Психология

Обратная матрица равна. Обратная матрица и её свойства

Нахождение обратной матрицы.

В этой статье разберемся с понятием обратной матрицы, ее свойствами и способами нахождения. Подробно остановимся на решении примеров, в которых требуется построить обратную матрицу для заданной.

Навигация по странице.

    Обратная матрица - определение.

    Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.

    Свойства обратной матрицы.

    Нахождение обратной матрицы методом Гаусса-Жордана.

    Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.

Обратная матрица - определение.

Понятие обратной матрицы вводится лишь для квадратных матриц, определитель которых отличен от нуля, то есть для невырожденных квадратных матриц.

Определение.

Матрица называется обратной для матрицы , определитель которой отличен от нуля , если справедливы равенства , где E – единичная матрица порядка n на n .

Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.

Как же находить обратную матрицу для данной?

Во-первых, нам потребуются понятия транспонированной матрицы , минора матрицы и алгебраического дополнения элемента матрицы.

Определение.

Минор k-ого порядка матрицы A порядка m на n – это определитель матрицы порядка k на k , которая получается из элементов матрицы А , находящихся в выбранныхk строках и k столбцах. (k не превосходит наименьшего из чисел m или n ).

Минор (n-1)-ого порядка, который составляется из элементов всех строк, кроме i-ой , и всех столбцов, кроме j-ого , квадратной матрицы А порядка n на n обозначим как .

Иными словами, минор получается из квадратной матрицы А порядка n на n вычеркиванием элементов i-ой строки и j-ого столбца.

Для примера запишем, минор 2-ого порядка, который получаетсся из матрицы выбором элементов ее второй, третьей строк и первого, третьего столбцов . Также покажем минор, который получается из матрицы вычеркиванием второй строки и третьего столбца . Проиллюстрируем построение этих миноров: и .

Определение.

Алгебраическим дополнением элемента квадратной матрицы называют минор (n-1)-ого порядка, который получается из матрицы А , вычеркиванием элементов ее i-ой строки и j-ого столбца, умноженный на .

Алгебраическое дополнение элемента обозначается как . Таким обрзом, .

Например, для матрицы алгебраическое дополнение элемента есть .

Во-вторых, нам пригодятся два свойства определителя, которые мы разобрали в разделевычисление определителя матрицы :

На основании этих свойств определителя, определения операции умножения матрицы на число и понятия обратной матрицы справедливо равенство , где - транспонированная матрица, элементами которой являются алгебраические дополнения .

Матрица действительно является обратной для матрицы А , так как выполняются равенства . Покажем это

Составим алгоритм нахождения обратной матрицы с использованием равенства .

Разберем алгоритм нахождения обратной матрицы на примере.

Пример.

Дана матрица . Найдите обратную матрицу.

Решение.

Вычислим определитель матрицы А , разложив его по элементам третьего столбца:

Определитель отличен от нуля, так что матрица А обратима.

Найдем матрицу из алгебраических дополнений:

Поэтому

Выполним транспонирование матрицы из алгебраических дополнений:

Теперь находим обратную матрицу как :

Проверяем полученный результат:

Равенства выполняются, следовательно, обратная матрица найдена верно.

Свойства обратной матрицы.

Понятие обратной матрицы, равенство , определения операций над матрицами и свойства определителя матрицы позволяют обосновать следующие свойства обратной матрицы :

Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.

Рассмотрим еще один способ нахождения обратной матрицы для квадратной матрицы А порядка n на n .

Этот метод основан на решении n систем линейных неоднородных алгебраических уравнений с n неизвестными. Неизвестными переменными в этих системах уравнений являются элементы обратной матрицы.

Идея очень проста. Обозначим обратную матрицу как X , то есть, . Так как по определению обратной матрицы , то

Приравнивая соответствующие элементы по столбцам, получим n систем линейных уравнений

Решаем их любым способом и из найденных значений составляем обратную матрицу.

Разберем этот метод на примере.

Пример.

Дана матрица . Найдите обратную матрицу.

Решение.

Примем . Равенство дает нам три системы линейных неоднородных алгебраических уравнений:

Не будем расписывать решение этих систем, при необходимости обращайтесь к разделурешение систем линейных алгебраических уравнений .

Из первой системы уравнений имеем , из второй - , из третьей - . Следовательно, искомая обратная матрица имеет вид . Рекомендуем сделать проверку, чтобы убедиться в правильности результата.

Подведем итог.

Мы рассмотрели понятие обратной матрицы, ее свойства и три метода ее нахождения.

Пример решений методом обратной матрицы

Задание 1. Решить СЛАУ методом обратной матрицы. 2 x 1 + 3x 2 + 3x 3 + x 4 = 1 3 x 1 + 5x 2 + 3x 3 + 2x 4 = 2 5 x 1 + 7x 2 + 6x 3 + 2x 4 = 3 4 x 1 + 4x 2 + 3x 3 + x 4 = 4

Начало формы

Конец формы

Решение . Запишем матрицу в виде: Вектор B: B T = (1,2,3,4) Главный определитель Минор для (1,1): = 5 (6 1-3 2)-7 (3 1-3 2)+4 (3 2-6 2) = -3 Минор для (2,1): = 3 (6 1-3 2)-7 (3 1-3 1)+4 (3 2-6 1) = 0 Минор для (3,1): = 3 (3 1-3 2)-5 (3 1-3 1)+4 (3 2-3 1) = 3 Минор для (4,1): = 3 (3 2-6 2)-5 (3 2-6 1)+7 (3 2-3 1) = 3 Определитель минора ∆ = 2 (-3)-3 0+5 3-4 3 = -3

Транспонированная матрица Алгебраические дополнения ∆ 1,1 = 5 (6 1-2 3)-3 (7 1-2 4)+2 (7 3-6 4) = -3 ∆ 1,2 = -3 (6 1-2 3)-3 (7 1-2 4)+1 (7 3-6 4) = 0 ∆ 1,3 = 3 (3 1-2 3)-3 (5 1-2 4)+1 (5 3-3 4) = 3 ∆ 1,4 = -3 (3 2-2 6)-3 (5 2-2 7)+1 (5 6-3 7) = -3 ∆ 2,1 = -3 (6 1-2 3)-3 (5 1-2 4)+2 (5 3-6 4) = 9 ∆ 2,2 = 2 (6 1-2 3)-3 (5 1-2 4)+1 (5 3-6 4) = 0 ∆ 2,3 = -2 (3 1-2 3)-3 (3 1-2 4)+1 (3 3-3 4) = -6 ∆ 2,4 = 2 (3 2-2 6)-3 (3 2-2 5)+1 (3 6-3 5) = 3 ∆ 3,1 = 3 (7 1-2 4)-5 (5 1-2 4)+2 (5 4-7 4) = -4 ∆ 3,2 = -2 (7 1-2 4)-3 (5 1-2 4)+1 (5 4-7 4) = 1 ∆ 3,3 = 2 (5 1-2 4)-3 (3 1-2 4)+1 (3 4-5 4) = 1 ∆ 3,4 = -2 (5 2-2 7)-3 (3 2-2 5)+1 (3 7-5 5) = 0 ∆ 4,1 = -3 (7 3-6 4)-5 (5 3-6 4)+3 (5 4-7 4) = -12 ∆ 4,2 = 2 (7 3-6 4)-3 (5 3-6 4)+3 (5 4-7 4) = -3 ∆ 4,3 = -2 (5 3-3 4)-3 (3 3-3 4)+3 (3 4-5 4) = 9 ∆ 4,4 = 2 (5 6-3 7)-3 (3 6-3 5)+3 (3 7-5 5) = -3 Обратная матрица Вектор результатов X X = A -1 ∙ B X T = (2,-1,-0.33,1) x 1 = 2 x 2 = -1 x 3 = -0.33 x 4 = 1

см. также решений СЛАУ методом обратной матрицы online. Для этого введите свои данные и получите решение с подробными комментариями.

Задание 2 . Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения. Решение :xml :xls

Пример 2 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы. Решение :xml :xls

Пример . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера ; 2) записать систему в матричной форме и решить ее средствами матричного исчисления. Методические рекомендации . После решения методом Крамера, найдите кнопку "Решение методом обратной матрицы для исходных данных". Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется. Решение . Обозначим через А - матрицу коэффициентов при неизвестных; X - матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

Вектор B: B T =(4,-3,-3) С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B. Если матрица А - невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е. Это равенство называется матричной записью решения системы линейных уравнений . Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 . Система будет иметь решение, если определитель матрицы A отличен от нуля. Найдем главный определитель. ∆=-1 (-2 (-1)-1 1)-3 (3 (-1)-1 0)+2 (3 1-(-2 0))=14 Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения. Пусть имеем невырожденную матрицу А:

Вычисляем алгебраические дополнения.

∆ 1,1 =(-2 (-1)-1 1)=1

∆ 1,2 =-(3 (-1)-0 1)=3

∆ 1,3 =(3 1-0 (-2))=3

∆ 2,1 =-(3 (-1)-1 2)=5

∆ 2,2 =(-1 (-1)-0 2)=1

∆ 2,3 =-(-1 1-0 3)=1

∆ 3,1 =(3 1-(-2 2))=7

∆ 3,2 =-(-1 1-3 2)=7

X T =(-1,1,2) x 1 = -14 / 14 =-1 x 2 = 14 / 14 =1 x 3 = 28 / 14 =2 Проверка . -1 -1+3 1+0 2=4 3 -1+-2 1+1 2=-3 2 -1+1 1+-1 2=-3 doc :xml :xls Ответ: -1,1,2.

В первой части был рассмотрен способ нахождения обратной матрицы с помощью алгебраических дополнений. Здесь же мы опишем иной метод нахождения обратных матриц: с использованием преобразований метода Гаусса и Гаусса-Жордана. Зачастую этот метод нахождения обратной матрицы именуют методом элементарных преобразований.

Метод элементарных преобразований

Для применения этого метода в одну матрицу записывают заданную матрицу $A$ и единичную матрицу $E$, т.е. составляют матрицу вида $(A|E)$ (эту матрицу называют также расширенной). После этого с помощью элементарных преобразований, выполняемых со строками расширенной матрицы, добиваются того, что матрица слева от черты станет единичной, причём расширенная матрица примет вид $\left(E| A^{-1} \right)$. К элементарным преобразованиям в данной ситуации относят такие действия:

  1. Смена мест двух строк.
  2. Умножение всех элементов строки на некоторое число, не равное нулю.
  3. Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

Применять указанные элементарные преобразования можно разными путями. Обычно выбирают метод Гаусса или метод Гаусса-Жордана. Вообще, методы Гаусса и Гаусса-Жордана предназначены для решения систем линейных алгебраических уравнений, а не для нахождения обратных матриц. Фразу «применение метода Гаусса для нахождения обратной матрицы» здесь нужно понимать как «применение операций, свойственных методу Гаусса, для нахождения обратной матрицы».

Нумерация примеров продолжена с первой части . В примерах и рассмотрено применение метода Гаусса для нахождения обратной матрицы, а в примерах и разобрано использование метода Гаусса-Жордана. Следует отметить, что если в ходе решения все элементы некоторой строки или столбца матрицы, расположенной до черты, обнулились, то обратной матрицы не существует.

Пример №5

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {ccc} 7 & 4 & 6 \\ 2 & 5 & -4 \\ 1 & -1 & 3 \end{array} \right)$.

В этом примере будет найдена обратная матрица методом Гаусса. Расширенная матрица, имеющая в общем случае вид $(A|E)$, в данном примере примет такую форму: $ \left(\begin{array} {ccc|ccc} 7 & 4 & 6 & 1 & 0 & 0 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 1 & -1 & 3 & 0 & 0 & 1 \end{array} \right)$.

Цель: с помощью элементарных преобразований привести расширенную матрицу к виду $\left(E|A^{-1} \right)$. Применим те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Для применения метода Гаусса удобно, когда первым элементом первой строки расширенной матрицы является единица. Чтобы добиться этого, поменяем местами первую и третью строки расширенной матрицы, которая станет такой: $ \left(\begin{array} {ccc|ccc} 1 & -1 & 3 & 0 & 0 & 1 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 7 & 4 & 6 & 1 & 0 & 0 \end{array} \right)$.

Теперь приступим к решению. Метод Гаусса делится на два этапа: прямой ход и обратный (подробное описание этого метода для решения систем уравнений дано в примерах соответствующей темы). Те же два этапа будут применены и в процессе отыскания обратной матрицы.

Прямой ход

Первый шаг

С помощью первой строки обнуляем элементы первого столбца, расположенные под первой строкой:

Немного прокомментирую выполненное действие. Запись $II-2\cdot I$ означает, что от элементов второй строки вычли соответствующие элементы первой строки, предварительно умноженные на два. Это действие можно записать отдельно следующим образом:

Точно так же выполняется и действие $III-7\cdot I$. Если возникают сложности с выполнением этих операций, их можно выполнить отдельно (аналогично показанному выше действию $II-2\cdot I$), а результат потом внести в расширенную матрицу.

Второй шаг

С помощью второй строки обнуляем элемент второго столбца, расположенный под второй строкой:

Разделим третью строку на 5:

Прямой ход окончен. Все элементы, расположенные под главной диагональю матрицы до черты, обнулились.

Обратный ход

Первый шаг

С помощью третьей строки обнуляем элементы третьего столбца, расположенные над третьей строкой:

Перед переходом к следующему шагу разделим вторую строку на $7$:

Второй шаг

С помощью второй строки обнуляем элементы второго столбца, расположенные над второй строкой:

Преобразования закончены, обратная матрица методом Гаусса найдена: $A^{-1}=\left(\begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$. Проверку, при необходимости, можно сделать так же, как и в предыдущих примерах. Если пропустить все пояснения, то решение примет вид:

Ответ : $A^{-1}=\left(\begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$.

Пример №6

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {cccc} -5 & 4 & 1 & 0 \\ 2 & 3 & -2 & 1 \\ 0 & 7 & -4 & -3 \\ 1 & 4 & 0 & 6 \end{array} \right)$.

Для нахождения обратной матрицы в этом примере будем использовать те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Подробные пояснения даны в , здесь же ограничимся краткими комментариями. Запишем расширенную матрицу: $\left(\begin{array} {cccc|cccc} -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \end{array} \right)$. Поменяем местами первую и четвёртую строки данной матрицы: $\left(\begin{array} {cccc|cccc} 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \end{array} \right)$.

Прямой ход

Преобразования прямого хода завершены. Все элементы, расположенные под главной диагональю матрицы слева от черты, обнулились.

Обратный ход

Обратная матрица методом Гаусса найдена, $A^{-1}=\left(\begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$. Проверку, при необходимости, проводим так же, как и в примерах №2 и №3.

Ответ : $A^{-1}=\left(\begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$.

Пример №7

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {ccc} 2 & 3 & 4 \\ 7 & 1 & 9 \\ -4 & 5 & -2 \end{array} \right)$.

Для нахождения обратной матрицы применим операции, характерные методу Гаусса-Жордана. Отличие от метода Гаусса, рассмотренного в предыдущих примерах и , состоит в том, что решение осуществляется в один этап. Напомню, что метод Гаусса делится на 2 этапа: прямой ход («делаем» нули под главной диагональю матрицы до черты) и обратный ход (обнуляем элементы над главной диагональю матрицы до черты). Для вычисления обратной матрицы методом Гаусса-Жордана двух стадий решения не потребуется. Для начала составим расширенную матрицу: $(A|E)$:

$$ (A|E)=\left(\begin{array} {ccc|ccc} 2 & 3 & 4 & 1 & 0 & 0\\ 7 & 1 & 9 & 0 & 1 & 0\\ -4 & 5 & -2 &0 & 0 & 1 \end{array} \right) $$

Первый шаг

Обнулим все элементы первого столбца кроме одного. В первом столбце все элементы отличны от нуля, посему можем выбрать любой элемент. Возьмём, к примеру, $(-4)$:

Выбранный элемент $(-4)$ находится в третьей строке, посему именно третью строку мы используем для обнуления выделенных элементов первого столбца:

Сделаем так, чтобы первый элемент третьей строки стал равен единице. Для этого разделим элементы третьей строки расширенной матрицы на $(-4)$:

Теперь приступим к обнулению соответствующих элементов первого столбца:

В дальнейших шагах использовать третью строку уже будет нельзя, ибо мы её уже применили на первом шаге.

Второй шаг

Выберем некий не равный нулю элемент второго столбца и обнулим все остальные элементы второго столбца. Мы можем выбрать любой из двух элементов: $\frac{11}{2}$ или $\frac{39}{4}$. Элемент $\left(-\frac{5}{4} \right)$ выбрать нельзя, ибо он расположен в третьей строке, которую мы использовали на предыдущем шаге. Выберем элемент $\frac{11}{2}$, который находится в первой строке. Сделаем так, чтобы вместо $\frac{11}{2}$ в первой строке стала единица:

Теперь обнулим соответствующие элементы второго столбца:

В дальнейших рассуждениях первую строку использовать нельзя.

Третий шаг

Нужно обнулить все элементы третьего столбца кроме одного. Нам надо выбрать некий отличный от нуля элемент третьего столбца. Однако мы не можем взять $\frac{6}{11}$ или $\frac{13}{11}$, ибо эти элементы расположены в первой и третьей строках, которые мы использовали ранее. Выбор невелик: остаётся лишь элемент $\frac{2}{11}$, который находится во второй строке. Разделим все элементы второй строки на $\frac{2}{11}$:

Теперь обнулим соответствующие элементы третьего столбца:

Преобразования по методу Гаусса-Жордана закончены. Осталось лишь сделать так, чтобы матрица до черты стала единичной. Для этого придется менять порядок строк. Для начала поменяем местами первую и третью строки:

$$ \left(\begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \end{array} \right) $$

Теперь поменяем местами вторую и третью строки:

$$ \left(\begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \end{array} \right) $$

Итак, $A^{-1}=\left(\begin{array} {ccc} 47/4 & -13/2 & -23/4 \\ 11/2 & -3 & -5/2 \\ -39/4 & 11/2 & 19/4 \end{array} \right)$. Естественно, что решение можно провести и по-иному, выбирая элементы, стоящие на главной диагонали. Обычно именно так и поступают, ибо в таком случае в конце решения не придется менять местами строки. Я привел предыдущее решение лишь с одной целью: показать, что выбор строки на каждом шаге не принципиален. Если выбирать на каждом шаге диагональные элементы, то решение станет таким.

Пусть дана квадратная матрица . Требуется найти обратную матрицу.

Первый способ. В теореме 4.1 существования и единственности обратной матрицы указан один из способов ее нахождения.

1. Вычислить определитель данной матрицы. Если, то обратной матрицы не существует (матрицавырожденная).

2. Составить матрицу из алгебраических дополненийэлементов матрицы.

3. Транспонируя матрицу , получить присоединенную матрицу.

4. Найти обратную матрицу (4.1), разделив все элементы присоединенной матрицы на определитель

Второй способ. Для нахождения обратной матрицы можно использовать элементарные преобразования.

1. Составить блочную матрицу , приписав к данной матрицеединичную матрицу того же порядка.

2. При помощи элементарных преобразований, выполняемых над строками матрицы , привести ее левый блокк простейшему виду. При этом блочная матрица приводится к виду, где- квадратная матрица, полученная в результате преобразований из единичной матрицы.

3. Если , то блокравен обратной матрице, т.е.. Если, то матрицане имеет обратной.

В самом деле, при помощи элементарных преобразований строк матрицы можно привести ее левый блокк упрощенному виду(см. рис. 1.5). При этом блочная матрицапреобразуется к виду, где- элементарная матрица, удовлетворяющая равенству. Если матрицаневырожденная, то согласно п.2 замечаний 3.3 ее упрощенный вид совпадает с единичной матрицей. Тогда из равенстваследует, что. Если же матрицавырожденная, то ее упрощенный видотличается от единичной матрицы, а матрицане имеет обратной.

11. Матричные уравнения и их решение. Матричная форма записи СЛАУ. Матричный способ (метод обратной матрицы) решения СЛАУ и условия его применимости.

Матричными уравнениями называются уравнения вида: A*X=C; X*A=C; A*X*B=C где матрица А,В,С известны,матрица Х не известна, если матрицы А и В не вырождены, то решения исходных матриц запишется в соответственном виде: Х=А -1 *С; Х=С*А -1 ; Х=А -1 *С*В -1 Матричная форма записи систем линейных алгебраических уравнений. С каждой СЛАУ можно связать несколько матриц; более того – саму СЛАУ можно записать в виде матричного уравнения. Для СЛАУ (1) рассмотрим такие матрицы:

Матрица A называется матрицей системы . Элементы данной матрицы представляют собой коэффициенты заданной СЛАУ.

Матрица A˜ называется расширенной матрицей системы . Её получают добавлением к матрице системы столбца, содержащего свободные члены b1,b2,...,bm. Обычно этот столбец отделяют вертикальной чертой, – для наглядности.

Матрица-столбец B называется матрицей свободных членов , а матрица-столбец X – матрицей неизвестных .

Используя введённые выше обозначения, СЛАУ (1) можно записать в форме матричного уравнения: A⋅X=B.

Примечание

Матрицы, связанные с системой, можно записать различными способами: всё зависит от порядка следования переменных и уравнений рассматриваемой СЛАУ. Но в любом случае порядок следования неизвестных в каждом уравнении заданной СЛАУ должен быть одинаков.

Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля. Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса .

12. Однородные СЛАУ, условия существования их ненулевых решений. Свойства частных решений однородных СЛАУ.

Линейное уравнение называется однородным, если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

13 .Понятие линейной независимости и зависимости частных решений однородной СЛАУ. Фундаментальная система решений (ФСР) и её нахождение. Представление общего решения однородной СЛАУ через ФСР.

Система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно зависимой на интервале (a , b ), если существует набор постоянных коэффициентов , не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a , b ): для . Если равенство для возможно только при , система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно независимой на интервале (a , b ). Другими словами, функции y 1 (x ), y 2 (x ), …, y n (x ) линейно зависимы на интервале (a , b ), если существует равная нулю на (a , b ) их нетривиальная линейная комбинация. Функции y 1 (x ),y 2 (x ), …, y n (x ) линейно независимы на интервале (a , b ), если только тривиальная их линейная комбинация тождественно равна нулю на (a , b ).

Фундаментальной системой решений (ФСР) однородной СЛАУ называется базис этой системы столбцов.

Количество элементов в ФСР равно количеству неизвестных системы минус ранг матрицы системы. Любое решение исходной системы есть линейная комбинация решений ФСР.

Теорема

Общее решение неоднородной СЛАУ равно сумме частного решения неоднородной СЛАУ и общего решения соответствующей однородной СЛАУ.

1 . Если столбцы - решения однородной системы уравнений, то любая их линейная комбинациятакже является решением однородной системы.

В самом деле, из равенств следует, что

т.е. линейная комбинация решений является решением однородной системы.

2. Если ранг матрицы однородной системы равен , то система имеетлинейно независимых решений.

Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений, придавая свободным переменным следующиестандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные - равны нулю):

которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последнихстроках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен. Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).

Любая совокупность линейно независимых решенийоднородной системы называетсяфундаментальной системой (совокупностью) решений .

14 Минор -ого порядка, базисный минор, ранг матрицы. Вычисление ранга матрицы.

Минором порядка k матрицы А называется детерминант некоторой ее квадратной подматрицы порядка k.

В матрице А размеров m x n минор порядка r называется базисным, если он отличен от нуля, а все миноры большего порядка, если они существуют, равны нулю.

Столбцы и строки матрицы А, на пересечении которых стоит базисный минор, называются базисными столбцами и строками А.

Теорема 1. (О ранге матрицы). У любой матрицы минорный ранг равен строчному рангу и равен столбцовому рангу.

Теорема 2.(О базисном миноре). Каждый столбец матрицы раскладывается в линейную комбинацию ее базисных столбцов.

Рангом матрицы (или минорным рангом) называется порядок базисного минора или, иначе, самый большой порядок, для которого существуют отличные от нуля миноры. Ранг нулевой матрицы по определению считают 0.

Отметим два очевидных свойства минорного ранга.

1) Ранг матрицы не меняется при транспонировании, так как при транспонировании матрицы все ее подматрицы транспонируются и миноры не меняются.

2) Если А’-подматрица матрицы А, то ранг А’ не превосходит ранга А, так как ненулевой минор, входящий в А’, входит и в А.

15. Понятие -мерного арифметического вектора. Равенство векторов. Действия над векторами (сложение, вычитание, умножение на число, умножение на матрицу). Линейная комбинация векторов.

Упорядоченная совокупность n действительных или комплексных чисел называется n-мерным вектором . Числа называются координатами вектора .

Два (ненулевых) вектора a и b равны, если они равнонаправлены и имеют один и тот же модуль. Все нулевые векторы считаются равными. Во всех остальных случаях векторы не равны.

Сложение векторов. Для сложения векторов есть два способа.1. Правило параллелограмма. Чтобы сложить векторы и, помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторови.

2. Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и . По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Вычитание векторов. Вектор направлен противоположно вектору. Длины векторовиравны. Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины. Он сонаправлен с вектором, если k больше нуля, и направлен противоположно, если k меньше нуля.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними. Если векторы перпендикулярны, их скалярное произведение равно нулю. А вот так скалярное произведение выражается через координаты векторов и .

Линейная комбинация векторов

Линейной комбинацией векторов называют вектор

где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.

16 .Скалярное произведение арифметических векторов. Длина вектора и угол между векторами. Понятие ортогональности векторов.

Скалярным произведением векторов а и в называется число,

Скалярное произведение используется для вычисления:1)нахождения угла между ними;2)нахождение проекции векторов;3)вычисление длины вектора;4)условия перпендикулярности векторов.

Длиной отрезка АВ называют расстоянием между точками А иВ. Угол между векторами А и В называют угол α=(а,в) ,0≤ α ≤П. На который необходимо повернуть 1 вектор,чтоб его направления совпало с другим вектором. При условии,что их начала совпадут.

Ортом а называется вектор а имеющий единичную длину и направления а.

17. Система векторов и её линейная комбинация. Понятие линейной зависимости и независимости системы векторов. Теорема о необходимом и достаточном условиях линейной зависимости системы векторов.

Система векторов a1,a2,...,an называется линейно зависимой, если существуют числа λ1,λ2,...,λnтакие, что хотя бы одно из них отлично от нуля и λ1a1+λ2a2+...+λnan=0. В противном случае система называется линейно независимой.

Два вектора a1 и a2 называются коллинеарными если их направления совпадают или противоположны.

Три вектора a1,a2 и a3 называются компланарными если они параллельны некоторой плоскости.

Геометрические критерии линейной зависимости:

а) система {a1,a2} линейно зависима в том и только том случае, когда векторы a1 и a2 коллинеарны.

б) система {a1,a2,a3} линейно зависима в том и только том случае, когда векторы a1,a2 и a3компланарны.

теорема. (Необходимое и достаточное условие линейной зависимости системы векторов.)

Система векторов векторного пространства является линейно зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие вектора этой системы.

Следствие.1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

Рассмотрим проблему определения операции, обратной умножению матриц.

Пусть A - квадратная матрица порядка n . Матрица A^{-1} , удовлетворяющая вместе с заданной матрицей A равенствам:

A^{-1}\cdot A=A\cdot A^{-1}=E,


называется обратной . Матрицу A называют обратимой , если для нее существует обратная, в противном случае - необратимой .

Из определения следует, что если обратная матрица A^{-1} существует, то она квадратная того же порядка, что и A . Однако не для всякой квадратной матрицы существует обратная. Если определитель матрицы A равен нулю (\det{A}=0) , то для нее не существует обратной. В самом деле, применяя теорему об определителе произведения матриц для единичной матрицы E=A^{-1}A получаем противоречие

\det{E}=\det(A^{-1}\cdot A)=\det{A^{-1}}\det{A}=\det{A^{-1}}\cdot0=0


так как определитель единичной матрицы равен 1. Оказывается, что отличие от нуля определителя квадратной матрицы является единственным условием существования обратной матрицы. Напомним, что квадратную матрицу, определитель которой равен нулю, называют вырожденной {особой), в противном случае - невырожденной {неособой).

Теорема 4.1 о существовании и единственности обратной матрицы. Квадратная матрица A=\begin{pmatrix}a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \end{pmatrix} , определитель которой отличен от нуля, имеет обратную матрицу и притом только одну:

A^{-1}=\frac{1}{\det{A}}\cdot\! \begin{pmatrix}A_{11}&A_{21}&\cdots&A_{1n}\\ A_{12}&A_{22}&\cdots&A_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ A_{1n}&A_{2n}&\cdots&A_{nn} \end{pmatrix}= \frac{1}{\det{A}}\cdot A^{+},

где A^{+} - матрица, транспонированная для матрицы, составленной из алгебраических дополнений элементов матрицы A .

Матрица A^{+} называется присоединенной матрицей по отношению к матрице A .

В самом деле, матрица \frac{1}{\det{A}}\,A^{+} существует при условии \det{A}\ne0 . Надо показать, что она обратная к A , т.е. удовлетворяет двум условиям:

\begin{aligned}\mathsf{1)}&~A\cdot\!\left(\frac{1}{\det{A}}\cdot A^{+}\right)=E;\\ \mathsf{2)}&~ \!\left(\frac{1}{\det{A}}\cdot A^{+}\right)\!\cdot A=E.\end{aligned}

Докажем первое равенство. Согласно п.4 замечаний 2.3, из свойств определителя следует, что AA^{+}=\det{A}\cdot E . Поэтому

A\cdot\!\left(\frac{1}{\det{A}}\cdot A^{+}\right)= \frac{1}{\det{A}}\cdot AA^{+}= \frac{1}{\det{A}}\cdot \det{A}\cdot E=E,

что и требовалось показать. Аналогично доказывается второе равенство. Следовательно, при условии \det{A}\ne0 матрица A имеет обратную

A^{-1}=\frac{1}{\det{A}}\cdot A^{+}.

Единственность обратной матрицы докажем от противного. Пусть кроме матрицы A^{-1} существует еще одна обратная матрица B\,(B\ne A^{-1}) такая, что AB=E . Умножая обе части этого равенства слева на матрицу A^{-1} , получаем \underbrace{A^{-1}AB}_{E}=A^{-1}E . Отсюда B=A^{-1} , что противоречит предположению B\ne A^{-1} . Следовательно, обратная матрица единственная.

Замечания 4.1

1. Из определения следует, что матрицы A и A^{-1} перестановочны.

2. Матрица, обратная к невырожденной диагональной, является тоже диагональной:

\Bigl[\operatorname{diag}(a_{11},a_{22},\ldots,a_{nn})\Bigr]^{-1}= \operatorname{diag}\!\left(\frac{1}{a_{11}},\,\frac{1}{a_{22}},\,\ldots,\,\frac{1}{a_{nn}}\right)\!.

3. Матрица, обратная к невырожденной нижней (верхней) треугольной, является нижней (верхней) треугольной.

4. Элементарные матрицы имеют обратные, которые также являются элементарными (см. п.1 замечаний 1.11).

Свойства обратной матрицы

Операция обращения матрицы обладает следующими свойствами:

\begin{aligned}\bold{1.}&~~ (A^{-1})^{-1}=A\,;\\ \bold{2.}&~~ (AB)^{-1}=B^{-1}A^{-1}\,;\\ \bold{3.}&~~ (A^T)^{-1}=(A^{-1})^T\,;\\ \bold{4.}&~~ \det{A^{-1}}=\frac{1}{\det{A}}\,;\\ \bold{5.}&~~ E^{-1}=E\,. \end{aligned}


если имеют смысл операции, указанные в равенствах 1-4.

Докажем свойство 2: если произведение AB невырожденных квадратных матриц одного и того же порядка имеет обратную матрицу, то (AB)^{-1}=B^{-1}A^{-1} .

Действительно, определитель произведения матриц AB не равен нулю, так как

\det(A\cdot B)=\det{A}\cdot\det{B} , где \det{A}\ne0,~\det{B}\ne0

Следовательно, обратная матрица (AB)^{-1} существует и единственна. Покажем по определению, что матрица B^{-1}A^{-1} является обратной по отношению к матрице AB . Действительно.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.