Деньги

Общие принципы координационной деятельности цнс.

Время – 2 часа

Мотивационно-воспитательная характеристика темы: Знание общих закономерностей, определяющих течение основных нервных процессов – возбуждения и торможения – в ЦНС необходимы при изучении физиологии высшей нервной деятельности, при рассмотрении нервного механизма патологических процессов, в практической деятельности врача для оценки функционального состояния ЦНС и поведения больных.

Учебная цель: Уяснить значение центрального торможения, еговиды и механизмы; усвоить основные принципы координационной деятельности ЦНС.

Вопросы для самоподготовки

1.Значение процесса торможения в ЦНС. История изучения центрального торможения.

2. Виды и механизмы центрального торможения.

3. Первичное и вторичное торможение, его разновидности.

4. Взаимная индукция нервных процессов.

5.Основные принципы координационной деятельности ЦНС.

6. Функциональное значение и свойства доминанты.

Домашнее задание:

1.Зарисовать схему пре – постсинаптического торможения.

3. Перечислить свойства доминанты.

Самостоятельная работа на занятии

Задание Объект Программа действия Ориентировочные основы действия
2. Сеченовское торможение лягушка Приготовить таламическую лягушку путем удаления головного мозга до уровня зрительных бугров (за глазами). Определить время рефлекса задних конечностей при погружении их в слабый раствор серной кислоты. Поместить на зрительные бугры кристаллики соли, предварительно просушив разрез ватным тампоном. Через 1 минуту вновь проверяют время рефлекса. После снятия соли и промывания разреза через 5-7 минут вновь определяют время рефлекса. Раздражение зрительных бугров тормозит рефлексы спинного мозга, что подтверждается удлинением времени двигательного спинального рефлекса. Торможение спинномозговых рефлексов может быть связано с иррадиацией возбуждения на тормозные нейроны спинного мозга (клетки Реншоу)
3. Взаимное торможение спинальных рефлексов (опыт Гольца по торможению) лягушка Приготовить спинальную лягушку. Через 5-7 минут приступают к опыту. Погружают лапку в слабый раствор серной кислоты и определяют время сгибательного рефлекса. Затем, погружая одну лапку в серную кислоту, одновременно другую лапку сильно сдавливают зажимом. При этом время сгибательного рефлекса удлиняется, или он вовсе не проявляется Раздражение другого рецептивного поля тормозит рефлекс. Здесь проявляется принцип взаимодействия антагонистических рефлексов на общем конечном пути, в результате более сильный рефлекс (имеющий большее биологическое значение в данный момент или вызванный более сильным раздражителем) тормозит другой рефлекс.

Вопросы для самоконтроля

1.Кто открыл явление центрального торможения?

2. Дайте современную трактовку «Сеченовского торможения».

3. Каковы механизмы пресинаптического, постсинаптического и пессимального

торможения?

4. Что понимают под явлением доминанты?

5.С какими явлениями на мембране связано развитие ТПСП?

6. Перечислите тормозные медиаторы и тормозные нейроны.

7. Какое явление лежит в основе принципа общего конечного пути?

8..Какой принцип координации лежит в основе деятельности антагонистических центров?

9. Какой принцип координационной деятельности обеспечивает саморегуляцию функций?

10. Какие синапсы являются структурной основой пресинаптического торможения?

Тестовый контроль:

1. При развитии пессимального торможения мембрана нейрона находится в состоянии: 1) гиперполяризации; 2) устойчивой длительной деполяризации; 3) статической поляризации.

2. Явление, при котором возбуждение одной мышцы сопровождается торможением центра мышцы-антагониста, называется: 1) утомлением; 2) облегчением; 3) реципрокным торможением; 4) отрицательной индукцией; 5) окклюзией.

3. К специфическим тормозным нейронам относятся: 1) клетки Пуркинье и Реншоу; 2) нейроны продолговатого мозга; 3) пирамидные клетки коры больших полушарий; 4) нейроны среднего мозга.

4. Возникновение ТПСП определяют ионы: 1) натрия и хлора; 2) калия и хлора;

3) натрия.

5. Пресинаптическое торможение развивается в синапсах: 1) аксо-дендритных; 2) аксо-аксональных; 3) сомато-соматических; 4) аксо-соматических.

6. Какие изменения на постсинаптической мембране приводят к формированию ТПСП? 1) деполяризация; 2) гиперполяризация; 3) стойкая деполяризация.

7. Перечислите свойства доминантного очага возбуждения: 1) повышенная возбудимость; 2) низкая возбудимость; 3) способность к суммации; 4) инерция возбуждении; 5) стойкость возбуждения; 6) низкий критический уровень деполяризации; 7) притягивает возбуждение от других нервных центров.

8. Какой принцип прежде всего обеспечивает согласованную деятельность нервных центров, регулирующих антагонистические функции? 1) принцип доминанты; 2) принцип общего конечного пути; 3) принцип реципрокности; 4) принцип обратной связи.

9. Какой тип торможения относится к первичному торможению? 1) пресинаптическое; 2) постсинаптическое; 3) пессимальное; 4) следовая гиперполяризация нейрона после ПД.

10.Какое явление лежит в основе принципа общего конечного пути: 1) дивергенция; 2) конвергенция; 3) нейронная ловушка; 4) посттетаническая потенциация; 5) пространственная суммация; 6) обратная связь.

Ответы: 1- 2; 2- 3; 3-1; 4-2; 5-2; 6-2; 7-1,3,4,5,6,7; 8-3; 9-1,2; 10-2,5;

Ситуационные задачи:

  1. При раздражении одного аксона возбуждаются 3 нейрона, при раздражении другого- 5 нейронов, при совместном их раздражении- 12 нейронов. На скольких нейронах конвергируют эти аксоны и как называется это явление?
  2. Требуется создать препарат, который избирательно подавлял бы реакцию нейрона на некоторые афферентные сигналы. Этот препарат должен усиливать пресинаптическое или постсинаптическое торможение. Какое действие вы предпочли бы?
  3. Известный физиолог академик А.А.Ухтомский писал в одной из работ: «Возбуждение-это дикий камень, ожидающий скульптора». Как называется скульптор, шлифующий процесс возбуждения?
  4. Можно ли вызвать судорожные сокращения мышцы при помощи препарата, который не воздействует непосредственно ни на мышцы, ни на иннервирующие их мотонейроны?
  5. Выдающийся отечественный физиолог А.А.Ухтомский, будучи студентом, помогал в лекционной демонстрации Н.Е.Введенскому. Целью опыта являлось: вызвать сокращение мышц конечности при электрическом раздражении двигательной зоны головного мозга. Опыт не удался. Вместо двигательной реакции произошел акт дефекации. Объясните это явление, послужившее основой к раскрытию важнейшего принципа деятельности мозга.

Ответы:

1.Это явление облегчения. Аксоны конвергируют на четыре нейрона: 12-(3+5)=4. Каждый из аксонов в отдельности вызывает в этих нейронах подпороговое раздражение, а при их совместном действии в результате пространственной суммации наступает надпороговое раздражение.

2. Нейрон имеет множество афферентных входов. Пресинаптическое торможение может выключить некоторые из них, при этом возбудимость нейрона не меняется. Постсинаптическое торможение, вызывая гиперполяризацию мембраны, понижает возбудимость нейрона. Поэтому для избирательного действия предпочтительнее усиливать пресинаптическое торможение.

3. Этим скульптором является процесс торможения, ограничивающий возбуждение в ЦНС, придавая ему нужный характер, интенсивность и направление.

4. Можно, если препарат выключит вставочные тормозные нейроны спинного мозга (клетки Реншоу), это приведет к перевозбуждению мотонейронов спинного мозга и, как следствие, к судорожному сокращению мышц.

5. Приведенный факт служит примером принципа доминанты, который был сформулирован А.А.Ухтомским. Доминанта-это господствующий очаг возбуждения в течение длительного времени, который подчиняет и тормозит работу других центров и усиливается под влиянием импульсов, адресованных другим центрам. В приведенном случае главенствующим очагом возбуждения явился центр дефекации, его усилили импульсы, поступившие из двигательного центра, и привели к разрешению доминанты – акту дефекации.

Литература:

А) Основная:

1. Физиология человека. Учебник. /Под ред. В.М.Покровского, Г.Ф.Коротько.- М.: Медицина, 2003, с.102-113

2. Физиология человека. / Под ред. Н.А. Агаджаняна, В.И.Циркина.- СПб: СОТИС, 1998, 2000, 2002, с 44-49.

3. Физиология человека..Учебник. /Под ред. В.М.Смирнова. М.:Медицина, 2002, с94-114

4. Руководство к практическим занятиям по нормальной физиологии /Под ред.С.М.Будылиной, В.М.Смирнова- М: Издательский центр «Академия», 2005, с.46-56

5. Руководство к практическим занятиям по физиологии / Под ред. Г.И.Косицкого и В.А Полянцева.- М.: Медицина, 1988.,с.98-108

Б) Дополнительная:

1 Основы физиологии человека. /Под ред. Б.И.Ткаченко.- СПб,1994, т.1, с.109-116.

2 Физиология человека. /Под ред. Г.И.Косицкого.- М.: Медицина, 1985, .

3 Физиология человека. /Под ред. Р.Шмидта, Г.Тевса,- М.: Мир, 1996, т.1, 4.Руководство к практическим занятиям по физиологии / Под ред. К.В.Судакова- М, 2002, с.104-118.

5.Основы физиологии человека / Под ред. Н.А.Агаджаняна- М: изд-во РУДН, 2001, с.45-57

6.Орлов Р.С., Ноздрачев А.Д. Нормальная физиология. Учебник- ГЭОТАР-Медиа,2005,

7.Физиология. Основы и функциональные системы: курс лекций /Под ред. К.В.Судакова – М., Медицина, 2000 с.122-137

8.Избранные вопросы клинической психологии / Под ред. Ю.В.Каминского. Т.1.: Нормальная анатомия, физиология и патология нервной системы.- Владивосток, Медицина ДВ,2006, с240-244

Краткое теоретическое содержание темы:

5.5. Торможение в ЦНС.

Деятельность ЦНС характеризуется взаимодействием двух процессов: возбуждения и торможения. Процесс торможения сформировался на более поздних ступенях филогенетического развития нервной системы как приспособительный механизм, ограничивающий процесс возбуждения и дающий определенный отдых ЦНС. Торможение – это самостоятельный биологический процесс, выражающийся в снижении или полном прекращении деятельности живой ткани в ответ на действие раздражителя. Торможение в ЦНС («центральное торможение») было открыто И.М.Сеченовым в 1862-63г. Он опытным путем обнаружил угнетение спинномозговых рефлексов при раздражении зрительных бугров и объяснил это явление следующим образом: «Угнетение рефлексов при раздражении зрительных чертогов соответствует возбужденному состоянию заключенных в них механизмов, которые задерживают рефлекс». Следовательно, торможение – это процесс, вызванный возбуждением и проявляющийся в подавлении другого возбуждения. Существует несколько механизмов и соответствующих им видов центрального торможения. Первичное торможение возникает в ответ на действие раздражителя без предварительного возбуждения нейрона. Его подразделяют на постсинаптическое и пресинаптическое торможение. Постсинаптическое торможение вызвано изменениями на постсинаптической мембране и формированием на ней тормозного постсинаптического потенциала (ТПСП). При передачи импульса от одного нейрона к другому на постсинаптической мембране второго нейрона увеличивается проницаемость для ионов хлора (или калия), хлор поступает в клетку, увеличивая её отрицательный потенциал, вызывая гиперполяризацию мембраны.(ТПСП). Физиологический смысл ТПСП заключается в том, что он стремится сдвинуть исходный потенциал в сторону, противоположную той, которая необходима для развития возбуждения. В отличие от процесса возбуждения, который может проявляться как в форме распространяющегося возбуждения, так и локального ответа, торможение является локальным процессом, оно связано с существованием специфических тормозных синапсов. Пресинаптическим окончанием в этих синапсах является аксон тормозного нейрона (например, клетки Реншоу спинного мозга), выделяющего тормозной медиатор (чаще всего глицин). Пресинаптическое торможение вызвано угнетением высвобождения возбуждающего медиатора из пресинапса, вследствие чего постсинаптический нейрон не получает возбуждения, свойства же постсинаптической мембраны при этом не изменяются. Наиболее часто пресинаптическое торможение выявляется в головном мозге. Структурной основой пресинаптического торможения является аксо-аксональный синапс, осуществлящий контакт аксона вставочного тормозного нейрона с окончанием аксона пресинаптического нейрона. В результате действия медиатора вставочного тормозного нейрона в окончании аксона пресинаптического нейрона (в пресинапсе) развивается явление стойкой деполяризации мембраны, что ведет к уменьшению входящего кальция и угнетению высвобождения медиатора. Пресинаптическое торможение имеет преимущество перед постсинаптическим, так как оно действует избирательно на отдельные входы к нервной клетке (при этом свойства постсинаптической мембраны не меняются), тогда как при постсинаптическом торможении снижается возбудимость всего постсинаптического нейрона. Эти 2 вида торможения наиболее широко распространены в ЦНС. На этих механизмах основано реципрокное и возвратное торможение, имеющее большое значение в саморегуляции двигательных функций, а также латеральное и окружающее торможение, играющее важную роль в процессе передачи информации в сенсорных системах. Вторичное торможение возникает в нейроне после его предварительного возбуждения. Различают пессимальное торможение, возникающее в возбуждающих нейронах под влиянием слишком частых импульсов, когда медиатор не успевает разрушаться и накапливается в синаптической щели, вызывая стойкую деполяризацию постсинаптической мембраны (подобно катодической депрессии). Такое торможение характерно для промежуточных нейронов спинного мозга, ретикулярной формации и других. Другой вид вторичного торможения носит название «торможение вслед за возбуждением», оно развивается в нервной клетке после прекращения возбуждения во время следовой гиперполяризации мембраны, когда её возбудимость снижена, и очередной импульс не воспринимается (например, в мотонейронах спинного мозга). Следовательно, не все импульсы, поступающие к клетке, реализуются. Таким образом осуществляется автоматическая саморегуляция частоты поступающих к нервной клетке сигналов. Большинство клеток ЦНС получают как возбуждающие, так и тормозные синаптические входы, взаимодействие их приводит к суммарной ответной реакции нейрона, причем суммация ВПСП и ТПСП носит нелинейный характер, наибольшая степень нелинейности наблюдается при совмещении начальных фаз ВПСП и ТПСП, когда лежащие в их основе изменения достигают максимума. В суммировании ВПСП и ТПСП проявляется интегративная функция нейрона.

5.6. Взаимная индукция нервных процессов.

Возникшие в определенных участках ЦНС процессы возбуждения или торможения оказывают влияние на динамику этих процессов в рядом лежащих областях. Существуют одновременная (или пространственная) индукция и последовательная индукция. Одновременная индукция выражается в возникновении или усилении противоположного нервного процесса вокруг возбужденного или заторможенного участка ЦНС. Соответственно выделяют одновременную отрицательную (когда вокруг возбужденного участка формируется торможение) и положительную (вокруг тормозного участка образуется очаг возбуждения) индукцию. Последовательная индукция обеспечивает контрастные изменения состояния нервного центра, возникающие после прекращения возбуждения или после торможения. Положительная последовательная индукция проявляется в возбуждении вслед за торможением, а отрицательная – в торможении вслед за возбуждением.

5.7. Принципы координационной деятельности ЦНС

Каждый рефлекс – это реакция всей нервной системы, зависящая от её состояния и от всей совокупности межцентральных соотношений и взаимодействий. Взаимодействие нейронов и нервных процессов в ЦНС, обеспечивающее её согласованную деятельность, называется координацией. Явление координации происходит в любом нервном центре, в любом отделе ЦНС. Координация обеспечивает точное выполнение мышечных движений, приспосабливает рефлекторные акты к различным внешним ситуациям. В основе координационной деятельности лежит ряд принципов:

-принцип общего конечного пути основан на явлении конвергенции. Одно и то же рефлекторное движение можно вызвать большим числом различных раздражений с разных рецепторов, так как в состав многих рефлекторных дуг входит один и тот же мотонейрон. Такие эфферентные нейроны образуют общий конечный путь различных рефлексов. Среди рефлексов, встречающихся на общем конечном пути, могут быть союзные (или аллиированные) рефлексы, которые усиливают друг друга. Это обусловлено тем, что афферентные импульсы, вызывающие эти рефлексы, конвергируют на одних и тех же промежуточных и эфферентных нейронах, в результате происходит суммация возбуждения (явление облегчения). На общем конечном пути встречаются и антагонистические рефлексы, имеющие различные афферентные и вставочные нейроны и только общий эфферентный нейрон. В данном случае идет борьба за общий конечный путь, один из рефлексов тормозится. Проявляется тот рефлекс, который в данный момент имеет наиболее важное биологическое значение, или который вызван наиболее сильным раздражителем (например, болевым).

- принцип реципрокности (или сопряженности) обеспечивает согласованную деятельность нервных центров, выполняющих антагонистические функции (например, центр вдоха и выдоха, центры мышц сгибателей и разгибателей и т.д.). Между этими центрами в процессе филогенеза создаются реципрокные отношения: возбуждение одного центра вызывает торможение антагонистического центра. Например: возбуждение афферентного волокна вызывает одновременно возбуждение центра мышц-сгибателей и торможение (через тормозные синапсы) центра мышц-разгибателей. Реципрокное торможение может быть опережающим (или поступательным) , когда торможение мышцы-антагониста происходит без предварительного возбуждения, и возвратным , когда тормозные вставочные нейроны действуют на те же нервные клетки, которые их активируют (по принципу обратной связи). Например, аксоны мотонейронов мышц-сгибателей посылают коллатерали к вставочным нейронам (клеткам Реншоу), которые образуют тормозные синапсы на тех же мотонейронах; это ведет к торможению центра сгибателей и реципрокному растормаживанию центра разгибателей.

- Принцип обратной связи. В результате деятельности органов и тканей возникают вторичные афферентные импульсы (первичные – те, которые вызвали данный рефлекторный акт), которые подают непрерывный сигнал нервным центрам о состоянии двигательных систем, внутренней среды и т.д., а в ответ из ЦНС идут новые сигналы к исполнительным органам. Вторичная афферентация осуществляют функцию «обратной связи», благодаря которой интенсивность и последовательность возбуждения различных групп нейронов в нервном центре строго согласовано с рабочим эффектом. Как уже отмечалось, обратная связь может быть положительной, которая усиливает влияние ЦНС на исполнительные органы, и отрицательной, уменьшающая эти влияния. Принцип обратной связи играет главную роль в саморегуляции функций.

- Принцип доминанты был сформулирован отечественным физиологом А.А.Ухтомским. Это один из фундаментальных принципов функционирования ЦНС. Доминанта – это господствующий в ЦНС в течение определенного времени очаг повышенной возбудимости и длительного возбуждения, который координирует и подчиняет себе работу нервных центров и рефлекторную активность в целом. Это совокупность нейронов, обладающих низким критическим уровнем деполяризации и длительным стойким состоянием повышенной возбудимости. Эти нейроны способны к пространственной суммации и усиливают свою деятельность за счет возбуждений, поступающих к другим нервным центрам. Доминантный очаг «притягивает» импульсы от дополнительных источников, поддерживая мощный длительный тонус., при этом недоминирующие центры полностью затормаживаются (явление одновременной отрицательной индукции). Доминантный очаг может сформироваться под влиянием длительно действующих подпороговых стимулов или, напротив, при действии сильного раздражителя. Доминантный очаг имеет свойства местного возбуждения, но при достижении критического уровня деполяризации нейронов возбуждение становится распространяющимся, и возникает ответная реакция – «разрешение доминанты».

- Свойства доминанты: 1- повышенная возбудимость;

2-способность к суммации;

3-стойкость возбуждения;

4-инерция возбуждения- длительное удержание возбуждения после окончания действия стимула (пример-так называемые «фантомные боли», сохраняющиеся после удаления вызвавшего их патологического очага.). Примером проявления свойств доминанты могут служить невыносимые жгучие боли («каузалгии»), возникающие при ранении нервных стволов, которые усиливаются при действии различных посторонних раздражителей: звука, яркого света, прикосновения к другим частям тела и т.д.

Физиологическое значение доминанты: по принципу доминанты регулируется очередность физиологических процессов. Этот принцип лежит в основе формирования потребностей и мотиваций, определяющих целенаправленное поведение. Доминанта является физиологической основой акта внимания и предметного мышления. Свойство доминанты вызывать торможение в других нервных центрах используют для снятия патологического очага возбуждения (создание конкурирующего доминантного очага). Этот принцип объясняет эффективность активного отдыха: появление другого доминантного центра тормозит и обеспечивает восстановление раннее работающих и утомленных нервных центров.


В основе функционирования нервной системы лежит рефлекторная деятельность. Рефлекс (от лат. Reflexio - отражаю) - это ответная реакция организма на внешнее или внутреннее раздражение при обязательном участии нервной системы.

Рефлекторный принцип функционирования нервной системы

Рефлекс – это ответная реакция организма на внешнее или внутреннее раздражение. Рефлексы подразделяют на:

  1. безусловные рефлексы: врожденные реакции организма на раздражения, осуществляемые с участием спинного мозга или ствола головного мозга;
  2. условные рефлексы: приобретенные на основе безусловных рефлексов временные реакции организма, осуществляемые при обязательном участии коры полушарий большого мозга, составляющие основу высшей нервной деятельности.

Морфологической основой рефлекса является рефлекторная дуга, представленная цепью нейронов, обеспечивающих восприятие раздражения, трансформацию энергии раздражения в нервный импульс, проведение нервного импульса до нервных центров, обработку поступающей информации и реализацию ответной реакции.

Рефлекторная деятельность предполагает наличие механизма, состоящего из трех основных элементов, последовательно соединенных между собой:

1. Рецепторов ,воспринимающих раздражение и трансформирующих его в нервный импульс; обычно рецепторы представлены различными чувствительными нервными окончаниями в органах;

2. Эффекторов ,которые результируют эффект раздражения рецепторов в форме определенной реакции; к эффекторам относятся все внутренние органы, кровеносные сосуды и мышцы;

3. Цепей последовательно связанных между собой нейронов, которые, направленно передавая возбуждение в форме нервных импульсов, обеспечивают координацию деятельности эффекторов в зависимости от раздражения рецепторов.

Цепь последовательно связанных между собой нейронов образует рефлекторную дугу ,которая и составляет материальный субстрат рефлекса.

В функциональном отношении нейроны, образующих рефлекторную дугу, можно разделить на:

1. афферентные (сенсорные) нейроны, которые воспринимают раздражение и передают его на другие нейроны. Сенсорные нейроны всегда располагаются за пределами центральной нервной системы в сенсорных ганглиях спинномозговых и черепных нервов. Их дендриты образуют в органах чувствительные нервные окончания.

2. эфферентные (двигательные, моторные) нейроны, или мотонейроны, передают возбуждение на эффекторы (например, мышцы или кровеносные сосуды);

3. вставочные нейроны (интернейроны) соединяют между собой афферентные и эфферентные нейроны и тем самым замыкают рефлекторную связь.

Простейшая рефлекторная дуга состоит из двух нейронов - афферентного и эфферентного. В рефлекторной дуге более сложной участвуют три нейрона: афферентный, эфферентный и вставочный. Максимальное количество нейронов, участвующих в рефлекторном ответе нервной системы ограничено, особенно в тех случаях, когда в рефлекторный акт вовлекаются различные отделы головного и спинного мозга. В настоящее время за основу рефлекторной деятельности принимается рефлекторное кольцо. Классическая рефлекторная дуга дополнена четвертым звеном - обратной афферентацией от эффекторов. Все нейроны, участвующие в рефлекторной деятельности имеют строгую локализацию в нервной системе.

Нервный центр

Центр нервной системы в анатомическом отношении представляет собой группу рядом расположенных нейронов, тесно связанных между собой структурно и функционально и выполняющих в рефлекторной регуляции общую функцию. В нервном центре происходит восприятие, анализ поступающей информации и передача ее на другие нервные центры или эффекторы. Поэтому каждый нервный центр имеет свою систему афферентных волокон, посредством которых он приводится в активное состояние, и систему эфферентных связей, которые проводят нервное возбуждение к другим нервным центрам или эффекторам. Различают периферические нервные центры ,представленные узлами (ганглиями ): чувствительными и вегетативными. В центральной нервной системе различают ядерные центры (ядра) - локальные скопления нейронов, и корковые центры - обширное расселение нейронов по поверхности мозга.

Кровоснабжение головного и спинного мозга

I. Кровоснабжение головного мозга осуществляется ветвями левой и правой внутренних сонных артерий и ветвями позвоночных артерий.

Внутренняя сонная артерия, вступив в полость черепа, делится на глазную артерию и переднюю и среднюю мозговую артерии. Передняя мозговая артерия питает главным образом лобную долю мозга, средняя мозговая артерия - теменную и височную доли, а глазная артерия снабжает кровью глазное яблоко. Передние мозговые артерии (правая и левая) соединяются поперечным анастомозом - передней соединительной артерией.

Позвоночные артерии (правая и левая) в области ствола мозга соединяются и образуют непарную базилярную артерию, питающие мозжечок и и другие отделы ствола, и две задние мозговые артерии, снабжающие кровью затылочные доли мозга. Каждая из задних мозговых артерий соединяется со средней мозговой артерией своей стороны при помощи задней соединительной артерии.

Таким образом, на основании мозга образуется артериальный круг большого мозга.

Более мелкие разветвления кровеносных сосудов в мягкой мозговой оболочке

достигают мозга, проникают в его вещество, где разделяются на многочисленные капилляры. Из капилляров кровь собирается в мелкие, а затем и крупные венозные сосуды. Кровь от головного мозга оттекает в синусы твердой мозговой оболочки. Из синусов кровь оттекает через яремные отверстия в основании черепа во внутренние яремные вены.

2. Кровоснабжение спинного мозга осуществляется через переднюю и задние спинномозговые артерии. Отток венозной крови идет через одноименные вены во внутреннее позвоночное сплетение, расположенное на всем протяжении позвоночного канала снаружи от твердой оболочки спинного мозга. Из внутреннего позвоночного сплетения кровь оттекает в вены, идущие вдоль позвоночного столба, а из них – в нижнюю и верхнюю полые вены.

Ликворная система мозга

Внутри костных полостей головной и спинной мозг находится во взвешенном состоянии и со всех сторон омываются спинномозговой жидкостью – ликвором . Ликвор предохраняет мозг от механических воздействий, обеспечивает постоянство внутричерепного давления, принимает непосредственное участие в транспорте питательных веществ из крови к тканям мозга. Спинномозговая жидкость продуцируется сосудистыми сплетениями желудочков мозга. Циркуляция ликвора по желудочкам осуществляется по следующей схеме: из боковых желудочков жидкость поступает через отверстие Монро в третий желудочек, а затем через сильвиев водопровод в четвертый желудочек. Из него ликвор переходит через отверстия Мажанди и Люшка в подпаутинное пространство. Отток спинномозговой жидкости в венозные синусы происходит через грануляции паутинной оболочки – пахионовы грануляции.

Между нейронами и кровью в головном и спинном мозге существует барьер, получивший название гематоэнцефалического , который обеспечивает избирательное поступление веществ из крови к нервным клеткам. Этот барьер выполняет защитную функцию, так как обеспечивает постоянство физико-химических свойств ликвора.

Медиаторы

Нейромедиаторы (нейротрансмиттеры, посредники) - биологически активные химические вещества, посредством которых осуществляется передача электрического импульса от нервной клетки через синаптическое пространство между нейронами. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

До 50-х годов XX столетия к медиаторам относили две группы низкомолекулярных соединений: амины (ацетилхолин, адреналин, норадреналин, серотонин, дофамин) и аминокислоты (гамма-аминомасляная кислота, глутамат, аспартат, глицин). Позже было показано, что специфическую группу медиаторов составляют нейропептиды, которые могут выступать также и в качестве нейромодуляторов (веществ, изменяющих величину ответа нейрона на стимул). В настоящее время известно, что нейрон может синтезировать и выделять несколько нейромедиаторов.

Кроме этого в нервной системе существуют особые нервные клетки – нейросекреторные, которые обеспечивают связь центральной нервной системы сэндокринной системой. Эти клетки имеют типичную для нейрона структурную и функциональную организацию. От нейрона их отличает специфическая функция – нейросекреторную, которая связана с секрецией биологически активных веществ. Аксоны нейросекреторных клеток имеют многочисленные расширения (тела Геринга), в которых временно накапливается нейросекрет. В пределах мозга эти аксоны, как правило, лишены миелиновой оболочки. Одной из основных функций нейросекреторных клеток является синтез белков и полипептидов и их дальнейшая секреция. В связи с этим в данных клетках чрезвычайно развит белоксинтезирующий аппарат - гранулярный эндоплазматический ретикулум, комплекс Гольджи, лизосомальный аппарат. По количеству нейросекреторных гранул в клетке можно судить об ее активности.



Для осуществления сложных реакций необходима интеграция работы отдельных нервных центров. Большинство рефлексов являются сложными, последовательно и одновременно совершающимися реакциями. Рефлексы при нормальном состоянии организма строго упорядочены, так как имеются общие механизмы их координации. Возбуждения, возникающие в ЦНС, иррадиируют по ее центрам.

Координация обеспечивается избирательным возбуждением одних центров и торможением других. Координация - это объединение рефлекторной деятельности ЦНС в единое целое, что обеспечивает реализацию всех функций организма. Выделяют следующие основные принципы координации:

1. Принцип иррадиации возбуждений. Нейроны разных центров связаны между собой вставочными нейронами, поэтому импульсы, поступающие при сильном и длительном раздражении рецепторов, могут вызвать возбуждение не только нейронов центра данного рефлекса, но и других нейронов. Например, если раздражать у спинальнои лягушки одну из задних лапок, слабо сдавливая ее пинцетом, то она сокращается (оборонительный рефлекс), если раздражение усилить, то происходит сокращение обеих задних лапок и даже передних. Иррадиация возбуждения обеспечивает при сильных и биологически значимых раздражениях включение в ответную реакцию большего количества мотонейронов.



2. Принцип общего конечного пути. Импульсы, приходящие в ЦНС по разным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же вставочным, или эфферентным, нейронам. Шеррингтон назвал это явление «принципом общего конечного пути». Один и тот же мотонейрон может возбуждаться импульсами, приходящими от различных рецепторов (зрительных, слуховых, тактильных), т.е. участвовать во многих рефлекторных реакциях (включаться в различные рефлекторные дуги).

Так, например, мотонейроны, иннервирующие дыхательную мускулатуру, помимо обеспечения вдоха участвуют в таких рефлекторных реакциях, как чихание, кашель и др. На мотонейронах, как правило, конвергируют импульсы от коры больших полушарий и от многих подкорковых центров (через вставочные нейроны или за счет прямых нервных связей).

На мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна пирамидного тракта, экстрапирамидных путей, от мозжечка, ретикулярной формации и других структур. Мотонейрон, обеспечивающий различные рефлекторные реакции, рассматривается как их общий конечный путь. В какой конкретный рефлекторный акт будут вовлечены мотонейроны, зависит от характера раздражений и от функционального состояния организма.

3. Принцип доминанты. Был открыт А.А.Ухтомским, который обнаружил, что раздражение афферентного нерва (или коркового центра), обычно ведущего к сокращению мышц конечностей при переполнении у животного кишечника, вызывает акт дефекации. В данной ситуации рефлекторное возбуждение центра дефекации" подавляет, тормозит двигательные центры, а центр дефекации начинает реагировать на посторонние для него сигналы.

А.А.Ухтомский считал, что в каждый данный момент жизни возникает определяющий (доминантный) очаг возбуждения, подчиняющий себе деятельность всей нервной системы и определяющий характер приспособительной реакции. К доминантному очагу конвергируют возбуждения из различных областей ЦНС, а способность других центров реагировать на сигналы, приходящие к ним, затормаживается. Благодаря этому создаются условия для формирования определенной реакции организма на раздражитель, имеющий наибольшее биологическое значение, т.е. удовлетворяющий жизненно важную потребность.

В естественных условиях существования доминирующее возбуждение может охватывать целые системы рефлексов, в результате возникает пищевая, оборонительная, половая и другие формы деятельности. Доминантный центр возбуждения обладает рядом свойств:

1) для его нейронов характерна высокая возбудимость, что способствует конвергенции к ним возбуждений из других центров;

2) его нейроны способны суммировать приходящие возбуждения;

3) возбуждение характеризуется стойкостью и инертностью, т.е. способностью сохраняться даже тогда, когда стимул, вызвавший образование доминанты, прекратил действие.

Несмотря на относительную стойкость и инертность возбуждения в доминантном очаге, деятельность ЦНС в нормальных условиях существования весьма динамична и изменчива. ЦНС обладает способностью к перестройке доминантных отношений в соответствии с изменяющимися потребностями организма. Учение о доминанте нашло широкое применение в психологии, педагогике, физиологии умственного и физического труда, спорте.

4. Принцип обратной связи. Процессы, происходящие в ЦНС, невозможно координировать, если отсутствует обратная связь, т.е. данные о результатах управления функциями. Обратная связь позволяет соотнести выраженность изменений параметров системы с ее работой. Связь выхода системы с ее входом с положительным коэффициентом усиления называется положительной обратной связью, а с отрицательным коэффициентом - отрицательной обратной связью. Положительная обратная связь в основном характерна для патологических ситуаций.

Отрицательная обратная связь обеспечивает устойчивость системы (ее способность возвращаться к исходному состоянию после прекращения влияния возмущающих факторов). Различают быстрые (нервные) и медленные (гуморальные) обратные связи. Механизмы обратной связи обеспечивают поддержание всех констант гомеостаза. Например, сохранение нормального уровня кровяного давления осуществляется за счет изменения импульсной активности баро-рецепторов сосудистых рефлексогенных зон, которые изменяют тонус вагуса и вазомоторных симпатических нервов.

5. Принцип реципрокности. Он отражает характер отношений между центрами, ответственными за осуществление противоположных функций (вдоха и выдоха, сгибание и разгибание конечностей), и заключается в том, что нейроны одного центра, возбуждаясь, тормозят нейроны другого и наоборот.

6. Принцип субординации (соподчинения). Основная тенденция в эволюции нервной системы проявляется в сосредоточении функций регуляции и координации в высших отделах ЦНС - це-фализация функций нервной системы. В ЦНС имеются иерархические взаимоотношения - высшим центром регуляции является кора больших полушарий, базальные ганглии, средний, продолговатый и спинной мозг подчиняются ее командам.

7. Принцип компенсации функций. ЦНС обладает огромной компенсаторной способностью, т.е. может восстанавливать некоторые функции даже после разрушения значительной части нейронов, образующих нервный центр (см. пластичность нервных центров). При повреждении отдельных центров их функции могут перейти к другим структурам мозга, что осуществляется при обязательном участии коры больших полушарий. У животных, которым после восстановления утраченных функций удаляли кору, вновь происходила их утрата.

При локальной недостаточности тормозных механизмов или при чрезмерном усилении процессов возбуждения в том или ином нервном центре определенная совокупность нейронов начинает автономно генерировать патологически усиленное возбуждение - формируется генератор патологически усиленного возбуждения.

При высокой мощности генератора возникает целая система функционирующих в едином режиме неирональных образований, что отражает качественно новый этап в развитии заболевания; жесткие связи между отдельными составными элементами такой патологической системы лежат в основе ее устойчивости к различным лечебным воздействиям. Изучение природы этих связей позволило Г.Н.Крыжановскому обнаружить новую форму внутрицентральных отношений и интегративной деятельности ЦНС - принцип детерминанты.

Его суть состоит в том, что структура ЦНС, формирующая функциональную посылку, подчиняет себе те отделы ЦНС, к которым она адресована и образует вместе с ними патологическую систему, определяя характер ее деятельности. Для такой системы характерно отсутствие постоянства и неадекватности функциональных посылок, т.е. такая система является биологически отрицательной. Если в силу тех или иных причин патологическая система исчезает, то образование ЦНС, игравшее главную роль, теряет свое детерминантное значение.

Нейрофизиология движений

Взаимоотношение отдельных нервных клеток и их совокупность образуют сложнейшие ансамбли процессов, которые необходимы для полноценной жизнедеятельности человека, для формирования человека как социума, определяет его как высокоорганизованное существо, что ставит человека на более высокий уровень развития по отношению к другим животным. Благодаря высокоспецефичным взаимоотношениям нервных клеток человек может продуцировать сложные действия и усовершенствовать их. Рассмотрим ниже процессы необходимые для осуществления произвольных движений.

Сам акт движения начинает формироваться в двигательной области коры плаща. Выделяют первичную и вторичную моторную кору. В первичной моторной коре (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется точная топографическая проекция мышц тела. В верхних участках прецентральной извилины сфокусированы проекции нижних конечностей и туловища, в нижних участках – верхних конечностей головы, шеи и лица занимающие большую часть извилины («двигательный человечек»Пенфильда). Эта зона характеризуется повышенной возбудимостью. Вторичная моторная зона представлена латеральной поверхностью полушария (поле 6), она отвечает за планирование и координацию произвольных движений. Она получает основную часть эфферентных импульсов от базальных ядер и мозжечка, а так же участвует в перекодировании информации о сложных движениях. Раздражение коры поля 6 вызывает более сложные координированные движения (поворот головы, глаз и туловищав противоположную сторону, содружественные сокращения мышц сгибателей-разгибателей на противоположной стороне). В премоторной зоне с координироанны двигательные центры отвечающие за социальные функции человека: цент письменной речи в заднем отделе средней лобной извилины, центр моторной речи Брока (поле 44) в заднем отделе нижней лобной извилины, обеспечивающий речевой праксис, а также музыкальный моторный центр (поле 45), определяющий тональность речи и способность петь.

В моторной коре лучше, чем в других зонах коры, выражен слой крупных пирамидных клеток Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к коре. Такие рядом расположенные нейронные комплексы, выполняющие сходные функции, получили название функциональных двигательных колонок. Пирамидные нейроны двигательной колонки могут тормозить или возбуждать мотонейроны стволовых или спинальных центров, например, иннервирующих одну мышцу. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, как правило, расположены в нескольких колонках.

Пирамидные пути состоят из 1миллиона волокон кортикоспинального пути, начинающихся от коры верхней и средней трети прецентральной извилины, и 20 миллионов волокон кортикобульбарного пути, начинающегося от коры нижней трети прецентральной извилины(проекция лица и головы). Волокна пирамидного пути оканчиваются на альфа мотонейронах двигательных ядер 3-7 и 9-12 черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах(кортикоспинальный путь). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы (профессиональные навыки)формирование которых начинается в базальных ганглиях и мозжечке и заканчивается в вторичной моторной зоне. Большинство волокон двигательного пути перекрещены, но малая их часть идет на ту же сторону, что способствует компенсации при одностороннем поражении.

К корковым экстрапирамидным путям относятся кортикорубральный и кортикоретикулярные пути, начинающиеся приблизительно от тех зон в которых начинаются пирамидные пути. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга от которых далее начинается руброспинальный путь. Волокна кортикоретикулярного пути оканчиваются на медиальных ядрах ретикулярной формации моста (начало медиального ретикулярного пути), и на нейронах гиганских клеток ретикулярного пути продолговатого мозга, от которых начинается латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, обеспечивающие точные движения. Эти экстрапирамидные пути являются составными элементами экстрапирамидной системы, к которой также относится мозжечок, базальные ядра, моторные центры ствола мозга; она осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо и тд.

Оценивая в общем роль различных структур головного мозга в регуляции сложных целенаправленных движений, можно отметить, что побуждение к движению создаются в лимбической системе, замысел движения - в ассоциативной зоне больших полушарий, программы движения-в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Нервная система (Н.с.) - это совокупность структур в организме животных и человека, объединяющая деятельность всех органов и систем и обеспечивающая функционирование организма как единого целого в его постоянном взаимодействии с внешней средой. Н.с. воспринимает внешние и внутренние раздражения, анализирует эту информацию, отбирает и перерабатывает её и в соответствии с этим регулирует и координирует функции организма.

Рис. 1.

Нервная система образована главным образом нервной тканью, основной элемент которой - нервная с отростками, обладающая высокой возбудимостью и способностью к быстрому проведению возбуждения.

Структурная и функциональная единица нервной системы - нейрон, состоящий из тела нервной клетки и отростков - Аксон а и Дендритов. Кроме нервных клеток, в структуру Н. с. входят глиальные клетки. Нейроны являются в известной мере самостоятельными единицами - их протоплазма не переходит из одного нейрона в другой (см. Нейронная теория). Взаимодействие между нейронами осуществляется благодаря контактам между ними (см. Синапсы; рис. 2):

Рис. 2. Схема строения синаптических соединений : А - двигательный нейрон спинного мозга; Б - синаптические окончания отростка нейрона на поверхности двигательного нейрона в увеличенном масштабе; В - ультраструктура отдельного синапса, демонстрирующая синаптические пузырьки и митохондрии.

В области контакта между окончанием одного нейрона и поверхностью другого в большинстве случаев сохраняется особое пространство - синаптическая щель. Основные функции нейронов: восприятие раздражений, их переработка, передача этой информации и формирование ответной реакции. В зависимости от типа и хода нервных отростков (волокон), а также их функций нейроны подразделяют на: а) рецепторные (афферентные), волокна которых проводят нервные импульсы от рецепторов в центральной нервной системе (ЦНС); тела их находятся в спинальных ганглиях или ганглиях черепномозговых нервов; б) двигательные (эфферентные), связывающие ЦНС с эффекторами; тела и дендриты их находятся в ЦНС, а аксоны выходят за её пределы (за исключением эфферентных нейронов вегетативной Н. с., тела которых расположены в периферических ганглиях); в) вставочные (ассоциативные) нейроны, служащие связующими звеньями между афферентными и эфферентными нейронами; тела и отростки их расположены в ЦНС.

Деятельность нервной системы основывается на двух процессах: возбуждении (См. Возбуждение) и торможении (См. Торможение).

Возбуждение может быть распространяющимся (см. Импульс нервный) или местным - нераспространяющимся, стационарным (последнее открыто русским физиологом Николаем Евгеньевичем Введенским в 1901 году). Торможение - процесс, тесно связанный с возбуждением и внешне выражающийся в снижении возбудимости клеток. Одна из характерных черт тормозного процесса - отсутствие способности к активному распространению по нервным структурам (явление торможения в нервных центрах впервые было установлено естествоиспытателем-материалистом Иваном Михайловичем Сеченовым в 1863 году).

Клеточные механизмы возбуждения и торможения подробно изучены. Тело и отростки нервной клетки покрыты мембраной, постоянно несущей на себе разность потенциалов (так называемый мембранный потенциал). Раздражение расположенных на периферии чувствительных окончаний афферентного нейрона преобразуется в изменение этой разности потенциалов (см. Биоэлектрические потенциалы). Возникающий вследствие этого нервный импульс распространяется по нервному волокну и достигает его пресинаптического окончания, где вызывает выделение в синаптическую щель высокоактивного химического вещества - Медиатора. Под влиянием последнего в постсинаптической мембране, чувствительной к действию медиатора, происходит молекулярная реорганизация поверхности. В результате постсинаптическая мембрана начинает пропускать ионы и деполяризуется, вследствие чего на ней возникает электрическая реакция в виде местного возбуждающего постсинаптического потенциала (ВПСП), вновь генерирующего распространяющийся импульс.

Нервные импульсы, возникающие при возбуждении особых тормозящих нейронов, вызывают гиперполяризацию постсинаптической мембраны и, соответственно, тормозящий постсинаптический потенциал (ТПСП). Помимо этого, установлен и другой вид торможения, формирующийся в пресинаптической структуре, - пресинаптическое торможение, обусловливающее длительное снижение эффективности синаптической передачи (см. Мембранная теория возбуждения).

В основе деятельности нервной системы лежит рефлекс, т. е. реакция организма на раздражения рецепторов, осуществляемая при посредстве Н. с. Термин «рефлекс» был впервые введён в зарождавшуюся физиологию французом Рене Декартом в 1649 году, хотя конкретных представлений о том, как осуществляется рефлекторная деятельность, в то время ещё не было. Такие сведения были получены лишь значительно позже, когда морфологи приступили к исследованию строения и функций нервных клеток (Р. Дютроше, 1824; немецкий зоолог и анатом Кристиан Готфрид Эренберг, 1836; чешский естествоиспытатель, Ян Эвангелиста Пуркине, 1837; итальянский гистолог Камилло Гольджи, 1873; испанский гистолог Сантьяго Рамон-и-Кахаль, 1909), а физиологами были изучены основные свойства нервной ткани (итальянский анатом и физиолог Луиджи Гальвани, 1791; К. Маттеуччи, 1847; немецкий физиолог Эмиль Генрих Дюбуа-Реймон, 1848 - 49; российский физиолог Николай Евгеньевич Введенский, 1901; физиолог Александр Филиппович Самойлов, 1924; Д. С. Воронцов, 1924; и другие).

В конце 19 и начале 20 веков были созданы карты расположения нервных центров и нервных путей в мозге, а также получены сведения об основных рефлекторных процессах и о локализации функций в мозге, с тех пор постоянно пополняемые и расширяемые (российский ученый Иван Михайлович Сеченов, 1863; физиолог Николай Александрович Миславский, 1885; невролог, психиатр и психолог Владимир Михайлович Бехтерев , 1903; физиолог Иван Петрович Павлов , 1903; английский физиолог Чарлз Скотт Шеррингтон, 1906; российский физиолог Алексей Алексеевич Ухтомский, 1911; грузинский физиолог Иван Соломонович Бериташвили, 1930; российский и армянский физиолог, один из создателей эволюционной физиологии Леон Абгарович Орбели, 1932; Дж. Фултон, 1932; английский физиолог Эдгар Дуглас Эдриан, 1932; российский физиолог Петр Кузьмич Анохин, 1935; физиолог Константин Михайлович Быков, 1941; Х. Мэгоун, 1946; и др.).

Все рефлекторные процессы связаны с распространением возбуждения по определённым нервным структурам - рефлекторным дугам (См. Рефлекторная дуга). Основные элементы рефлекторной дуги: рецепторы, центростремительный (афферентный) нервный путь, внутрицентральные структуры различной сложности, центробежный (эфферентный) нервный путь и исполнительный орган (эффектор). Различные группы рецепторов возбуждаются раздражителями разной модальности (т. е. качественной специфичности) и воспринимают раздражения, исходящие как из внешней среды (экстерорецепторы - органы зрения, слуха, обоняния и др.), так и из внутренней среды организма (интерорецепторы, возбуждающиеся при механических, химических, температурных и др. раздражениях внутренних органов, мышц и др.). Нервные сигналы, несущие в центральной нервной системе информацию от рецепторов по нервным волокнам, лишены модальности и обычно передаются в виде серии однородных импульсов. Информация о различных характеристиках раздражений кодируется изменениями частоты импульсов, а также приуроченностью нервной импульсации к определённым волокнам (так называемое пространственно-временное кодирование).

Совокупность рецепторов данной области тела животного или человека, раздражение которых вызывает определённый тип рефлекторной реакции, называется рецептивным полем рефлекса. Такие поля могут накладываться друг на друга. Совокупность нервных образований, сосредоточенных в ЦНС и ответственных за осуществление данного рефлекторного акта, обозначают термином Нервный центр. На отдельном нейроне в нервной системе может сходиться огромное число окончаний волокон, несущих импульсы от др. нервных клеток. В каждый данный момент в результате сложной синаптической переработки этого потока импульсов обеспечивается дальнейшее проведение лишь одного, определённого сигнала - принцип конвергенции, лежащий в основе деятельности всех уровней Н. с. («принцип конечного общего пути» Шеррингтона, получивший развитие в трудах Ухтомского и др.).

Пространственно-временная суммация синаптических процессов служит основой для различных форм избирательного функционального объединения нервных клеток, лежащего в основе анализа поступающей в нервную систему информации и выработки затем команд для выполнения различных ответных реакций организма. Такие команды, как и афферентные сигналы, передаются от одной клетки к другой и от ЦНС к исполнительным органам в виде последовательностей нервных импульсов, возникающих в клетке в том случае, когда суммирующиеся возбуждающие и тормозящие синаптические процессы достигают определённого (критического для данной клетки) уровня - порога возбуждения.

Несмотря на наследственно закрепленный характер связей в основных рефлекторных дугах, характер рефлекторной реакции может в значительной степени изменяться в зависимости от состояния центральных образований, через которые они осуществляются. Так, резкое повышение или понижение возбудимости центральных структур рефлекторной дуги может не только количественно изменить реакцию, но и привести к определённым качественным изменениям в характере рефлекса. Примером такого изменения может служить явление доминанты.

Важное значение для нормального протекания рефлекторной деятельности имеет механизм так называемой обратной афферентации - информации о результате выполнения данной рефлекторной реакции, поступающей по афферентным путям от исполнительных органов. На основании этих сведений в случае, если результат неудовлетворителен, в сформировавшейся функциональной системе могут происходить перестройки деятельности отдельных элементов до тех пор, пока результат не станет соответствовать уровню, необходимому для организма (П. К. Анохин, 1935).

Всю совокупность рефлекторных реакций организма делят на две основные группы: Безусловные рефлексы - врождённые, осуществляемые по наследственно закрепленным нервным путям, и Условные рефлексы , приобретённые в течение индивидуальной жизни организма путём образования в ЦНС временных связей. Способность образования таких связей присуща лишь высшему для данного вида животных отделу нервной системы (для млекопитающих и человека - это кора головного мозга). Образование условнорефлекторных связей позволяет организму наиболее совершенно и тонко приспосабливаться к постоянно изменяющимся условиям существования. Условные рефлексы были открыты и изучены И. П. Павловым в конце 19 - начале 20 веков. Исследование условнорефлекторной деятельности животных и человека привело его к созданию учения о высшей нервной деятельности (См. Высшая нервная деятельность) (ВНД) и анализаторах. Каждый анализатор состоит из воспринимающей части - рецептора, проводящих путей и анализирующих структур ЦНС, обязательно включающих её высший отдел. Кора головного мозга у высших животных - совокупность корковых концов анализаторов; она осуществляет высшие формы анализаторной и интегративной деятельности, обеспечивая совершеннейшие и тончайшие формы взаимодействия организма с внешней средой.

Нервная система обладает способностью не только немедленно перерабатывать поступающую в неё информацию при помощи механизма взаимодействующих синаптических процессов, но и хранить следы прошлой активности (механизмы памяти (См. Память)). Клеточные механизмы сохранения в высших отделах нервной ситсемы длительных следов нервных процессов, лежащие в основе памяти, интенсивно изучаются.

Наряду с перечисленными выше функциями нервная система осуществляет также регулирующие влияния на обменные процессы в тканях - адаптационно-трофическую функцию (И. П. Павлов, Л. А. Орбели, А. В. Тонких и др.). При перерезке или повреждении нервных волокон свойства иннервируемых ими клеток изменяются (это касается как физико-химических свойств поверхностной мембраны, так и биохимических процессов в протоплазме), что, в свою очередь, сопровождается глубокими нарушениями в состоянии органов и тканей (например, трофическими язвами). Если иннервация восстанавливается (в связи с регенерацией нервных волокон), то указанные нарушения могут исчезнуть.

Изучением строения, функций и развития нервной системы у человека занимается Неврология. - предмет невропатологии (См. Невропатология) и нейрохирургии. (П. Г. Костюк)

Подробнее о нервной системе читайте в литературе:

  • Орбели Л. А., Лекции по физиологии нервной системы, 3 изд., М. - Л., 1938;
  • его же, Избр. труды, т. 1 - 5, М. - Л., 1961 - 68;
  • Ухтомский А. А., Собр. соч., т. 1 - 6, Л., 1945 - 62;
  • Павлов И. П., Полн. собр. соч., 2 изд., т. 2,Москва , 1951;
  • Сеченов И. М., Избр. произв., т. 1, [М.], 1952;
  • Коштоянц Х. С., Основы сравни тельной физиологии, т. 2, М., 1957;
  • Бериташвили И. С., Общая физиология мышечной и нервной системы, 3 изд., т. 1, М., 1959;
  • Сепп Е. К., История развития нервной системы позвоночных, 2 изд., М., 1959;
  • Экклс Дж., Физиология нервных клеток, пер. с англ., М., 1959;
  • Беклемишев В. Н., Основы сравнительной анатомии беспозвоночных, 3 изд., т. 2, М., 1964;
  • Катц Б., Нерв, мышца и синапс, пер. с англ., М., 1968;
  • Окс С., Основы нейрофизиологии, пер. с англ., М., 1969;
  • Шеррингтон Ч., Интегративная деятельность нервной системы, пер. с англ., Л., 1969: Костюк П. Г., Физиология центральной нервной системы, К., 1971;
  • Ariens Kappers С. U., Huber G. С., Crosby E. С., The comparative anatomy of the nervous system of vertebrates, including man, v. 1 - 2, N. Y., 1936;
  • Bullock T. Н., Horridge G. A., Structure and function in the nervous systems of invertebrates, v. 1 - 2, S. F. - L., 1965.

Найти ещё что-нибудь интересное:

В основе координационной деятельности ЦНС лежит взаимодействие между процессами возбуждения и торможения. О существовании возбуждения в нервах, мышцах, в ЦНС было известно давно. Торможение в ЦНС было открыто И.М.Сеченовым (1862 г.) в опытах на лягушках и получило название «Сеченовское торможение». Он определял время сгибательного рефлекса (по Тюрку), погружая лапку лягушки в кислоту, а затем на зрительные бугры накладывал кристаллик поваренной соли. После наложения кристаллика происходило удлинение времени рефлекса или рефлекс полностью затормаживался, а после снятия кристаллика соли и промывания этого участка мозга водой время рефлекса восстанавливалось до исходного уровня. Согласованная (координационная) деятельность обеспечивается за счет ряда механизмов:

1) Принцип доминанты. Он был сформулирован А.А.Ухтомским как основной принцип работы нервных центров. Доминантный (или господствующий) очаг возбуждения характеризуется следующими свойствами: повышенной возбудимостью; инертностью (стойкостью) возбуждения, т.е. может сохраняться длительное время; способностью к суммации возбуждений, притягивая на себя возбуждение с других центров; способностью тормозить субдоминантные очаги возбуждения других нервных центров.

2) Принцип окклюзии. Этот принцип противоположен пространственному облегчению или суммации, и он заключается в том, что два афферентных входа совместно возбуждают меньшую группу мотонейронов по сравнению с эффектами при раздельной их активации. Причина окклюзии состоит в том, что афферентные входы в силу конвергенции отчасти адресуются к одним и тем же мотонейронам, которые затормаживаются при активации обоих входов одновременно. Явление окклюзии проявляется в случаях применения сильных афферентных раздражений.

3) Принцип обратной связи. Процессы саморегуляции в организме в полном объеме могут осуществляться только в том случае, когда функционирует канал обратной связи. За счет импульсов, поступающих по этому каналу, происходит оценка правильности исполнения поставленной задачи, а если она не выполнена, то вносятся коррекции для достижения результата.

Велико значение механизмов обратной связи в поддержании гомеостаза. Так, например, поддержание постоянного уровня кровяного давления осуществляется за счет изменения импульсной активности барорецепторов сосудистых рефлексогенных зон, в результате чего измененяеся тонус вазомоторных симпатических нервов и таким образом нормализуют кровяное давление.

4) Принцип реципрокности (сочетанности, сопряженности, взаимообусловленности). Он отражает характер отношений между центрами ответственными за осуществление противоположных функций (вдоха и глотания, выдоха и выдоха, сгибания и разгибания конечностей и т.д.). Например, активация проприорецепторов мышцы-сгибателя одновременно возбуждает центр мышц сгибателей и тормозит центр мышц разгибателей. Реципрокное торможение играет важную роль в координации двигательных актов. Реципркные отношения имеют динамический характер (о чем говорил еще Введенский), а Шеррингтон эти отношения рассматривал как статические явления. Опытами П.К.Анохина с перекрестным подшиванием сухожилий сгибателей к разгибателям и наоборот было установлено, что через 6–8 месяцев мышцы сгибатели начинают выполнять функцию разгибателей, а разгибатели функцию сгибателей. Такая перестройка реципрокных взаимоотношений была бы невозможна, если реципрокные отношения имели бы строго раз и навсегда зафиксированный (статический) характер. За счет пластичности ЦНС и в результате постоянной неадекватной импульсации с сокращающихся мышц происходит изменение первоначального функционального взаимоотношения между сгибательным и разгибательным центрами. Эти исследования Анохина, проведенные еще в 30–е годы, послужили основой для введения понятия обратная афферентация (шестой составной части рефлекторного пути) и явились основой для создания теории о функциональных системах и биологической кибернетики (опередив в этом отношении Винера, который считается основоположником кибернетики (1948 г.), примерно на 13–15 лет).

5) Принцип общего конечного пути. Эффекторные нейроны ЦНС, например, мотонейроны спинного мозга, могут вовлекаться в осуществление различных реакций организма возбуждениями, приходящими к ним от большого числа афферентных и промежуточных нейронов, для которых они являются конечным путем (путем от ЦНС к эффектору). Например, на мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна афферентных нейронов, нейронов пирамидного тракта и экстрапирамидной системы (ядер мозжечка, ретикулярной формации и многих других структур)

6) Явления конвергенции - схождение нервных импульсов на одни и те же центральные нейроны. Такая особенность зависит не только от функциональных свойств центров, но обусловлено также количественными соотношениями периферических рецепторных и промежуточных центральных нейронов. Это соотношение составляет примерно 10:1. Явления конвергенции играют решающее значение при формировании общего конечного пути.

7) Явления дивергенции - процесс противоположный конвергенции, т.е. импульсы, поступающие в ЦНС, распространяются (иррадиируют) на соседние участки.

8) Субординационные взаимоотношения - соподчинение, т.е. вышележащие отделы ЦНС оказывают свое регулирующее влияние на нижележащие отделы.