Разное

Корпускулярно-волновой дуализм. Принцип дополнительности

Итак, микрочастицы обладают необычайными свойствами. Микрочастицы это элементарные частицы (электроны, протоны, нейтроны и т.д.), а также сложные частицы , образованные из небольшого числа элементарных (пока неделимых ) частиц (атомы, молекулы, ядра атомов). Называя эти микрочастицы частицами, мы подчеркиваем только одну сторону, правильнее было бы назвать «частица-волна ».

Микрочастицы не способны непосредственно воздействовать на наши органы чувств – ни видеть, ни осязать их нельзя. Мы знаем, что будет с большим предметом; но именно так микрочастицы не поступают! Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытом.

В доквантовой физике понять – значить составить себе наглядный образ объекта или процесса. В квантовой физике так рассуждать нельзя. Всякая наглядная модель будет действовать по классическим законам, и поэтому не пригодна для представления квантовых процессов. Например, вращение электрона по орбите вокруг атома – такое представление. Это дань классической физике и не соответствует истинному положению вещей, не соответствует квантовым законам.

Рассмотренные нами волны Луи де Бройля не являются электромагнитными , это волны особой природы.

Вычислим дебройлевскую длину волны мячика массой 0,20 кг, движущегося со скоростью 15 м/с.

. (3.3.1)

Это чрезвычайно малая длина волны. Даже при крайне низких скоростях, скажем м/с, дебройлевская длина волны составляла бы примерно м. Дебройлевская длина волны обычного тела слишком мала, чтобы ее можно было обнаружить и измерить. Дело в том, что типичные волновые свойства – интерференция и дифракция – проявляются только тогда, когда размеры предметов или щелей сравнимы по своей величине с длиной волны. Но нам не известны предметы и щели, на которых могли бы дифрагировать волны с длиной волны , поэтому волновые свойства обычных тел обнаружить не удается.

Другое дело, если речь идет об элементарных частицах типа электронов. Т.к. масса входит в знаменатель формулы 3.3.1, определяющей дебройлевскую длину волны, очень малой массе соответствует большая длина волны.

Определим дебройлевскую длину волны электрона, ускоренного разностью потенциалов 100 В.

м/с,

Из приведенного примера видно, что электрон может соответствовать длине волны порядка . Хотя это очень короткие волны, их можно обнаружить экспериментально: межатомные расстояния в кристалле того же порядка величины () и регулярно расположенные атомы кристалла можно использовать в качестве дифракционной решетки, как в случае рентгеновского излучения. Итак, если гипотеза Луи де Бройля справедлива, то, как указал Эйнштейн, для электронов должно наблюдаться явление дифракции .

Отвлечемся на время и поставим мысленный эксперимент. Направим на преграду с двумя узкими щелями параллельный пучок моноэнергетических (т.е. обладающих одинаковой кинетической энергией) электронов (рис. 3.6), за преградой поставим фотопластину (Фп).

а б в

Сначала закроем вторую щель и произведем экспонирование в течение времени t . Почернение на обработанной Фп будет характеризоваться кривой 1, рис. 3.6, б. Затем закроем первую щель и произведем экспонирование второй фотопластины. Характер почернения передается в этом случае кривой 2 (рис. 3.6, б). Наконец, откроем обе щели и подвергнем экспонированию в течение времени t третью пластину. Картина почернения, получающаяся в последнем случае, изображена на рис. 3.6, в. Эта картина отнюдь не эквивалентна положению первых двух. Каким образом открывание второй щели может повлиять на те электроны, которые, казалось бы, прошли через другую щель? Полученная картина (рис. 3.6, в) оказывается аналогичной картине, получающейся при интерференции двух когерентных световых волн. Характер картины свидетельствует о том, что на движение каждого электрона оказывают влияние оба отверстия. Такой вывод несовместим с представлением о траекториях. Если бы электрон находился в каждый момент в определенной точке пространства и двигался по траектории, он проходил бы через определенное отверстие – первое или второе. Явление же дифракции доказывает, что в прохождении каждого электрона участвуют оба отверстия – и первое, и второе.

Таким образом, дифракция электронов и других микрочастиц доказывает справедливость гипотезы Луи де Бройля и подтверждает корпускулярно-волновой дуализм микрочастиц вещества .

Корпускулярно-волновой дуализм – свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других – как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц – фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/λ, где λ – длина электромагнитной волны, а h – постоянная Планка. Эта формула сама по себе – свидетельство дуализма. В ней слева – импульс отдельной частицы (фотона), а справа – длина волны фотона. Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/λ (р – импульс электрона, а λ – его длина волны де Бройля). Корпускулярно-волновой дуализм лежит в основе квантовой физики.

Волна(мех) – процесс, всегда связанный с к-либо материальной средой, занимающей определенный объем в пространстве.

64. Волны де Бройля. Дифракция электронов Волновые свойства микрочастиц.

Развитие представлений о корпускулярно-волновых свойствах материи получило в гипотезе о волновом характере движения микрочастиц. Луи де Бройль из идеи симметрии в природе для частиц вещества и света приписал любой микрочастице некий внутренний периодический процесс (1924). Объединив формулы E = hν и E = mc 2 , он получил соотношение, показывающее, что любой частице соответствует своя длина волны : λ Б = h/mv = h/p, где p- импульс волны-частицы. К примеру, для электрона, имеющего энергию 10 эВ, длина волны де Бройля составляет 0,388 нм. В дальнейшем было показано, что состояние микрочастицы в квантовой механике может быть описано определенной комплекснойволновой функцией координат Ψ(q), причем квадрат модуля этой функции |Ψ| 2 определяет распределение вероятностей значений координат. Эта функция была впервые введена в квантовую механику Шредингером в 1926 г. Таким образом, волна де Бройля не несет энергию, а только отображает “распределение фаз” некоего вероятностного периодического процесса в пространстве. Следовательно, описание состояния объектов микромира носит вероятностный характер , в отличие от объектов макромира, которые описываются законами классической механики.

Для доказательства идеи де Бройля о волновой природе микрочастиц немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов (1925). В США К. Дэвиссон и Л. Джермер обнаружили явление дифракции при прохождении пучка электронов через пластинку из кристалла никеля (1927). Независимо от них дифракцию электронов при прохождении через металлическую фольгу открыли Дж. П. Томсон в Англии и П.С. Тартаковский в СССР. Так идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков. Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.

Октрытие волновых свойств у микрочастиц показало, что такие формы материи, как поле (непрерывное) и вещество (дискретное), которые с точки зрения классической физики, считались качественно отличающимися, в определенных условиях могут проявлять свойства, присущие и той и другой форме. Это говорит о единстве этих форм материи. Полное описание их свойств возможно только на основе противоположных, но дополняющих друг - друга представлений.

Обнаружение корпускулярных свойств света в опытах по фотоэффекту, в опыте Комптона и в ряде других экспериментов не может отменить твердо установленных фактов наличия у света волновых свойств, обнаруживаемых при наблюдении явлений интерференции, дифракции, поляризации. Тот факт, что свет обладает как волновыми, так и корпускулярными свойствами, называют корпускулярно-волновым дуализмом.

Противоположность свойств волн и частиц в классической физике делает неправомерным утверждение, что свет является одновременно и волной, и потоком частиц. Свет не является ни волной, ни потоком частиц. Природа света более сложна и не может быть без внутренних противоречий описана с применением наглядных образов классической физики. Смысл корпускулярноволнового дуализма свойств света заключается в том, что в зависимости от условий эксперимента природа света может быть приближенно описана с применением либо волновых, либо корпускулярных представлений.

Одним из вариантов сведения сложной природы света к более простой является попытка представления фотона в виде ограниченного в пространстве и во времени цуга электромагнитных волн, получившегося в результате сложения большого числа гармонических электромагнитных волн. Если бы такое представление о фотоне соответствовало действительности, то при прохождении пучка света через пластину с полупрозрачным зеркальным покрытием половина каждого цуга проходила бы, а половина отражалась. Разделение каждого фотона на два можно было бы обнаружить по одновременному срабатыванию приборов, поставленных на пути проходящего и отраженного пучков света. Однако опыт показывает, что приборы не срабатывают одновременно. Срабатывает либо первый из них, либо второй в отдельности. Это значит, что каждый фотон не разделяется пластиной с полупрозрачным покрытием на два, а с равной вероятностью либо

отражается, либо проходит сквозь пластину как единое целое.

Ограниченная применимость образов классической физики для описания свойств света выражается не только в том, что для описания результатов одних опытов оказываются пригодными волновые представления, а для других - корпускулярные, но и в условности применения этих образов в каждом случае. Используя корпускулярные представления при описании фотоэлектрического эффекта и комптоновского рассеяния, нельзя забывать о существенных отличиях свойств фотона от свойств частиц в классической физике. Масса покоя фотона равна нулю, скорость его движения в любой инерциальной системе отсчета одинакова, и нет такой системы отсчета, в которой его скорость была бы равна нулю. Рассматривая свет как поток частиц - фотонов, мы должны для определения массы фотона использовать чисто волновую характеристику света - частоту. При исследовании таких волновых явлений, как интерференция и дифракция света, для регистрации интерференционной или дифракционной картины необходимо применять фотоэлемент или фотопластинку, т. е. использовать квантовые свойства света для обнаружения его волновых свойств.

1. Какие закономерности явления фотоэффекта невозможно объяснить на основе волновой теории света?

2. Объясните, почему из волновой теории следует запаздывание фотоэффекта.

3. Одинакова ли кинетическая энергия электронов, освобождаемых из металла под действием фотонов одинаковой частоты?

4. Можно ли наблюдать явление комптоновского рассеяния фотонов видимого света?

5. Можно ли выполнить опыт Боте, используя в качестве источника фотонов лампочку карманного фонаря и счетчики фотонов видимого света?

Так и с помощью формализма, основанного на представлении об объекте как о частице или как о системе частиц. В частности, волновое уравнение Шрёдингера не накладывает ограничений на массу описываемых им частиц, и следовательно, любой частице, как микро-, так и макро-, может быть поставлена в соответствие волна де Бройля . В этом смысле любой объект может проявлять как волновые , так и корпускулярные (квантовые) свойства .

Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В соответствии с теоремой Эренфеста квантовые аналоги системы канонических уравнений Гамильтона для макрочастиц приводят к обычным уравнениям классической механики. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона . Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

Сейчас концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как, во-первых, некорректно сравнивать и/или противопоставлять материальный объект (электромагнитное излучение, например) и способ его описания (корпускулярный или волновой); и, во-вторых, число способов описания материального объекта может быть больше двух (корпускулярный, волновой, термодинамический, …), так что сам термин «дуализм » становится неверным. На момент своего возникновения концепция корпускулярно-волнового дуализма служила способом интерпретировать поведение квантовых объектов, подбирая аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.

Энциклопедичный YouTube

  • 1 / 5

    Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми, и корпускулярными свойствами.

    Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решётке - кристаллической решётке твёрдого тела. В 1909 году английский учёный Джеффри Инграм Тейлор провёл опыт с использованием чрезвычайно слабого источника света и установил, что волновое поведение присуще отдельным фотонам.

    Волны де Бройля

    p = h 2 π k = ℏ k , {\displaystyle \mathbf {p} ={\frac {h}{2\pi }}\mathbf {k} =\hbar \mathbf {k} ,}

    где k = 2 π λ n {\displaystyle \mathbf {k} ={\frac {2\pi }{\lambda }}\mathbf {n} } - волновой вектор, модуль которого k = 2 π λ {\displaystyle k={\frac {2\pi }{\lambda }}} - волновое число - есть число длин волн, укладывающихся на 2 π {\displaystyle 2\pi } единицах длины, n {\displaystyle \mathbf {n} } - единичный вектор в направлении распространения волны, ℏ = h 2 π = 1 , 05 ⋅ 10 − 34 {\displaystyle \hbar ={\frac {h}{2\pi }}=1{,}05\cdot 10^{-34}} Дж·с.

    Длина волны де Бройля для нерелятивистской частицы с массой m {\displaystyle m} , имеющей кинетическую энергию W k {\displaystyle W_{k}}

    λ = h 2 m W k . {\displaystyle \lambda ={\frac {h}{\sqrt {2mW_{k}}}}.}

    В частности, для электрона, ускоряющегося в электрическом поле с разностью потенциалов Δ φ {\displaystyle \Delta \varphi } вольт

    λ = 12 , 25 Δ φ A ∘ . {\displaystyle \lambda ={\frac {12{,}25}{\sqrt {\Delta \varphi }}}\;{\overset {\circ }{\mathrm {A} }}.}

    Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества. Признаком волнового процесса во всех таких опытах является дифракционная картина распределения электронов (или других частиц) в приёмниках частиц.

    Волновые свойства не проявляются у макроскопических тел. Длины волн де Бройля для таких тел настолько малы, что обнаружение волновых свойств оказывается невозможным. Впрочем, наблюдать квантовые эффекты можно и в макроскопическом масштабе, особенно ярким примером этому служат - циклическая частота, W {\displaystyle W} - кинетическая энергия свободной частицы, E {\displaystyle E} - полная (релятивистская) энергия частицы, p = m v 1 − v 2 c 2 {\displaystyle p={\frac {mv}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}} - импульс частицы, m {\displaystyle m} v f {\displaystyle v_{f}} волны де Бройля хотя и больше скорости света, но относится к числу величин, принципиально неспособных переносить информацию (является чисто математическим объектом).

    Групповая скорость волны де Бройля u {\displaystyle u} равна скорости частицы v {\displaystyle v} :

    u = d ω d k = d E d p = v {\displaystyle u={\frac {d\omega }{dk}}={\frac {dE}{dp}}=v} .

    Связь между энергией частицы E {\displaystyle E} и частотой ν {\displaystyle \nu } волны де Бройля

    E = h ν = ℏ ω , {\displaystyle E=h\nu =\hbar \omega ,} волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации , квадрат модуля амплитуды «волны вероятности» обращается в нуль.
  • 8. Ннтерференционные приборы и их применение.
  • 9. Принцип Гюйгенса-Френеля.
  • 10. Метод зон Френеля.
  • 11. Явление дифракции. Дифракция Френеля на круглом отверстии.
  • Дифракция френеля на круглых отверстиях
  • 12. Явление дифракции. Дифракция Френеля на непрозрачном диске.
  • 14. Дифракционная решетка. Главные и дополнительные максимумы и минимумы.
  • 15. Расчет формулы дифракционной решетки
  • 16. Применение дифракционной решетки. Разрешающая способность.
  • Применение явлений д-ии света
  • 17. Дифракция рентгеновских лучей.
  • 18 .Основы голограмм.
  • 19. Дисперсия света.
  • 33. Квантовая теория Планка. Формула Планка.
  • 20. Электронная теория дисперсии света.
  • 21. Поглощение света. Закон Бугера.
  • В прозрачных изотропных средах и в кристаллах куб. Системы может возникать двойной луч преломления под влиянием внеш. Воздейс–й, в частности это происходит при мех. Дифор. Тв. Тел.
  • 27. Вращение плоскости поляризации. Эффект Фарадея.
  • 28. Тепловое излучение и его характеристики.
  • 29. Закон Кирхгофа для равновесного излучения.
  • 30 Абсолютно черное тело. Закон Стефана-Больцмана.
  • 72. Ядерные реакции и законы сохранения.
  • 31. Абсолютно черное тело. Закон смещения Вина.
  • 32. Абсолютно черное тело. Формула Релея-Джинса.
  • 34. Внешний фотоэффект и его законы.
  • 35. Уравнение Эйнштейна для внешнего фотоэффекта.
  • 36. Модель атома Резерфорда и ее недостатки.
  • 37. Закономерности в спектре излучения атома водорода.
  • 38. Постулаты Бора. Модель атома Бора.
  • 39. Корпускулярно-волновой дуализм свойств вещества.
  • 44. Уравнение Шредингера для стационарных состояний.
  • 40. Волны де Бройля и их свойства.
  • 41. Соотношение неопределенности Гейзенберга.
  • 42. Волновая функция и её статический смысл.
  • 43. Общее уравнение Шредингера нерелятивистской квантовой механики
  • 45. Прохождение частицы через потенциальный барьер.
  • 46. Решение уравнения Шредингера для водородоподобных атомов
  • 47. Квантовые числа, их физический смысл.
  • 49. Спин электрон. Спиновое квантовое число.
  • 48. Пространственное распределение электрона в атоме водорода.
  • 50. Принцип Паули. Распределение электронов в атоме по состояниям.
  • 55. Спонтанное и вынужденное излучение фотонов.
  • 51. Периодическая система Менделеева.
  • 52. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.
  • 73. Реакция деления ядер.
  • 53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
  • 54. Колебательные и вращательные спектры молекул.
  • 56. Принцип работы квантового генератора.
  • 57. Твердотельные и газоразрядные лазеры. Их применение.
  • 58. Фононы. Теплоемкость кристаллической решетки.
  • 59. Элементы зонной теории в кристаллах.
  • 60. Энергетические зоны в кристаллах. Валентная и зона проводимости.
  • 61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.
  • 63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
  • 66. Электронные и дырочные полупроводники.
  • 62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
  • 64. Собственная проводимость полупроводников.
  • 65. Примесная проводимость полупроводников.
  • 67. Контакт электронного и дырочного полупроводников …
  • 68. Строение атомных ядер. Массовое и зарядовые числа. Нуклоны.
  • 69. Взаимодействие нуклонов. Свойства и природа ядерных сил.
  • 71. Правила смещения. Α-распад. Взаимопревращения …
  • 70. Естественная радиоактивность. Закон радиоактивного распада.
  • 75. Термоядерная реакция и проблемы её управления.
  • 76. Элементарные частицы. Космическое излучение. …
  • 74. Цепная реакция деления ядер. Ядерный реактор.
  • 39. Корпускулярно-волновой дуализм свойств вещества.

    Корпускулярно-волновой дуализм свойств ЭМ излучения. Это означает, что природу света можно рассматривать с двух сторон: с одной стороны это волна, свойства которой проявляются в закономерностях распространения света, интерференции, дифракции, поляризации. С другой стороны свет - это поток частиц, обладающие энергией, импульсом. Корпускулярные свойства света проявляются в процессах взаимодействия света с веществом (фотоэффект, эффект Комптона).

    Анализируя можно понять, что чем больше длина волны l, тем меньше энергия (из Е= hс/l), тем меньше импульс, тем труднее обнаруживаются квантовые свойства света.

    Чем меньше l => больше энергия Е фотона, тем труднее обнаруживаются волновые свойства света.

    Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать статистический подход к рассмотрению закономерностей распределения света.

    Например, дифракция света на щели: при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотона в различные точки экрана неодинаковая, то возникает дифракционная картина. Освещенность экрана (количество фотонов на него падающих) пропорциональна вероятности попадания фотона в эту точку. С другой стороны освещенность экрана пропорциональна квадрату амплитуды волны I~E 2 . Поэтому квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотона в эту точку пространства.

    44. Уравнение Шредингера для стационарных состояний.

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    40. Волны де Бройля и их свойства.

    Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают так­же волновыми свойствами. Итак, согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия Е и импульс р, а с другой - волновые характеристики - частота v и длина волны К. Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов: E = hv , p = h / . (213.1) Смелость гипотезы де Бройля заключалась именно в том, что соотношение (213.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля: = h / p . (213.2) Это соотношение справедливо для любой частицы с импульсом р. Вскоре гипотеза де Бройля была подтверждена экспериментально. (К. Дэвиссон, Л. Джермер) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки - кристалла никеля, - дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа - Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия 50 кэВ) через металлическую фольгу (толщиной 1 мкм). Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку большой совокупности электронов, но и каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабриканту (р. 1907). Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 10 4 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности. Впоследствии дифракционные явления обнаружили также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что перед нами универсальное явление, общее свойство материи. Но тогда волновые свойства до­лжны быть присущи и макроскопическим телам. Почему же они не обнаружены экспериментально? Например, частице массой 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с =6,62 10 -31 м. Такая длина волны лежит за пределами доступной наблюдению области (периодических структур с периодом d10 -31 м не существует). Поэтому считается, что макроскопические тела проявляют только одну сторону своих свойств - корпускулярную - и не проявляют волновую. Представление о двойственной корпускулярно-волновой природе частиц вещества углубляется еще тем, что на частицы вещества переносится связь между полной энергией частицы г и частотой v волн де Бройля: e=hv. (213.3) Это свидетельствует о том, что соотношение между энергией и частотой в формуле (213.3) имеет характер универсального соотношения, справедливого как для фотонов, так и для любых других микрочастиц. Справедливость же соотношения (213.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике. Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микро­объектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. Современная трактовка корпускулярно-волнового дуализма может быть выражена словами советского физика-теоретика В. А. Фока (1898-1974): «Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно».