Государство

Коэффициент детерминации принимает значения на отрезке. Коэффициент детерминации что измеряет — формула

В пунктах 3.3, 4.1рассмотрена постановка задачи оценивания уравнения линейной регрессии, показан способ ее решения. Однако оценка параметров конкретного уравнения является лишь отдельным этапом длительного и сложного процесса построения эконометрической модели.Первое же оцененное уравнение очень редко является удовлетворительным во всех отношениях. Обычно приходится постепенно подбирать формулу связи и состав объясняющих переменных, анализируя на каждом этапе качество оцененной зависимости. Этот анализ качества включает статистическую и содержательную составляющую. Проверка статистического качества оцененного уравнения состоит из следующих элементов:

проверка статистической значимости каждого коэффициента уравнения регрессии;

проверка общего качества уравнения регрессии;

проверка свойств данных, выполнение которых предполагалось

при оценивании уравнения.

Под содержательной составляющей анализа качества понимается рассмотрение экономического смысла оцененного уравнения регрессии: действительно ли значимыми оказались объясняющие факторы, важные с точки зрения теории; положительны или отрицательны коэффициенты, показывающие направление воздействия этих факторов; попали ли оценки коэффициентов регрессии в предполагаемые из теоретических соображений интервалы.

Методика проверки статистической значимости каждого отдельного коэффициента уравнения линейной регрессии была рассмотрена в предыдущей главе. Перейдем теперь к другим этапам проверки качества уравнения.

4.2.1. Проверка общего качества уравнения регрессии. Коэффициент детерминации r2

Для анализа общего качества оцененной линейной регрессии используют обычно коэффициент детерминации R 2 . Для случая парной регрессии это квадрат коэффициента корреляции переменныхх иy . Коэффициент детерминации рассчитывается по формуле

Коэффициент детерминации характеризует долю вариации (разброса) зависимой переменной, объясненной с помощью данного уравнения. В качестве меры разброса зависимой переменной обычно используется ее дисперсия, а остаточная вариация может быть измерена как дисперсия отклонений вокруг линии регрессии. Если числитель и знаменатель вычитаемой из единицы дроби разделить на число наблюденийп, то получим, соответственно, выборочные оценки остаточной дисперсии и дисперсии зависимой переменнойу. Отношение остаточной и общей дисперсий представляет собой долю необъясненной дисперсии. Если же эту долю вычесть из единицы, то получим долю дисперсии зависимой переменной, объясненной с помощью регрессии. Иногда при расчете коэффициента детерминации для получе­ния несмещенных оценок дисперсии в числителе и знаменателе вычитаемой из единицы дроби делается поправка на число степеней свободы; тогда

.

или, для парной регрессии, где число независимых переменных т равно 1,

В числителе дроби, которая вычитается из единицы, стоит сумма квадратов отклонений наблюдений у i от линии регрессии, в знаменателе - от среднего значения переменнойу. Таким образом,дробь эта мала (а коэффициент R 2 , очевидно, близок к единице), если разброс точек вокруг линии регрессии значительно меньше, чем вокруг среднего значения . МНК позволяет найти прямую, для ко­торой суммае i 2 минимальна, а
представляет собой одну из возможных линий, для которых выполняется условие. Поэтому величина в числителе вычитаемой из единицы дроби меньше, чем величина в ее знаменателе, - иначе выбиремой по МНК линией регрессии была бы прямая
. Таким образом, коэффициент детерминацииR 2 является мерой, позволяющей определить, в какой степени найденная регрессионная прямая дает лучший результат для объяснения поведения зависимой переменнойу, чем просто горизонтальная прямая
.

Смысл коэффициента детерминации может быть пояснен и немного иначе. Можно показать, что
, гдеk i =
- отклонениеi й точки на линии регрессии от. В данной формуле величина в левой части может интерпретироваться как мера общего разброса (вариации) переменнойу, первое слагаемое в правой части
- как мера разброса, объясненного с помощью регрессии, и второе слагаемое
- как мера остаточного, необъясненного разброса (разброса точек вокруг линии регрессии). Если разделить эту формулу на ее левую часть и перегруппировать члены, то

, то есть коэффициент детерминацииR 2 есть доля объясненной части разброса зависимой переменной (или доля объясненной дисперсии, если разделить числитель и знаменатель наn илип- 1). Часто коэффициент детерминацииR 2 иллюстрируют рис. 4.2

Рис. 4.2.

Здесь TSS (To tal Sum of Squares ) - общий разброс переменнойу, Е SS (Explained Sum of Squares ) - разброс, объясненный с помощью регрессии, USS (Unexplained Sum of Squares ) -разброс, необъясненный с помощью регрессии. Из рисунка видно, что с увеличением объясненной доли разброса коэффициентR 2 - приближается к единице. Кроме того, из рисунка видно, что с добавлением еще одной переменнойR 2 обычно увеличивается, однако если объясняющие переменныех 1 их 2 сильно коррелируют между собой, то они объясняют одну и ту же часть разброса переменнойу, и в этом случае трудно идентифицировать вклад каждой из переменных в объяснение поведенияу.

Если существует статистически значимая линейная связь величин х иу , то коэффициентR 2 близок к единице. Однако он может быть близким к единице просто в силу того, что обе эти величины имеют выраженный временной тренд, не связанный с их причинно-следственной взаимозависимостью. В экономике обычно объемные показатели (доход, потребление, инвестиции) имеют такой тренд, а темповые и относительные (производительности, темпы роста, доли, отношения) - не всегда. Поэтому при оценивании линейных регрессий по временным рядам объемных показателей (например, зависимости выпуска от затрат ресурсов или объема потребления от величины дохода) величинаR 2 обычно очень близка к единице. Это говорит о том, что зависимую переменную нельзя описать просто как равную своему среднему значению, но это и заранее очевидно, раз она имеет временной тренд.

Если имеются не временные ряды, а перекрестная выборка, то есть данные об однотипных объектах в один и тот же момент времени, то для оцененного по ним уравнения линейной регрессии величина R 2 не превышает обычно уровня 0,6-0,7. То же самое обычно имеет место и для регрессии по временным рядам, если они не имеют выраженного тренда. В макроэкономике примерами таких зависимостей являются связи относительных, удельных, темповых показателей: зависимость темпа инфляции от уровня безра­ботицы, нормы накопления от величины процентной ставки, темпа прироста выпуска от темпов прироста затрат ресурсов. Таким образом, при построении макроэкономических моделей, особенно - по временным рядам данных, нужно учитывать, являются входящие в них переменные объемными или относительными, имеют ли они временной тренд 1 .

Точную границу приемлемости показателя R 2 указать сразу для всех случаев невозможно. Нужно принимать во внимание и число степеней свободы уравнения, и наличие трендов переменных, и содержательную интерпретацию уравнения. ПоказательR 2 может оказаться даже отрицательным. Как правило, это случается в уравнении без свободного членау =
. Оценивание такого уравнения производится, как и в общем случае, по методу наименьших квадратов. Однако множество выбора при этом существенно сужается: рассматриваются не все возможные прямые или гиперплоскости, а только проходящие через начало координат. ВеличинаR 2 получится отрицательной в том случае, если разброс значений зависимой переменной вокруг прямой (гиперплоскости)
меньше, чем вокруг даже наилучшей прямой (гиперплоскости) из проходящих через начало координат. Отрицательная величинаR 2 в уравнении
говорит о целесообразности введения в него свободного члена. Эта ситуация проиллюстрирована на рис. 4.3.

Линия 1 на нем - график уравнения регрессии без свободного члена (он проходит через начало координат), линия 2 - со свободным членом (он равен а 0 ), линия 3 -
. Горизонтальная линия 3 дает гораздо меньшую сумму квадратов отклоненийе i , чем линия 1, и поэтому для последней коэффициент детерминацииR 2 будет отрицательным.

Рис. 4.3. Линии уравнений линейной регрессии у=f(х) без свободного члена (1) и со свободным членом (2)

Поправка на число степеней свободы всегда уменьшает значение R 2 , поскольку(п- 1)>(п-т- 1). В результате величинаR 2 также может стать отрицательной. Но это означает, что она была близкой к нулю до такой поправки, и объясненная с помощью уравнения регрессии доля дисперсии зависимой переменной очень мала.

Таким образом можно выделить следующие свойства коэффициента детерминации:

1. ; в силу определения

2. =0;в этом случае RSS = 0, т. е. наша регрессия не объясняет, ничего не дает по сравнению с тривиальным прогнозом. Данные позволяют сделать вывод о независимости y и x, изменение в переменной x никак не влияет на изменение среднего значения переменной y. То есть увеличивается разброс точек на корреляционном поле относительно построенной линии регрессии(или статистическая зависимость очень слабая, или уравнение регрессии подобрано неверно).

3. =1; в этом случае все точки () лежат на одной прямой (ESS = 0). Тогда на основании имеющихся данных можно сделать вывод о наличии функциональной, а именно, линейной, зависимости между переменными y и x. Изменение переменной y полностью объясняется изменением переменной x.Для парной линей регрессии коэффициент детерминации точно равен квадрату коэффициента корреляции:

Вообще говоря, значение коэффициента детерминации не говорит о том, есть ли между факторами зависимость и насколько она тесная. Оно говорит только о качестве того уравнения, которое мы построили.

Удобно сравнивать коэффициенты детерминации для нескольких разных уравнений регрессии построенных по одним и тем же данным наблюдений. Из нескольких уравнений лучше то, у которого больше коэффициент детерминации.

3. Скорректированный коэффициент детерминации

Одним из свойств коэффициента детерминации является то, что это не убывающая функция от числа факторов, входящих в модель. Это следует из определения детерминации. Действительно в равенстве

Числитель не зависит, а знаменатель зависит от числа факторов модели. Следовательно, с увеличением числа независимых переменных в модели, коэффициент детерминации никогда не уменьшается. Тогда, если сравнить две регрессионные модели с одной и тоже зависимой переменной, но разным числом факторов, то более высокий коэффициент детерминации будет получен в модели с большим числом факторов. Поэтому необходимо скорректировать коэффициент детерминации с учетом количества факторов, входящих в модель.

Скорректированный (исправленный или оцененный) коэффициент детерминации определяют следующим образом:

Свойства скорректированного коэффициента детерминации:

1. Несложно заметить что при >1 исправленный коэффициент детерминации меньше коэффициента детерминации ().

2. , но может принимать отрицательные значения. При этом, если скорректированный принимает отрицательное значение, то принимает значение близкое к нулю ().

Таким образом скорректированный коэффициент детерминации является попыткой устранить эффект, связанный с ростом R 2 при увеличении числа регрессоров. - "штраф" за увеличение числа независимых переменных.

Вариация признака определяется различными факторами, часть этих факторов можно выделить, если статистическую совокупность разделить на группы по определенному признаку. Тогда, наряду с изучением вариации признака по совокупности в целом, можно изучить вариацию для каждой из составляющих ее группы и между этими группами. В простом случае, когда совокупность разделена на группы по одному фактору, изучение вариации достигается посредством вычисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой.

Эмпирический коэффициент детерминации

Эмпирический коэффициент детерминации широко применяется в статистическом анализе и является показателем, представляющим долю межгруппопой дисперсии в результативного признака и характеризует силу влияния группировочного признака на образование общей вариации. Он может быть рассчитан по формуле:

Показывает долю вариации результативного признака у под влиянием факторного признака х, он связан с коэффициентом корреляции квадратичной зависимостью. При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной связи - единице.

Например, когда изучается зависимость производительности труда рабочих от их квалификации коэффициент детерминации равен 0,7, то на 70% вариация производительности труда рабочих обусловлена различиями в их квалификации и на 30% - влиянием прочих факторов.

Эмпирическое корреляционное отношение - это квадратный корень из коэффициента детерминации. Отношение показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение принимает значения от -1 до 1. Если связи нет, то корреляционное отношение равняется нулю, т.е. все групповые средние равняются между собой и межгрупповой вариации нет. Значит, группировочный признак не влияет на образование общей вариации.

Если связь функциональная, то корреляционное отношение равняется единице. В таком случае дисперсия групповых средних равна общей дисперсии, т.е. внутригрупповой вариации нет. Это значит, что группировочный признак полностью определяет вариацию результативного признака.

Чем ближе значение корреляционного отношения к единице, тем сильнее и ближе к функциональной зависимости связь между признаками. Для качественной оценки силы связи на основе показателя эмпирического коэффициента корреляции можно использовать соотношение Чэддока.

Соотношение Чэддока

  • Связь весьма тесная — коэффициент корреляции находится в интервале 0,9 — 0,99
  • Связь тесная — Rxy = 0,7 — 0,9
  • Связь заметная — Rxy = 0,5 — 0,7
  • Связь умеренная — Rxy = 0,3 — 0,5
  • Связь слабая — Rxy = 0,1 — 0,3

Для анализа общего качества оцененной линейной регрессии используют обычно коэффициент детерминации, называемый также квадратом коэффициента множественной корреляции. Для случая парной регрессии это квадрат коэффициента корреляции переменных и.

Коэффициент детерминации рассчитывается по формуле:

сумма квадратов остатков регрессии

Фактические и расчетные значения объясняемой переменной.

Общая сумма квадратов.

Он характеризует долю вариации (разброса) зависимой переменой, объясненной с помощью данного уравнения. В качестве меры разброса зависимой переменной обычно используется ее дисперсия, а остаточная вариация может быть измерена как дисперсия отклонений вокруг линии регрессии. Если числитель и знаменатель вычитаемой из единицы дроби разделить на число наблюдений n, то получим, соответственно, выборочные оценки остаточной дисперсии и дисперсии зависимой переменной. Отношение остаточной и общей дисперсии представляют собой долю необъясненной дисперсии. Если же эту долю вычесть из единицы, то получим долю дисперсии зависимой переменной. Объясненной с помощью регрессии. Иногда при расчете коэффициента детерминации для получения несмещенных оценок дисперсии в числителе и знаменателе вычитаемой из единицы дроби делается поправка на число степеней свободы: тогда

Или, для парной регрессии, где число независимым переменных равно 1,

В числителе дроби, которая вычитается из единицы, стоит сумма квадратов отклонений наблюдений от линии регрессии, в знаменателе - от среднего значения переменной. Таким образом, дробь это мала (а коэффициент, очевидно, близок к единице), если разброс точек вокруг линии регрессии значительно меньше, чем вокруг среднего значения.

Метод наименьших квадратов (МНК) позволяет найти прямую, для которой сумма минимальна, а представляет собой одну из возможных линий, для которых выполняется условие. Поэтому величина в числителе вычитаемой из единицы дроби меньше, чем величина в ее знаменателе, - иначе выбираемой по МНК линией регрессии была бы прямая.

Таким образом, коэффициент детерминации является мерой, позволяющей определить, в какой степени найденная регрессионная прямая дает лучший результат для объяснения поведения зависимой переменной, чем просто горизонтальная прямая.

Смысл коэффициента детерминации может быть пояснен и немного иначе. Можно показать, что

где - отклонение -й точки на линии регрессии от.

В данной формуле величина в левой части может интерпретироваться как мера общего разброса (вариации) переменной, первое слагаемое в правой части - как мера остаточного, необъясненного разброса (разброса точек вокруг линии регрессии). Если разделить эту формулу на ее левую часть и перегруппировать члены, то

То есть коэффициент детерминации есть доля объясненной части разброса зависимой переменной (или доля объясненной дисперсии, если разделить числитель и знаменатель на и ().

Часто коэффициент детерминации иллюстрируют следующим образом (рис. 1)

Рисунок 1 Иллюстрированный коэффициент детерминации

Здесь TSS (Total Sum of Squares) - общий разброс переменной, ESS (Explained Sum of Squares) - разброс, объясненный с помощью регрессии, USS (Unexplained Sum of Squares) - разброс, необъясненный с помощью регрессии. Из рисунка видно, что с увеличением объясненной доли разброса коэффициент приближается к единице. Кроме того, из рисунка видно, что с добавлением еще одной переменной обычно увеличивается, однако если объясняющие переменные и сильно коррелируют между собой, то они объясняют одну и ту же часть разброса переменной, и в этом случае трудно идентифицировать вклад каждой из переменных в объяснение поведения.

Если существует статистически значимая линейная связь величин и, то коэффициент близок к единице.

Однако он может быть близким к единице просто в силу того, что обе эти величины имеют выраженный временный тренд, не связанный с их причинно-следственной взаимозависимостью.

В экономике обычно объемные показатели (доход, потребление, инвестиции) имеют такой тренд, а темповые и относительные (производительности, темпы роста, доли, отношения) - не всегда. Поэтому при оценивании линейных регрессий по временным рядам объемных показателей (например, зависимости выпуска от затрат ресурсов или объема потребления от величины дохода) величина обычно очень близка к единице. Это говорит о том, что зависимую переменную нельзя описать просто как равную своему среднему значению, но это и заранее очевидно, раз она имеет временный тренд.

Если имеются не временные ряды, а перекрестная выборка, то есть данные об однотипных объектах в один и тот же момент времени, то для оцененного по ним уравнения линейной регрессии величина не превышает обычно уровня 0,6 - 0,7.

То же самое обычно имеет место и для регрессии по временных рядам, если они не имеют выраженного тренда. В макроэкономике примерами таких зависимостей являются связи относительных, удельных, темповых показателей: зависимость темпа инфляции от уровня безработицы, нормы накопления от величины процентной ставки, темпа прироста выпуска от темпов прироста затрат ресурсов.

Таким образом, при построении макроэкономических моделей, особенно - по временных рядам данных, нужно учитывать, являются входящие в них переменных объемными или относительными, имеют ли они временной тренд.

Точную границу приемлемости показателя указать сразу для всех случаев невозможно. Нужно принимать во внимание и число степеней свободы уравнения, и наличие трендов переменных, и содержательную интерпретацию уравнения. Показатель может оказаться даже отрицательным. Как правило, это случается в уравнении без свободного члена

Оценивание такого уравнения производится, как и в общем случае, по методу наименьших квадратов. Однако множество выбора при этом существенно сужается: рассматриваются не все возможные прямые или гиперплоскости, а только проходящие через начало координат. Величина получается отрицательной в том случае, если разброс значений зависимой переменной вокруг прямой (гиперплоскости) меньше, чем вокруг даже наилучшей прямой (гиперплоскости) из проходящих через начало координат. Отрицательная величина в уравнении говорит о целесообразности введения в него свободного члена. Эта ситуация проиллюстрирована на рис. 2.

Рисунок 2 Иллюстрация введения свободного члена в уравнение

Линия 1 на нем- график уравнения регрессии без свободного члена (он проходит через начало координат), линия 2- со свободным членом (он равен), линия 3 - . Горизонтальная линия 3 дает гораздо меньшую сумму квадратов отклонений, чем линия 1, и поэтому для последней коэффициент детерминации будет отрицательным.

Поправка на число степеней свободы всегда уменьшает значение, поскольку. В результате также может стать отрицательной. Но это означает, что она была близкой к нулю до такой поправки, и объясненная с помощью уравнения регрессии доля дисперсии зависимой переменной очень мала.