.

История кобальта

Искусные стекольные и гончарные мастера древности при выделке своих художественных изделий пользовались синей краской. В витринах Британского национального музея в Лондоне хранятся уникальные коллекции синих стекол, найденные археологами при раскопках памятников древней культуры в Египте и Ассиро-Вавилонии.

Ученых уже давно интересовал вопрос о природе этой любопытной синей краски, которая не утратила своих сильнокрасящих свойств в течение тысячелетий. Ряд специальных исследований, произведенных химиками, показал, что синие стекла, происходящие из Египта и Ассиро-Вавилонии, содержат соединения редкого элемента кобальта. Однако ученым так и не удалось окончательно разгадать, была ли известна древним мастерам способность окиси кобальта давать глубокое синее окрашивание, или они пользовались этим красящим материалом случайно, как и многими другими стойкими красками.

Неоднократно делались также попытки раскрыть тайну античных мастеров путем самого тщательного изучения синих стекол более позднего происхождения - александрийских, византийских и римских - в надежде найти в них присутствие кобальта. Но каково было удивление исследователей, когда они установили, что синяя краска этих стекол обусловлена наличием в них не кобальта, а меди. Не найдено было также кобальта в роскошных стеклянных и глиняных художественных изделиях, окрашенных в синий цвет, доставленных прославленным путешественником Марко Поло в Европу из стран азиатского материка.

Ремесленники средневековья совсем не применяли кобальта для окраски в синий цвет разнообразных изделий из стекла. В то время слово кобальт было ругательным именем для различных минералов, сопровождающих серебряные руды старинных месторождений в районе Саксонско-Богемского кряжа. Ненависть горняков и плавильщиков к кобальтy историки горного дела и металлурги объясняют тем, что его присутствие в шихте значительно затрудняло и удорожало проплавку серебряных руд.

Передовые ученые своей эпохи Агрикола, Парацельс и Василий Валентин упоминают, что «Cobold» - имя злого духа, который якобы обитает в недрах земли, расстраивает труд горняков и причиняет им всевозможные бедствия.

«Дух» ненавистного кобальта много столетий веял над рудниками Германии, и именем злого духа называли даже минералы, не содержащие кобальта, например, мышьяковистые руды, неблагоприятные свойства которых усугублялись, выделением ядовитых газов при их добыче и металлургической обработке.

Только в XVI столетии, когда добыча серебра из месторождений Саксонско-Богемского кряжа получила значительное развитие, были обнаружены сильные красящие свойства окиси кобальта. Но это новое интересное открытие около двух столетий держали в строжайшем секрете. Лишь узкий круг избранных владел секретом полезного использования красящих свойств кобальта.

Сохранились указания, что в 1533 году стекольный мастер Шюрер, проживавший в Богемии, успешно приготовлял кобальтовую синюю краску для окраски керамических изделий. Скоро голландские купцы заинтересовались новой красивой краской и с помощью Шюрера организовали ее производство у себя на родине. Первая саксонская мельница для размола кобальтовой краски была построена близ Аннаберга в 1649 году.

Теперь, когда кобальту была открыта широкая дорога в промышленность, его соединения начали быстро внедряться в качестве ценных красок для стекол, глазури, фарфора, эмалей и ряда других продуктов керамики.

Химические свойства кобальта

Но какова же природа кобальта, и не является ли он смесью некоторых «земель», к которым пионеры теоретической химии относили большинство известных им минеральных видов?

Над научной расшифровкой этой задачи много потрудился швед Брандт, который в своей диссертации (написанной в 1735 г.) «О полуметаллах» впервые сообщил, что висмут, полученный из кобальто-висмутовых руд, не чист, а содержит кобальт, который может быть отделен механическим путем. Эта первая попытка разгадать природу кобальтовых руд была подхвачена учеными в различных странах.

На рубеже XIX в. продукция соединений кобальта исчислялась уже сотнями тонн в год. В науку вошли исследования Бергмана, составившего в 1787 году довольно полное описание химических свойств кобальта, отличающих его от никеля.

Из таблицы периодической системы элементов можно узнать, что порядковое число кобальта равно 27, а его атомный вес 58,94. В этой таблице кобальт стоит между железом и никелем, что соответствует непрерывному закономерному изменению свойств элементов в периодической системе Д. И. Менделеева. Постепенно ученым удалось установить, что по своим физическим и химическим свойствам кобальт больше приближается к никелю, чем к железу.


Кобальт

Некоторые характерные химические свойства кобальта как бы заранее предопределили его практическое использование в технике.

Кобальт - металл, который достаточно устойчив против разрушительного действия атмосферных агентов. При обыкновенной температуре он мало поддается действию воды и воздуха. Значительно легче окисляется мелкораздробленный кобальт, но и в этом случае образующаяся на поверхности металла пленка окислов предохраняет его от дальнейшего окисления. Однако с повышением температуры этот процесс заметно активизируется. Единственной кислотой, быстро растворяющей кобальт при комнатной температуре, является азотная.

В своей автобиографии Генри Бессемер пространно рассказывает, что он переплавил не одну сотню мешков русских медных монет. Это было еще тогда, когда все помыслы молодого и инициативного Генри были сосредоточены на том, чтобы получить тончайший пылевидный материал (так называемый «китайский порошок») для позолоты различных предметов. Бессемер установил, что лучшее сырье для получения «золотой» пыли, дающей сверкающие золотистые оттенки и искристые переливы — русская медная монета. В русских копейках, привлекших внимание предприимчивого Бессемера присутствовал кобальт.

Применение кобальта

Многочисленны по составу и оттенкам технические сорта, изготовляемых в наши дни, красок из кобальта. Широким распространением пользуются красивые и очень прочные краски под названием смальта и окислы кобальта. Это незаменимый материал для окраски некоторых стекол, эмалей и изделий из керамики. Особенность синих кобальтовых стекол заключается в том, что они прозрачны для красного света. Именно на этом свойстве и основано их применение в химическом анализе в качестве световых фильтров для определения окраски пламени. Получила широкое распространение турецкая зелень, которую применяют для окраски фарфора.


В малярном деле и в производстве керамике применяется небесно-голубая краска, единственная краска, обладающая хорошей кроющей способностью. Для акварельных и малярных красок в керамике применяется желтая краска, или соль Фишера. Окислы кобальта приобрели большое значение в технике эмалирования жести и в производстве лаков.

Выдающаяся роль принадлежит кобальту в новейших сверхтвердых и магнитных сплавах. Кобальтовые твердые сплавы (сюда относятся кобальтовые легированные стали) завоевали важные области применения в металлообрабатывающей промышленности. Ценные свойства обеспечивают им распространение в разных отраслях индустрии. Вот далеко не полный арсенал изделий, содержащих кобальт: фрезы, сверла, измерительные приборы, штампы, части молотов, шестеренки, зубчатки, валы, подшипники и т. д.

Элемент периодической системы

История открытия

Нахождение в природе

Получение

Физические и химические свойства

Применение

Биологическая роль

Радионуклеид Кобальт-60

Список используемой литературы

Элемент периодической системы

Название элемента «кобальт» происходит от латинского Сobaltum.

Со, химический элемент с атомным номером 27. Его атомная масса 58,9332. Химический символ элемента Cо произносится так же, как и название самого элемента.

Природный кобальт состоит из двух стабильных нуклидов: 59Со (99,83% по массе) и 57Со (0,17%). В периодической системе элементов Д. И. Менделеева кобальт входит в группу VIIIВ и вместе с железом и никелем образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома кобальта 3s2p6d74s2. Образует соединения чаще всего в степени окисления +2, реже - в степени окисления +3 и очень редко в степенях окисления +1, +4 и +5.

Радиус нейтрального атома кобальта 0,125 Нм, радиус ионов (координационное число 6) Со2+ - 0,082 Нм, Со3+ - 0,069 Нм и Со4+ - 0,064 Нм. Энергии последовательной ионизации атома кобальта 7,865, 17,06, 33,50, 53,2 и 82,2 ЭВ. По шкале Полинга электроотрицательность кобальта 1,88.

Кобальт - блестящий, серебристо-белый, тяжелый металл с розоватым оттенком.

История открытия

С древности оксиды кобальта использовались для окрашивания стекол и эмалей в глубокий синий цвет. До 17 века секрет получения краски из руд держался в тайне. Эти руды в Саксонии называли «кобольд» (нем. Kobold - домовой, злой гном, мешавший рудокопам добывать руду и выплавлять из нее металл). Честь открытия кобальта принадлежит шведскому химику Г. Брандту. В 1735 году он выделил из коварных «нечистых» руд новый серебристо-белый со слабым розоватым оттенком металл, который предложил называть «кобольдом». Позднее это название трансформировалось в «кобальт».

Нахождение в природе

В земной коре содержание кобальта равно 410-3% по массе. Кобальт входит в состав более 30 минералов. К ним относятся каролит CuCo2SO4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтит СоAs2 и другие. Как правило, кобальту в природе сопутствуют его соседи по 4-му периоду - никель, железо, медь и марганец. В морской воде приблизительно (1-7)·10-10 % кобальта.

Получение

Кобальт - относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат. Далее для извлечения кобальта концентрат или обрабатывают растворами серной кислоты или аммиака, или методами пирометаллургии перерабатывают в сульфидный или металлический сплав. Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию. Наиболее сложная задача при очистке кобальта от примесей - это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля. Раствор, содержащий катионы двух этих металлов, часто обрабатывают сильными окислителями - хлором или гипохлоритом натрия NaOCl; кобальт при этом переходит в осадок. Окончательную очистку (рафинирование) кобальта осуществляют электролизом его сульфатного водного раствора, в который обычно добавлена борная кислота Н3ВО3.

Физические и химические свойства

Кобальт - твердый металл, существующий в двух модификациях. При температурах от комнатной до 427°C устойчива a-модификация (кристаллическая решетка гексагональная с параметрами а=0,2505 Нм и с=0,4089 Нм). Плотность 8,90 кг/дм3. При температурах от 427°C до температуры плавления (1494°C) устойчива b-модификация кобальта (решетка кубическая гранецентрированная). Температура кипения кобальта около 2960°C. Кобальт - ферромагнетик, точка Кюри 1121°C. Стандартный электродный потенциал Со0/Со2+ –0,29 B.

На воздухе компактный кобальт устойчив, при нагревании выше 300°C покрывается оксидной пленкой (высокодисперсный кобальт пирофорен). С парами воды, содержащимися в воздухе, водой, растворами щелочей и карбоновых кислот кобальт не взаимодействует. Концентрированная азотная кислота пассивирует поверхность кобальта, как пассивирует она и поверхность железа.

Известно несколько оксидов кобальта. Оксид кобальта(II) СоО обладает основными свойствами. Он существует в двух полиморфных модификациях: a-форма (кубическая решетка), устойчивая при температурах от комнатной до 985°C, и существующая при высоких температурах b-форма (также кубическая решетка). СоО можно получить или нагреванием в инертной атмосфере гидроксоркарбоната кобальта Со(ОН)2СоСО3, или осторожным восстановлением Со3О4.

Если нитрат кобальта Со(NO3)2, его гидроксид Со(ОН)2 или гидроксокарбонат прокалить на воздухе при температуре около 700°C, то образуется оксид кобальта Со3О4 (CoO·Co2O3). Этот оксид по химическому поведению похож на Fe3О4. Оба эти оксида сравнительно легко восстанавливаются водородом до свободных металлов:

Со3О4 + 4H2 = 3Со + 4H2O.

При прокаливании Со(NO3)2, Со(ОН)2 и т. д. при 300°C возникает еще один оксид кобальта - Со2О3.

При приливании раствора щелочи к раствору соли кобальта(II) выпадает осадок Со(ОН)2, который легко окисляется. Так, при нагревании на воздухе при температуре немногим выше 100°C Со(ОН)2 превращается в СоООН.

Если на водные растворы солей двухвалентного кобальта действовать щелочью в присутствии сильных окислителей, то образуется Со(ОН)3.

При нагревании кобальт реагирует со фтором с образованием трифторида СоF3. Если на СоО или СоCO3 действовать газообразным HF, то образуется еще один фторид кобальта СоF2. При нагревании кобальт взаимодействует с хлором и бромом с образованием, соответственно, дихлорида СоСl2 и дибромида СоBr2. За счет реакции металлического кобальта с газообразным НI при температурах 400-500°C можно получить дииодид кобальта СоI2.

Сплавлением порошков кобальта и серы можно приготовить серебристо-серый сульфид кобальта СоS (b-модификация). Если же через раствор соли кобальта(II) пропускать ток сероводорода H2S, то выпадает черный осадок сульфида кобальта СоS (a-модификация):

CoSO4 + H2S = CoS + H2SO4

При нагревании CoS в атмосфере H2S образуется Со9S8 с кубической кристаллической решеткой. Известны и другие сульфиды кобальта, в том числе Co2S3, Co3S4 и CoS2.

С графитом кобальт образует карбиды Со3C и Со2С, c фосфором - фосфиды составов СоP, Со2P, СоP3. Кобальт реагирует и с другими неметаллами, в том числе с азотом (возникают нитриды Со3N и Co2N), селеном (получены селениды кобальта CoSe и CoSe2), кремнием (известны силициды Co2Si, CoSi CoSi2) и бором (в числе известных боридов кобальта - Со3В, Со2В, СоВ).

Кобальт (лат. Cobaltum), Co, химический элемент первой триады VIII группы периодической системы Менделеева; атомный номер 27, атомная масса 58,9332; тяжелый металл серебристого цвета с розоватым отливом. В природе элемент представлен одним устойчивым изотопом 59 Co; из полученных искусственно радиоактивных изотопов важнейший 60 Со.

Историческая справка. Оксид Кобальта применялась в Древнем Египте, Вавилоне, Китае для окрашивания стекол и эмалей в синий цвет. Для той же цели в 16 веке в Западной Европе стали пользоваться цафрой, или сафлором, - серой землистой массой, которая получалась при обжиге некоторых руд, носивших название "кобольд". Эти руды выделяли при обжиге обильный ядовитый дым, а из продукта их обжига выплавить металл не удавалось. Средневековые рудокопы и металлурги считали это проделками мифических существ - кобольдов (от нем. Kobold - домовой, гном). В 1735 году шведский химик Г. Брандт, нагревая в горне с дутьем смесь цафры с углем и флюсом, получил металл, который назвал "корольком кобольда". Вскоре это название было изменено на "кобольт", а затем на "кобальт".

Распространение Кобальта в природе. Содержание Кобальт в литосфере 1,8·10 -3 % по массе. В земной коре он мигрирует в магмах, горячих и холодных водах. При магматической дифференциации Кобальт накапливается главным образом в верхней мантии: его среднее содержание в ультраосновных породах 2·10 -2 % . С магматическими процессами связано образование так называемых ликвационных месторождений кобальтовых руд. Концентрируясь из горячих подземных вод, Кобальт образует гидротермальные месторождения; в них Со связан с Ni, As, S, Cu. Известно около 30 минералов Кобальт.

В биосфере Кобальт преимущественно рассеивается, однако на участках, где есть растения - концентраторы Кобальта, образуются кобальтовые месторождения. В верхней части земной коры наблюдается резкая дифференциация Кобальта - в глинах и сланцах в среднем содержится 2·10 -3 % Кобальта, в песчаниках 3·10 -5 , в известняках 1·10 -5 . Наиболее бедны Кобальтом песчаные почвы лесных районов. В поверхностных водах Кобальта мало, в Мировом океане его лишь 5·10 -8 % . Будучи слабым водным мигрантом, Кобальт легко переходит в осадки, адсорбируясь гидрооксидами марганца, глинами и других высокодисперсными минералами.

Физические свойства Кобальта. При обычной температуре и до 417 °С кристаллическая решетка Кобальта гексагональная плотноупакованная (с периодами а = 2,5017Å, с = 4,614Å), выше этой температуры решетка Кобальта кубическая гранецентрированная (а = 3,5370Å). Атомный радиус 1,25Å, ионные радиусы Со 2+ 0,78Å и Со 3+ 0,64Å. Плотность 8,9 г/см 3 (при 20 °С); t пл 1493°С, t кип 3100°С. Теплоемкость 0,44 кдж/(кг·К), или 0,1056 кал/(г·°С); теплопроводность 69,08 вт/(м·К), или 165 кал/(см·сек·°С) при 0-100 °С. Удельное электросопротивление 5,68·10 -8 ом·м, или 5,68·10 -6 ом·см (при О °С). Кобальт ферромагнитен, причем сохраняет ферромагнетизм от низких температур до точки Кюри, Θ = 1121 °С. Механические свойства Кобальта зависят от способа механической и термической обработки. Предел прочности при растяжении 500 Мн/м 2 (или 50 кгс/мм 2) для кованого и отожженного Кобальта; 242-260 Мн/м 2 для литого; 700 Мн/м 2 для проволоки. Твердость по Бринеллю 2,8 Гн/м 2 (или 280 кгс/мм 2) для наклепанного металла, 3,0 Гн/м 2 для осажденного электролизом; 1,2-1,3 Гн/м 2 для отожженного.

Химические свойства Кобальта. Конфигурация внешних электронных оболочек атома Кобальта 3d 7 4s 2 . В соединениях Кобальт проявляет переменную валентность. В простых соединениях наиболее устойчив Со(П), в комплексных - Со(Ш). Для Со(I) и Co(IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный Кобальт стоек против действия воды и воздуха. Мелко раздробленный Кобальт, полученный восстановлением его оксида водородом при 250 °С (пирофорный Кобальт), на воздухе самовоспламеняется, превращаясь в СоО. Компактный Кобальт начинает окисляться на воздухе выше 300 °С; при красном калении он разлагает водяной пар: Со + Н 2 О = СоО + Н 2 . С галогенами Кобальт легко соединяется при нагревании, образуя галогениды СоХ 2 . При нагревании Кобальт взаимодействует с S, Se, P, As, Sb, С, Si, В, причем состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со 2 Р, Co 2 As, CoSb 2 , Со 3 С, CoSi 3). В разбавленных соляной и серной кислотах Кобальт медленно растворяется с выделением водорода и образованием соответственно хлорида СоCl 2 и сульфата CoSO 4 . Разбавленная азотная кислота растворяет Кобальт с выделением оксидов азота и образованием нитрата Co(NO 3) 2 . Концентрированная HNO 3 пассивирует Кобальт. Названные соли Со (П) хорошо растворимы в воде [при 25°С 100 г воды растворяют 52,4 г СоCl 2 , 39,3 г CoSO 4 , 136,4 г Co(NO 3) 2 ]. Едкие щелочи осаждают из растворов солей Со 2+ синий гидрооксид Со(ОН) 2 , которая постепенно буреет вследствие окисления кислородом воздуха до Со(ОН) 3 . Нагревание в кислороде при 400-500 °С переводит СоО в черную закись-окись Со 3 О 4 , или СоО·Со 2 О 3 - соединение типа шпинели. Соединение того же типа CoAl 2 О 4 или СоО·Al 2 О 3 синего цвета (тенарова синь, открытая в 1804 году Л. Ж. Тенаром) получается при прокаливании смеси СоО и Al 2 О 3 при температуре около 1000 °С.

Из простых соединений Со (IП) известны лишь немногие. При действии фтора на порошок Со или СоCl 2 при 300-400 °С образуется коричневый фторид CoF 3 . Комплексные соединения Со (Ш) весьма устойчивы и получаются легко. Например, KNO 2 осаждает из растворов солей Со (П), содержащих СН 3 СООН, желтый труднорастворимый гексанитрокобальтат (III) калия K 3 . Весьма многочисленны кобальтаммины (прежнее название кобальтиаки) - комплексные соединения Со (Ш), содержащие аммиак или некоторые органических амины.

Получение Кобальта. Минералы Кобальта редки и не образуют значительных рудных скоплений. Главным источником промышленного получения Кобальта служат руды никеля, содержащие Кобальт как примесь. Переработка этих руд весьма сложна, и ее способ зависит от состава руды. В конечном итоге получают раствор хлоридов Кобальта и никеля, содержащий примеси Cu 2+ , Pb 2+ , Bi 3+ . Действием H 2 S осаждают сульфиды Cu, Pb, Bi, после чего пропусканием хлора переводят Fe(II) в Fe(III) и добавлением СаСО 3 осаждают Fe(OH) 3 и CaHAsO 4 . От никеля Кобальт отделяют по реакции: 2СоCl 2 + NaClO + 4NaOH + H 2 O = 2Co(OH) 3 ↓ +5NaCl. Почти весь никель остается в растворе. Черный осадок Со(ОН) 3 прокаливают для удаления воды; полученный оксид Со 3 О 4 восстанавливают водородом или углеродом. Металлический Кобальт, содержащий до 2-3% примесей (Ni, Fe, Cu и другие), может быть очищен электролизом.

Применение Кобальта. Кобальт применяется главным образом в виде сплавов; таковы кобальтовые сплавы, а также сплавы на основе других металлов, где Кобальт служит легирующим элементом. Сплавы Кобальта используют в качестве жаропрочных и жаростойких материалов, при изготовлении постоянных магнитов, режущего инструмента и других. Порошкообразный Кобальт, а также Со 3 О 4 служат катализаторами. Фторид CoF 3 применяется как сильный фторирующий агент, тенарова синь и особенно силикат Кобальта и калия - как краски в керамической и стекольной промышленности. Соли Кобальта применяют в сельском хозяйстве как микроудобрения, а также для подкормки животных.

Из искусственно радиоактивных изотопов Кобальт наибольшее значение имеет 60 Со с периодом полураспада Т ½ = 5,27 года, широко используемый как гаммаизлучатель. В технике его применяют для гамма-дефектоскопии. В медицине - главным образом при лучевой терапии опухолей и для стерилизации медикаментов. Он служит также для уничтожения насекомых в зерне и овощах и для консервирования пищевых продуктов. Другие радиоактивные изотопы - 56 Со (Т ½ = 77 сут), 57 Со (270 сут) и 58 Со (72 сут) как менее опасные (небольшой период полураспада) используют в качестве изотопных индикаторов при исследовании обмена веществ, в частности для изучения распределения Кобальта в организме животных (с помощью радиоактивного Кобальта исследовали проницаемость плаценты и т. п.).

Кобальт в организме. Постоянно присутствуя в тканях животных и растений, Кобальт участвует в обменных процессах. В животном организме содержание Кобальта зависит от его уровня в кормовых растениях и почвах. Концентрация Кобальта в растениях пастбищ и лугов в среднем составляет 2,2·10 -3 - 4,5·10 -3 % на сухое вещество. Способность к накоплению Кобальт у бобовых выше, чем у злаковых и овощных растений. В связи с высокой способностью к концентрации Кобальта морские водоросли по его содержанию мало отличаются от наземных растений, хотя в морской воде Кобальта значительно меньше, чем в почвах. Суточная потребность человека в Кобальте равна примерно 7-15 мкг и удовлетворяется за счет его поступления с пищей. Потребность животных в Кобальте зависит от их вида, возраста и продуктивности. Наиболее нуждаются в Кобальте жвачные, которым он необходим для развития симбиотической микрофлоры в желудке (главным образом в рубце). Суточная потребность в Кобальте у дойных коров составляет 7-20 мг, у овец - около 1 мг. При недостатке Кобальта в рационе снижается продуктивность животных, нарушаются обмен веществ и кроветворение, у жвачных возникают эндемичные заболевания - акобальтозы. Биологическая активность Кобальта определяется его участием в построении молекулы витамина B 12 и его коферментных форм, фермента транскарбоксилазы. Кобальт необходим для проявления активности ряда ферментов. Он влияет на обмен белка и синтез нуклеиновых кислот, на обмен углеводов и жиров, окислительно-восстановительные реакции в животном организме. Кобальт- мощный активатор кроветворения и синтеза эритропоэтинов. Кобальт участвует в ферментных системах клубеньковых бактерий, осуществляющих фиксацию атмосферного азота; стимулирует рост, развитие и продуктивность бобовых и растений ряда других семейств.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

О чем только ни молился человек на протяжении многих веков: и об удаче на охоте, и о победе над врагом. В Германии в одно время в ходе церковной службы произносили молитву о спасении горняков от злого духа Кобольда. В средние века Саксония стала центром горнорудной промышленности, саксонские горняки были опытны в своем деле и хорошо отличали одну руду от другой. Но иной раз случалось горнякам напасть на руду, которая по всем видимым признакам была похожа на серебро, но при выплавке, ожидаемого драгоценного металла из нее получить не удавалось. Более того при обжиге такой руды выделялись ядовитые газы, которые душили рабочих.

Со временем, горняки научились отличать коварную руду от содержащих серебро, и, считая её обиталищем злого духа, дали ей имя Кобольд.

В дальнейшем название было изменено на кобольт, а затем уже на кобальт. Сегодня этот металл уже не вселяет страха и ощущения опасности, наоборот, он широко применяется в промышленности, а так же в медицине. Кобальт удивительный металл, обладающий уникальными свойствами, именно поэтому в своей работе мы постараемся его подробно изучить.

кобальт химический медицина

1. История открытия

Происхождение названия этого элемента имеет несколько версий. Авторы пишут: название «кобальт» происходит от немецкого слова Kobold, что означает «карлик, охраняющий клады», (горный дух, или нечистая сила), либо от греческого слова kobalo, что означает «талантливый имитатор». Впервые термин kobelt (что эквивалентно слову Kobold) упоминается в труде Агриколы «О горном деле и металлургии».

Кобальт как индивидуальный химический элемент открыт лишь в середине 18 века, но его минералы были известны с древнейших времен. Они применялись для окраски стекла в синий цвет за несколько тысячелетий до н.э.В раскопках древней Вавилонии, Персии и Египта найдены искусственные драгоценные камни, интенсивно синей окраски, в состав которых входит от 0,05 до 0,15% кобальта. В Римской империи окрашенные кобальтом синие стекла обнаружены в памятниках культуры, созданных за 138 лет до н.э., а в Китае синие стеклянные бусы изготовлялись за 206 лет до н.э., притом, по-видимому, из местного сырья.

В 18 в. кобальтовые минералы начали применять для окраски фарфора.

Но способ изготовления кобальтовой краски, который в древности хранился в строжайшей тайне, после падения Римской империи был основательно забыт, и его потребовалось открыть заново. Полагают, что возродил его в 1520-1540 гг. богемский купец Шюрер.

Сырьем для производства исключительно красивой синей краски, устойчивой к атмосферным воздействиям и к высоким температурам, служили кобальтовые минералы Саксонии. В дальнейшем этот секрет проник в Голландию.

Как уже говорилось, само наименование элемента происходило от слова «Kobold» - так горняки называли горных духов, злых карликов, которые якобы причиняли рабочим рудников много бед. Кобальдами называли поэтому руды с обманчивым внешним видом, из которых при плавке не удавалось извлечь ни одного из наиболее употребляемых металлов (золото, серебро, медь, железо). Особенно опасны для горняков были руды кобальта, так как наиболее распространенный минерал - кобальтин - содержит мышьяк и при обжиге выделяет крайне ядовитый мышьяковистый ангидрид.

Металлический кобальт был впервые получен шведским химиком Ю. Брандтом в 1735 г. из мышьяковисто-кобальтовых руд. При этом он уделил особое внимание описанию его отличий от висмута, который часто сопровождает кобальт в природных рудах. Были описаны некоторые свойства вновь открытого элемента и его соединений, в особенности, способность, давать синюю краску-смальту.

Более подробные исследования свойств кобальта и его соединений были позднее проведены Тэнаром, Прустом и Берцеллиусом, которые заложили основы современной химии кобальта.

2. Кобальт

Электронная структура атома Со и катионов Со и Со для 3d- и 4s-орбиталей:

Кобальт входит в подгруппу восьмой группы четвёртого периода периодической системы химических элементов Д.И. Менделеева наряду с такими широко известными элементами, как железо и никель, к которым он очень близок по своим химическим свойствам. В соединениях кобальт проявляет переменную валентность. В простых соединениях наиболее устойчив Со (II), в комплексных - Со (III). Для Со (I) и Co (IV) получены только немногочисленные комплексные соединения.

Простое вещество кобальт - серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом.

Для кобальта известны две модификации: б-Со с гексагональной кристаллической структурой и в-Со с кубической гранецентрированной кристаллической структурой. До 403-477єС существует б-Со, при более высоких температурах в-Со. Электролитический кобальт содержит обе модификации. Найдено, что превращение б-Со в в-Со протекает медленно и более интенсивно при 477єС, но не завершается полностью даже при 600єС; с другой стороны, при охлаждении отмечено запаздывание обратного превращения в-модификации в б-форму. В присутствии примесей, особенно железа, значительно снижается температура обратного превращения.

Обе модификации кобальта ферромагнитны и теряют магнитные свойства в интервале 1075-1150єС.

б-кобальт в-кобальт

Кобальт относительно твердый, хорошо куется, тянется и легко подвергается механической обработке. Твердость кобальта равна 124 кг/ммІ.

Более хрупок, чем сталь. Аналогично железу и никелю этот элемент обладает магнитными свойствами, хорошо проводит электричество и звук.

Существуют пирофорный и коллоидный кобальт.

Пирофорный кобальт представляет собой черный порошок (Пирофорность - способность твердого материала в мелкораздробленном состоянии к самовоспламенению на воздухе при отсутствии нагрева). Коллоидный кобальт имеет золотисто-коричневый оттенок, образуется при добавлении воды к пиридиновым растворам солей кобальта.

3. Химические свойства

По химическим свойствам он относится к металлам средней активности; в химических соединениях обычно двух- или трехвалентен. При обычных температурах металлический кобальт, в компактном состоянии, устойчив к действию сухого и влажного воздуха, а также воды. Не реагирует с фтороводородной кислотой (HF), с щелочами в растворе, гидратом аммиака(NH4OH), азотом, и с раствором разбавленных органических кислот.

При нагревание порошкообразный металлический кобальт взаимодействует с галогенами S, P, As, Sb, C, Si.

2Co + 3F2 2CoF3 + Q (380кКал)

Co + Cl2 CoCl2 + Q (74,8кКал)

Co + Br2 CoBr2 + Q (58 кКал)

Co + S CoS + Q (20,5 кКал)

Всоляной и серной кислотах растворяется значительно медленнее, чем железо, зато в азотной кислоте растворение идет очень легко.

Со + 2НСl (разб., гор.) СоСl2 + H2

Со + H2SO4 (paзб., гор.) CoSO4 + H2

3Со + 8HNO3 (paзб., гор.) 3Co(NO3) 2 + 2NO + 4Н2О.

В царской водке и щавелевой кислоте кобальт хорошо растворяется даже при комнатной температуре.

В сухом или влажном воздухе металлический кобальт в компактном состоянии окисляется только при температуре выше 300°, образуя окислы СоО (темно-зеленый, почти черный), Со2О3 и смешанный окисел Со3О4. СоО образуется при действии паров воды на нагретый до красного каления металлический кобальт.

4. Получение металлического кобальта

Восстановление водородом

Восстановление окиси кобальта водородом протекает ступенчато: сначала образуется низший окисел при характерной минимальной температуре, а затем - с повышением температуры - он восстанавливается до металла.

1. Окись кобальта(III)

3Co2O3 + H2 2Co3O4 + H2O

Co3O4 + H2 3CoO + H2O Co3O4 + 4H2 3Co + 4H2O

CoO + H2 Co + H2O

При восстановлении окислов Со2О3, Со3О4, СоО водородом при температуре 250-380° образуется порошкообразный металлический кобальт, обладающий пирофорными свойствами, чего не происходит в случаи восстановления при температуре выше 700°. Если восстановление соединений кобальта водородом осуществляется при температуре ниже 492°, образуется модификация б-Co с плотной гексагональной кристаллической решеткой, а при температуре выше 492° модификация в-Со с кубической гранецентрированной кристаллической решеткой. Восстановлением соединений кобальта водородом при нагревании можно получить кобальт 99,86% чистоты.

2. Галогениды

Как и окислы галогениды подвергаются восстановлению водородом.

CoCl2 +H2 Co + 2HCl

CoBr2 +H2 Co + 2HBr

3. Формиат

Co(HCOO) 2 + H2 Co + 2CO + 2H2O

4. Оксалат

CoC2O4 + 2H2 Co + 2CO + 2H2O

Восстановление оксидов кобальта углеродом, оксидом углерода, метаном

Восстановлением окислов Со2О3, Со3О4, СоО углеродом или окисью углерода при нагревании в электрических печах получают металлический кобальт, загрязненный углеродом или карбидами кобальта.

1) C3O4 + 4C 3Co + 4CO

2) C3O4 + 4CO 3Co + 4CO2

Действием метана на Со2О3 при разных температурах получают окись кобальта, металлический кобальт.

3) Со2О3 + СН4 2Со + СО + 2Н2О

4) 3Со2О3+ СН4 6СоО + СО + 2Н2О

Алю мотермическое восстановление оксидов углерода

3Со3О4 + 8Al 9Co + 4Al2O3

3CoO + 2Al 3Co + Al2O3

Термическое разложение карбонилов кобальта Со 2 ( СО ) 8 , Со 4 ( СО ) 1 2

При термическом разложение Со2 (СО) 8, Со4 (СО) 12 образуется черный мелкодисперсный порошок металлического кобальта и выделяется окись углерода.

2Со2 (СО) 8 Со4 (СО) 12 4Со

Электролитическое получение металлического кобальта

Металлический кобальт можно получить электролизом водного раствора, содержащего 190-480 г./л СоSO4Ч7H2O, при температуре 50-60°. Можно также проводить электролиз, слегка подкисленного раствора (NH4) 2SO4ЧCoSO4Ч6H2Oпри температуре 20°.

Очистка

Сырой кобальт очищаю плавлением в высоком вакууме, методом зонной плавки или электролитическим рафинированием.

5. Соединения кобальта

Соединения одновалентного кобальта

Соединения кобальта(I), число которых ограничено, довольно неустойчивы, обнаруживают восстановительные свойства. В качестве примеров соединений одновалентного кобальта можно назвать Со2Se, K3 , Me2

Соединения двухвалентного кобальта

1. СоО - оксид кобальта (II)

СоО получают действием кислорода или паров воды на металлический кобальт при температуре выше 940°Темно-зеленый (почти черный). Термически утойчивый. На воздухе поглащает О2. Не реагирует с водой, гидратом аммиака. Проявляет амфотерные свойства (основные свойства преобладают): реагирует с разбавленными кислотами, концентрированными щелочями.

При сплавлении СоО с избытком КОН или NaOHобразуются кобальтиты Ме2СоО2 ярко-синего цвета, а при растворении СоО в концентрированных теплых растворах щелочей (KOH, NaOH) образуются ярко-синие растворы гидроксокобальтатов(II) Me2 , которые очень хорошо гидролизуются и окисляются.

1) CoO + 2HCl (разб.) CoCl2 + H2O

2) CoO + 2NaOH (конц.) + H2O Na2 (син.)

2. Со(ОН) 2 - гидроксид кобальта(II)

Существует в виде двух модификаций, а именно б-Со(ОН) 2 и в-Со(ОН) 2. Метастабильная можификация б-Со(ОН) 2 образуется в виде синего осадка при добавлении растворов щелочей к солям кобльта(II) (около 0°). Устойчивая модификация в-Со(ОН) 2 образуется в виде розового осадка при добавлении растворов солей кобальта(II) к растворам щелочей, при нагревании б-модификации. Обе модификации слабо растворимы в воде, растворимы в теплых растворах щелочей, минеральных кислот и большинстве органических кислот, превращаются в СоО. Темно-фиолетовый кристаллический или синий аморфный. Во влажном состоянии поглащает из воздуха О2 и СО2. Не расстворяется в воде. В органической среде осажадает синий гидрат Со(ОН) 2*0,67Н2О. Проявляет амфотерные свойства (основные свойства пробладают.

1) Со(ОН) 2 + 2NaOH (50%) Na2 (фиол)

При растворении б-Со(ОН) 2и в-Со(ОН) 2в аммиаке в присутствии солей аммония образуются желтые гексааммины кобальта(II); они довольно неустойчивы и при хранении на воздухе или в присутствии окислителя превращаются в устойчивые вишнево-красные пурпуреосоли кобальта.

1) Co(OH) 2 + 4NH3 Cl2 + 2H2O

2) Cl2 + 4NH4Cl + O2 4 Cl2 + 2H2O + 8NH3

3) 2 Cl2+ 2NH4Cl + H2O2 2 Cl2 + 2H2O + 4NH3

Большинство простых солей Со(II) образуется при обработке окиси СоО или гидроокиси Со(ОН) 2 различными кислотами. Соли двухвалентного кобальта, полученные при использовании сильных кислот, в большинстве растворимы, их разбавленные растворы окрашены в розовый цвет и имеют кислую реакцию благодаря гидролизу.

3. СоSO4 - сульфат кобальта(II)

Получают продуванием смеси воздуха и SO2, над нагретым до 550-600° порошком СоО или дегидратацией кристаллогидратов СоSO4ЧnH2O (n=7,6,5,4,3,2,1).

Сульфат кобальта CoSO4представляет собой парамагнитные гексагональные кристаллы с плотностью 3,666г/смі; розовые кристаллы становятся фиолетовыми при температуре выше 500°, разлагаются при нагревании на воздухе при 690-720°, превращаясь в СоО и Со3О4. Хорошо (но медленно) растворяется в воде (с ростом температуры растворимость сначала увеличивается, затем падает), гидролизуется по катиону. Реагирует со щелочами, гидратом аммиака.

1) CoSO4 + 6 (NH3ЧH2O) [конц.] SO4 (желт.) + 6H2O

2) 2CoSO4 (разб.) + 2NaOH (разб.) Na2SO4 +Co2SO4 (OH) 2 (син.)

CoSO4 (разб.) + 2NaOH (10%) Co(OH) 2 + Na2SO4

3) 2CoSO4 + 2H2O 2Сo (катод) + О2 (анод) + 2H2SO4

4. CoF2 - Фторидкобальта (II)

Дифторид кобальта получают обработкой газообразнымHF СoCl2 (при комнатной температуре) или СоО (500°). Соединения СоF2 представляют собой токсичные парамагнитные розовые тетрагональные призмы. СoF2растворяется в воде, плохо растворимо в спирте, эфире, бензоле. Устойчиво в воде и аммиаке при комнатной температуре, но превращается в СоО с выделением HFпод действием горячей воды. Помимо воды разлагается концентрированными кислотами, щелочами и гидратом аммиака. Na, Mg, Alпри нагревании с CoF2воспламеняются.

1) СoF2 + H2O Co(OH) F + HF

СoF2 + H2O(пар) CoO + 2HF

2) CoF2 + H2SO4 (конц., гор.) CoSO4 + 2HF

3) CoF2 + 4NaOH (40%) Na2 + 2NaF

5. Cl2 - Хлорид гексамминокобальта(II)

Cl2можно получить действием NH4OHна Co(OH) 2 в присутствии NH4Clи без доступа кислорода, поскольку в присутствии кислорода образуется пурпуреосоль Cl2.

1) Сo(OH) 2 + 4NH4OH + 2NH4Cl Cl2+ 6H2O

Cl2 + 4NH4Cl + O2 Cl2 + H2O + 8NH3

Светло-красный, термически неустойчивый. Устойчив в растворе только в присутствии гидрата аммиака. Разлагается кислотами, щелочами. Окисляется пероксидом водорода.

2) Cl2+ 6HCl (разб.) CoCl2 + 6NH4Cl

3) Cl2 + 2NaOH (разб.) + 6H2O Co(OH) 2 + 2NaCl + 6NH4OH

4) 2 Cl2 + 2H2O2 (конц.) + О2 Cl4 + 2NH4OH

6. Дииодид кобальта - CoI2

Дииодид кобальта получают нагреванием металлического кобальта в парах йода или в токе HIпри 400-450°, действием водного раствора йода на тонко измельченный кобальт.

Дииодид кобальта существует в виде двух модификаций - б-CoI2и в-CoI2.

Модификация б-CoI2представляет собой парамагнитные черные гексагональные кристаллы. Модификация в-CoI2образует желтые игольчатые кристаллы, в-модификация менее устойчива, чем б-модификация.

Обе модификации растворимы в воде, спирте, ацетоне, эфире, метилацетате, пиридине, разлагаются при 600° с выделением йода, взаимодействуют на холоду с водородом по уравнению.

CoI2 + H2 Co + 2HI

Соединения трехвалентного кобальта

Известно ограниченное число простых соединений трехвалентного кобальта. Они относительно неустойчивы, обнаруживают окислительные свойства и гидролизуются с образованием солей кобальта(II) и выделением кислорода.

Известно очень много устойчивых координационных соединений кобальта(III), которые проявляют некоторые сходство с координационными соединениями хрома(III).

1. Кобальтаты (III)

Mg, Zn, Mn, Fe, Ni, Cu - обладают структурой шпинелей и получаются в виде черных порошков.

Кобальтат(III) кобальта(II) Со или Со3О4 получают нагреванием порошкообразного металлического кобальта при 300-400° на воздухе. Соединение Со3О4 образует парамагнитные черные октаэдрические кристаллы, при нагревании (940°) превращается в СоО с высвобождением кислорода; восстанавливается до металлического кобальта при нагревании с Н2, С, СО, Na, K, Al, взаимодействует с ClF3, BrF3, H2S, S2Cl2при нагревании, растворяется в HClс выделением хлора, в H2SO4 и HNO3 (с выделением кислорода) и в расплавленных щелочах.

1) Co3O4 + 8HCl 3CoCl2 + 4H2O + Cl2

2) Co3O4 + 3H2SO4 3CoSO4 + 3H2O + 1/2O2

Соединения Со3О4 применяются для изготовления стекла, сильно поглощающего ультрафиолетовые лучи, а также в качестве катализатора реакции: термического разложенияKClO3и KMnO4, окисления NH3.

2. Координационные соединения кобальта(III)

Известно очень много комплексных соединений кобальта(III) с координационным числом шесть, которые по числу координационных сфер классифицируются на моно-, би, три-, тетра-, или полиядерные, а по природе координационных групп - на аммины, аквоаммины, ацидоаммины, аквосоли, ацидосоли, ацидоаквосоли, ацидоамминосоли, гидроксосоли, аквогидроксосоли.

Благодаря сильно выраженной склонности кобальта(III) к образованию координационных соединений, разнообразию лигандов, входящих во внутреннюю координационную сферу, и существованию изоморфных форм имеется очень большое число координационных соединений кобальта(III). Большинство из них получают окислением простых или комплексных соединений кобальта(II) кислородом воздуха, Н2О2 или KMnO4в щелочной или нейтральной среде.

Соединения четырехвалентного кобальта

Известно ограниченное число соединений четырехвалентного кобальта, которые, как правило, довольно неустойчивы.

К соединениям кобальта(IV) относят двуокись СоО2ЧН2О, диселенидCoSe2, гексафторокобальт(IV) цезия Cs2 и некоторые полиядерные соединения, например:

6. Применение

В конце 19 начале 20в. были открыты многие исключительно ценные свойства кобальтовых сплавов, именно с этого времени он активно применяется в промышленности.

Кобальт принадлежит к стратегическим металлам и применяется в очень важных областях, играющих первостепенную роль в научно-техническом прогрессе.

Он применяется прежде всего как компонент жаростойких, быстрорежущих, сверхтвердых, магнитных, антикоррозионных сплавов и качественных сталей. Твердые сплавы с содержание кобальта свыше 50%, так называемые стиллиты, получили большую известность в металлообработке.

Очень важное значение приобрели сверхтвердые сплавы, приготовляемые спеканием карбида вольфрама с кобальтовым порошком. Они широко применяются в металлообрабатывающей промышленности и в горном деле для бурения особо твердых пород. Заменителем «твердого металла» этого элемента может служить только карбид тантала на никелевом связующем. Современная техника мощного моторостроения нуждается в конструкционных материалах, обладающих жаропрочностью, устойчивостью против газовой коррозии и одновременно способностью подвергаться механической обработке. Весьма подходящими для этой цели оказались сплавы на основе кобальта 45-65%.Некоторые кобальтовые сплавы отличаются устойчивостью к кислотам и окислителям.

Так, для изготовления нерастворимых анодов применяют сплав из 75% кобальта

(13% - кремния, 7% - хрома, 5%-марганца). Он менее растворим, чем платина, в минеральных кислотах - азотной, серной и соляной. Из кобальтовых сплавов изготовляют резервуары для хранения фторгалогенидов.

Кобальт и его соединения занимают исключительное положение в качестве катализаторов. Кобальтовые катализаторы весьма активны в реакциях гидрогенизации растительных жиров, синтеза бензина из природного газа.

На основе соединений этого металла могут быть приготовлены масляные краски и эмали следующих цветов:

1) Темно-синий - кобальтовая «смальта» (калиевый силикат кобальта)

2) Синий - «тенарова синь» (применяется в качественном анализе для индикации алюминия)

3) Зеленый - различные комбинации окислов кобальта, хрома, алюминия и цинка

4) Красный (розовый) - смесь окислов кобальта и магния

5) Желтый - комплексный нитрит кобальта и калия

6) Фиолетовый - пирофосфат кобальта и натрия

Кобальтовые краски служат для окраски стекла, эмали, фарфора, керамики.

Окись кобальта входит в состав некоторых полупроводников и изоляторов, соли используются в текстильной промышленности, а также для изготовления чернил (синтетических), при определении влажности воздуха и в некоторых других целях.

В чистом виде металлических кобальт используется мало, главным образом в электронике, в качестве электродов, а также в термоэлементах.

Интересное применение нашел кобальтовый порошок, осажденный на бумаге, полученный термическим разложением карбонила (Со(СО) 5): он парамагнитен и используется в качестве телефонной мембраны

Кобальт покрытый палладием, родием или платиной, служит материалом для электрических контактов.

Изготовлены кобальтовые катализаторы для окисления выхлопных газов автомобилей отравляющих атмосферу.

7. Распространение

В природе кобальт редко встречается в виде самородков, однако соединения его очень распространены (арсениды, сульфиды, тиоарсениды, сульфаты и т.д.) в различных минералах. Природный кобальт, как земного, так и метеоритного происхождения, находится в виде сплавов с Fe, Ni, Cu, Ag, Pt, Bi, Sb, Mn, Zn.

Поскольку кобальт необходим для жизнедеятельности людей, животных и растений, он находится в небольших количествах в виде соединений в организме человека, животных и в различных растениях.

Спектральным анализом было установлено присутствие кобальта в атмосфере Солнца и различных звезд.

В небольших количествах соединения кобальта встречаются:

В природных водах (в мг/л)

В земной коре содержание кобальта составляет 4,0*10Їі вес.% А так же, он присутствует во многих минералах.

К наиболее важным минералам кобальта относят:

Химическая формула

Описание

Серые октоэндрические кристаллы

Светлоокрашенные породы, сероватые и розоватые кристаллы

Карролит

Серые или серебристо-белые октаэдры

Кобальтовый блеск(кобальтин)

Блестящие, белые или серые кубические кристаллы.

Глаукодот

Саффлорит

CoAs2или (Co, Fe) As2

Серые, орторомбические кристаллы

Скуттерудит

CoAs3или (Co, Ni, Fe) As3

Серые кубические кристаллы

Селеносера

(Co, Ni) 3 (S, Se) 4

Кобальтовый шпат

(Co, Ni) 3 (AsO4) 2*8H2O

Малиново-розовые моноклинные призматические кристаллы

Гетерогенит

Na2Co(CNS) 4 8H2O

Биберит (Кобальтовый купорос)

Розово-красные моноклинные кристаллы

Патерноит

Смальтин

Блестящие, серые, кубические кристаллы

Собственно кобальтовых минералов известно свыше 30; кроме того, в 200 минералах различных других элементов содержание кобальта превышает 0,1%.

Более мощные залежи кобальтовых руд, из которых при современном развитии техники экономически целесообразно извлечение этих металлов, распределены крайне неравномерно по различным частям света. Наиболее крупные месторождения кобальта сосредоточены в Африке и прежде всего в Заире, вКатанге (непризнанное государство на юге демократической республики Конго) разведаны медно-кобальтовые залежи сульфидных руд с 7,8% кобальта и 5% меди, которые идут непосредственно на плавку. Общие запасы кобальта в Катанге оцениваются в 450 млн.футов.

В России месторождения кобальта имеются в Красноярском крае, Мурманской области, на Кавказе, Урале, в Казахстане.

8. Применение в медицине

Кобальт - ми кроэлемент

Многие элементы в очень не больших количествах, но почти повсеместно встречаются в почвах, играя важную роль в жизненных процессах. В ничтожных долях процента обнаруживаются они и в организмах. Таковы B, Zn, Mo, Cu… В научной литературе им присвоено название «микроэлементы». Относится к ним и кобальт.

В зависимости от того, на какой почве вырастают растения, они в большей или меньшей мере содержат в своих тканях кобальт. На развитие растений, как оказалось в дальнейшем, влияет не только недостаток, но и избыток кобальта. Если его в почве много, можно ожидать появления растений очень необычных форм, таких, например, как безлепестковые анемоны.

На пастбищах растительность поедается животными, и кобальт, таким образом, переходит в организм. Некоторые ткани животных накапливают в себе кобальт в несколько больших количествах; к таким относятся, прежде всего, печень, железы внутренней секреции, маленький придаток головного мозга - гипофиз, поджелудочная и вилочковая железы.

Сухотка

Разъяснение значения кобальта для животного организма - довольно любопытная история, заслуживающая того, чтобы остановиться на ней несколько подробнее. В ряде областей нашей страны печальной известностью пользовалось заболевание скота, называемое сухоткой. Начиналось оно с потери аппетита; скот худел, шерсть его теряла свой блеск и эластичность, слизистые оболочки становились белыми. Исследование крови показало резкое падение красных кровяных шариков, а вместе с этим снижалось в них содержание гемоглобина - переносчика кислорода в организме.

Сухотка стала страшнее тем, что никакого возбудителя болезни найти не могли и потому не знали, в чем причина болезни; массовость же её создавала полное впечатление эпидемии. Известна была сухотка и за рубежом - в Англии и Швеции, где её называли болотной, кустарниковой, прибрежной болезнью. Если в район, пораженный сухоткой, завозился откуда-нибудь здоровый скот, через год-два он также заболевал, но любопытно, что снова вывезенный в здоровый район, он не заражал общающийся с ним и сам выздоравливал. Это обстоятельство заставило искать причину в питании скота. Исследователи почвы пастбищ, предположив, что в них не хватает какого-нибудь необходимого для жизни элемент.

Разъяснение пришло почти неожиданно. В Академию наук Латвии прислали письмо, в котором сообщалось, что в Рижском районе скот поражен сухоткой, но у одного из лесников все коровы упитаны и дают прекрасный надой молока. Оказалось, что его коровы тоже болели сухоткой, но с некоторого времени он стал им для аппетита добавлять мелассу (кормовая патока - отход сахарного завода), и коровы перестали болеть.

Мелассу исследовали по химическому составу, оказалось, один килограмм этого сладкого сиропа содержит 1,5 мг кобальта. Чтобы убедится в том, что причина болезни заключается в недостатке кобальта, провели эксперимент, после которого сомнений не оставалось: отсутствие ничтожных количеств кобальта.

Витамин В12

Итак, кобальт - лекарство от сухотки. Однако почему? Известно, что человеческому организму необходимо железо, оно входит в состав гемоглобина; известно также, что растениям нужен магний, так как он составная часть хлорофилла. А кобальт? Какую же роль он играет?

Совсем недавно одной из страшных болезней человека считалось злокачественное малокровие. Болезнь возникала без видимых причин и, неуклонной развиваясь, приводила к смерти. Заключалась она в резком уменьшении числа кровяных шариков, в обеднении их гемоглобином; болезнь сопровождалась потерей аппетита, прекращением выделения соляной кислоты желудком и рядом других признаков. В ходе наблюдений за страшной болезнью натолкнулись на такой факт: можно задержать её развитие, если давать в пищу больным сырую печень.

Несомненно, в печени есть какое-то вещество, способствующее образованию красных кровяных телец. После упорных и долгих трудов ученым, наконец, удалось выделить это вещество. Оно представляло собой кристаллики красного цвета. Ряд лет потребовалось для того, чтобы выяснить строение данного вещества. Наконец, пришел долгожданный успех. Составной частью этого сложного органического вещества был кобальт в количестве 4%. Это органическое вещество получило название витамин В12.

Борец Со

В наш атомный век кобальт выступил борцом за жизнь не только как «подкормка». Одним из страшных заболеваний, пока ещё не побежденных человеком окончательно, являются злокачественные опухоли, в частности рак.

С открытием явления радиоактивности в начале ХХ века заметили, что лучи радия при соответствующих условиях губительно влияют на быстроразмножающиеся клетки, приостанавливают их деятельность и обезвреживают течение страшной болезни. Радий - очень дорогой и трудно добываемый металл. Лишь очень крупные лечебные учреждения могли располагать им, да и то в очень ничтожных количествах.

В 1934 году трудами Фредерика и Ирен Жолио-Кюри была открыта искусственная радиоактивность - появилась возможность получать изотопы обычных элементов, которые самопроизвольно распадались, воспроизводя радиоактивное излучение. Наиболее удобным и выгодным оказался изотоп кобальт Со, период полураспада которого составлял 3,5 года. Но не только в этом было его достоинство. Кобальт оказался не просто дешевым заменителем радия. Гамма-лучи радиоактивного кобальта более однородны по той энергии, которую они несут, а бета-лучи гораздо легче поглощаются, поэтому при лечении достигается лучший эффект и гораздо меньше возникает каких-либо осложнений. Находясь в пораженной ткани эти изотопы будут испускать гамма - лучи, пока не погибнут все злокачественные клетки.

Заключение

Вот и закончен рассказ о кобальте. Сравнительно молодой металл, он за короткий период приобрел большое значение в современной технике. Многие металлы, будучи открыты химиками, не сразу находили себе широкое применение в промышленности; к таким относится и кобальт. Кратко описанная в нашей работе его история показывает, что в разное время он ценился по-разному и за различные качества. Нося жуткое имя «горного демона», кобальт в наше время - борец за человеческую жизнь, победитель таких страшных болезней, как сухотка, злокачественное малокровие и даже рак. Будущее же, надо полагать, покажет ещё не одно новое применение кобальта.

Список литературы

1) Р. Рипан, И. Четяну - «Неорганическая химия», том 2.

2) Р.А. Лидин, В.А. Молочко, Л.Л. Андреева - «Химические свойства неорганических вещест»

3) Ф.М. Перельман, А.Я. Зворыкин - «Кобальт и никель»

Я.А. Угай - «общая и неорганическая химия»

5) В.И. Синицын - «Радиоактивный кобальт Со»

Размещено на Allbest.ru

...

Подобные документы

    Общая характеристика марганца, его основные физические и химические свойства, история открытия и современные достижения в исследовании. Распространенность в природе данного химического элемента, направления его применения в промышленности, получение.

    контрольная работа , добавлен 26.06.2013

    Характеристика брома как химического элемента. История открытия, нахождение в природе. Физические и химические свойства этого вещества, его взаимодействие с металлами. Получение брома и его применение в медицине. Биологическая роль его в организме.

    презентация , добавлен 16.02.2014

    История распространения серы в природе, физические характеристики и химические свойства. Добыча и получение производных продуктов. Особенности различия сортов и сферы применения данного химического элемента в процессе жизнедеятельности человечества.

    презентация , добавлен 20.04.2011

    История открытия кислорода. Нахождение элемента в таблице Менделеева, его вхождение в состав других веществ и живых организмов, распространенность в природе. Физические и химические свойства кислорода. Способы получения и области применения элемента.

    презентация , добавлен 07.02.2012

    Особенности серы как химического элемента таблицы Менделеева, ее распространенность в природе. История открытия этого элемента, характеристика его основных свойств. Специфика промышленного получения и способов добычи серы. Важнейшие соединения серы.

    презентация , добавлен 25.12.2011

    История открытия железа. Положение химического элемента в периодической системе и строение атома. Нахождение железа в природе, его соединения, физические и химические свойства. Способы получения и применение железа, его воздействие на организм человека.

    презентация , добавлен 04.01.2015

    Характеристика кобальта по положению в периодической системе. Электронная формула. Нахождение кобальта в природе. Получение кобальта. Химические свойства кобальта, соединений кобальта. Биологическая роль кобальта для сельского хозяйства.

    реферат , добавлен 08.04.2005

    Кальций как один из самых распространенных элементов на Земле, его главные физические и химические свойства, история открытия и исследований. Нахождение элемента в природе, сферы его практического применения. Существующие соединения и биологическая роль.

    контрольная работа , добавлен 26.01.2014

    Основные физические и химические свойства, технологии получения бериллия, его нахождение в природе и сферы практического применения. Соединения бериллия, их получение и производство. Биологическая роль данного элемента. Сплавы бериллия, их свойства.

    реферат , добавлен 30.04.2011

    Общая характеристика кобальта как химического элемента. Определение и исследование физических и химических свойств кобальта. Изучение комплексных соединений кобальта и оценка их практического применения. Проведение химического синтеза соли кобальта.