Здоровье

Путь реализации генетической информации последовательность. Этапы реализации генетической информации

1. Какие процессы относятся к реакциям матричного синтеза?

Брожение, трансляция, транскрипция, фотосинтез, репликация.

К реакциям матричного синтеза относятся трансляция, транскрипция и репликация.

2. Что такое транскрипция? Как протекает этот процесс?

Транскрипция – процесс переписывания генетической информации с ДНК на РНК (биосинтез РНК на соответствующих участках одной из цепей ДНК); одна из реакций матричного синтеза.

Транскрипция осуществляется следующим образом. На определённом участке молекулы ДНК происходит разъединение комплементарных цепей. Синтез РНК будет осуществляться на одной из цепей (её называют транскрибируемой цепью).

Фермент РНК-полимераза распознаёт промотор (особую последовательность нуклеотидов, расположенную в начале гена) и взаимодействует с ним. Затем РНК-полимераза начинает двигаться вдоль транскрибируемой цепи и при этом синтезировать из нуклеотидов молекулу РНК. Транскрибируемая цепь ДНК используется в качестве матрицы, поэтому синтезированная РНК будет комплементарной соответствующему участку транскрибируемой цепи ДНК. РНК-полимераза наращивает цепочку РНК, присоединяя к ней новые нуклеотиды, до тех пор, пока не дойдёт до терминатора (особой последовательности нуклеотидов, расположенной в конце гена), после чего транскрипция прекращается.

3. Какой процесс называется трансляцией? Охарактеризуйте основные этапы трансляции.

Трансляция – процесс биосинтеза белка из аминокислот, происходящий на рибосомах; одна из реакций матричного синтеза.

Основные этапы трансляции:

● Связывание иРНК с малой субъединицей рибосомы, после чего присоединяется большая субъединица.

● Проникновение в рибосому метиониновой тРНК и комплементарное связывание её антикодона (УАЦ) со стартовым кодоном иРНК (АУГ).

● Проникновение в рибосому следующей тРНК, несущей активированную аминокислоту, и комплементарное связывание её антикодона с соответствующим кодоном иРНК.

● Возникновение пептидной связи между двумя аминокислотами, после чего первая (метиониновая) тРНК освобождается от аминокислоты и покидает рибосому, а иРНК сдвигается на один триплет.

● Наращивание полипептидной цепи (по механизму, описанному выше), происходящее до тех пор, пока в рибосому не попадёт один из трёх стоп-кодонов (УАА, УАГ или УГА).

● Прекращение синтеза белка и распад рибосомы на две отдельные субъединицы.

4. Почему при трансляции в состав белка включаются не любые аминокислоты в случайном порядке, а только те, которые закодированы триплетами иРНК, причём в строгом соответствии с последовательностью этих триплетов? Как вы думаете, сколько видов тРНК участвует в синтезе белков в клетке?

Правильное и последовательное включение аминокислот в растущую полипептидную цепь обеспечивается строгим комплементарным взаимодействием антикодонов тРНК с соответствующими кодонами иРНК.

Некоторые учащиеся могут ответить, что в синтезе белков участвует 20 видов тРНК – по одному для каждой аминокислоты. Но на самом деле в синтезе белков участвует 61 вид тРНК – их столько же, сколько существует смысловых кодонов (триплетов, кодирующих аминокислоты). Каждый вид тРНК имеет уникальную первичную структуру (последовательность нуклеотидов) и, как следствие, обладает особым антикодоном для комплементарного связывания с соответствующим кодоном иРНК. Например, аминокислота лейцин (Лей) может кодироваться шестью разными триплетами, поэтому существует шесть типов лейциновых тРНК, и все они имеют разные антикодоны.

Общее количество кодонов составляет 4 3 = 64, однако молекул тРНК к терминирующим кодонам (их три) не существует, т.е. 64 – 3 = 61 вид тРНК.

5. Реакции матричного синтеза следует относить к процессам ассимиляции или диссимиляции? Почему?

Реакции матричного синтеза относятся к процессам ассимиляции потому что:

● сопровождаются синтезом сложных органических соединений из более простых веществ, а именно – биополимеров из соответствующих мономеров (репликация сопровождается синтезом дочерних цепей ДНК из нуклеотидов, транскрипция – синтезом РНК из нуклеотидов, трансляция – синтезом белка из аминокислот);

● требуют затрат энергии (поставщиком энергии для реакций матричного синтеза служит АТФ).

6. Участок транскрибируемой цепи ДНК имеет следующий порядок нуклеотидов:

ТАЦТГГАЦАТАТТАЦААГАЦТ

Установите последовательность аминокислотных остатков пептида, закодированного этим участком.

По принципу комплементарности установим последовательность нуклеотидов соответствующей иРНК, а затем с помощью таблицы генетического кода определим последовательность аминокислотных остатков закодированного пептида.

Ответ: последовательность аминокислотных остатков пептида: Мет–Тре–Цис–Иле–Мет–Фен.

7. Исследования показали, что в молекуле иРНК 34% от общего числа азотистых оснований приходится на гуанин, 18% - на урацил, 28% - на цитозин и 20% - на аденин. Определите процентный состав азотистых оснований двуцепочечного участка ДНК, одна из цепей которого служила матрицей для синтеза данной иРНК.

● По принципу комплементарности определим процентный состав азотистых оснований соответствующей транскрибируемой цепи ДНК. Она содержит 34% цитозина (комплементарен гуанину иРНК), 18% аденина (комплементарен урацилу иРНК), 28% гуанина (комплементарен цитозину иРНК) и 20% тимина (комплементарен аденину иРНК).

● На основании состава транскрибируемой цепи определим процентный состав азотистых оснований комплементарной (нетранскрибируемой) цепи ДНК: 34% гуанина, 18% тимина, 28% цитозина и 20% аденина.

● Процентное содержание каждого типа азотистых оснований в двуцепочечной ДНК рассчитывается как среднее арифметическое процентного содержания этих оснований в обеих цепях:

Ц = Г = (34 % + 28 %) : 2 = 31 %

А = Т = (18 % + 20%) : 2 = 19 %

Ответ: соответствующий двухцепочечный участок ДНК содержит по 31% цитозина и гуанина, по 19% аденина и тимина.

8*. В эритроцитах млекопитающих синтез гемоглобина может происходить ещё в течение нескольких дней после утраты этими клетками ядер. Как вы можете это объяснить?

Потере ядра предшествует интенсивная транскрипция генов, кодирующих полипептидные цепи гемоглобина. В гиалоплазме накапливается большое количество соответствующих иРНК, поэтому синтез гемоглобина продолжается даже после утраты клеточного ядра.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

1.5. Этапы реализации генетической информации в клетке

Принципиально важным свойством генетической информации является ее способность к переносу (передаче) как в пределах одной клетки, так и от родительской клетки к дочерним либо между клетками разных индивидуумов в процессах клеточного деления и размножения организмов (см. также гл. 3). Что касается направлений внутриклеточного переноса генетической информации, то в случае ДНК-содержащих организмов они связаны с процессами репликации молекул ДНК, т.е. с копированием информации (см. подразд. 1.2), либо с синтезом молекул РНК (транскрипцией) и образованием полипептидов (трансляцией) (рис. 1.14). Как известно, каждый из указанных процессов осуществляется на основе принципов матричности и комплементарности.

Сложившиеся представления о переносе генетической информации по схеме ДНК → РНК → белок принято называть "центральной догмой" молекулярной биологии. Наряду с этим (наиболее распространенным) направлением переноса, который иногда обозначают как "общий перенос", известна и другая форма реализации генетической информации ("специализированный перенос"), обнаруженная у РНК-содержащих вирусов. В этом случае наблюдается процесс, получивший название обратной транскрипции, при котором первичный генетический материал (вирусная РНК), проникший в клетку-хозяина, служит матрицей для синтеза комплементарной ДНК с помощью фермента обратной транскриптазы (ревертазы), кодируемой вирусным геномом. В дальнейшем возможна реализация информации синтезированной вирусной ДНК в обычном направлении. Следовательно,

специализированный перенос генетической информации осуществляется по схеме РНК → ДНК → РНК → белок.

Транскрипция является первым этапом общего переноса генетической информации и представляет собой процесс биосинтеза молекул РНК по программе ДНК. Принципиальный смысл этого процесса состоит в том, что информация структурного гена (либо нескольких расположенных рядом генов), записанная в форме нуклеотидной последовательности кодирующей нити ДНК в ориентации 3"→ 5", переписывается (транскрибируется) в нуклеотидную последовательность молекулы РНК, синтезируемой в направлении 5" → 3" на основе комплементарного соответствия дезоксирибонуклеотидов матричной нити ДНК рибонуклеотидам РНК (А-У, Г-Ц, Т-А, Ц-Г) (рис. 1.15). В качестве продуктов транскрипции (транскриптов) можно рассматривать все типы молекул РНК, участвующих в биосинтезе белков в клетке, — матричные (информационные) РНК (мРНК, или иРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК), малые ядерные РНК (мяРНК).

Процесс транскрипции обеспечивается комплексным действием ряда ферментов, к числу которых относится РНК-полимераза, представляющая собой сложный белок, состоящий из нескольких субъединиц и способный выполнять несколько функций. В отличие от прокариот (бактерий), в клетках которых имеется РНК-полимераза лишь одного типа, обеспечивающая синтез разных молекул РНК, у эукариот установлено наличие ядерных РНК-полимераз трех типов (I, II, III), а также РНК-полимераз клеточных органелл, содержащих ДНК (митохондрий, пластид). РНК-полимераза I находится в ядрышке и участвует в синтезе большинства молекул рРНК, РНК-полимераза II обеспечивает синтез мРНК и мяРНК, а РНК-полимераза III осуществляет синтез тРНК и одного варианта молекул рРНК.

Транскрипция подразделяется на три основные стадии — инициацию (начало синтеза РНК), элонгацию (удлинение полинуклеотидной цепочки) и терминацию (окончание процесса).

Инициация транскрипции зависит от предварительного специфического связывания РНК-полимеразы с узнаваемой ею короткой нуклеотидной последовательностью в участке молекулы ДНК (промоторе), расположенном перед стартовой точкой структурного гена, с которой начинается синтез РНК. Промоторы разных структурных генов могут быть идентичными либо содержат отличающиеся друг от друга последовательности нуклеотидов, что, вероятно, определяет эффективность транскрибирования отдельных генов и возможности регуляции самого процесса транскрипции (см. также подразд. 1.6). Промоторы многих генов прокариот имеют в своем составе универсальную последовательность 5"-ТАТААТ-3" (блок Прибнова), которая располагается перед стартовой точкой на расстоянии порядка 10 нуклеотидов и распознается РНК-полимеразой. Другая относительно часто встречающаяся узнаваемая последовательность этих организмов (5"-ТТГАЦА-3") обычно обнаруживается на расстоянии примерно 35 нуклеотидов от стартовой точки. В геномах эукариот функцию узнавания для РНК-полимеразы II могут выполнять универсальные последовательности ТАТА (блок Хогнесса), ЦААТ и состоящие из повторяющихся нуклеотидов Г и Ц (ГЦ-мотивы). При этом та или иная промоторная область может содержать либо одну из указанных последовательностей либо комбинацию двух или трех таких последовательностей.

Специфическое прочное связывание РНК-полимеразы с тем или иным узнаваемым ею участком промоторной области позволяет ей начать процесс расплетания молекулы ДНК вплоть до стартовой точки, с которой она начинает осуществлять полимеризацию рибонуклеотидов с использованием в качестве матрицы однонитевого 3"-5"-фрагмента ДНК.

Дальнейшее расплетание ДНК структурного гена сопровождается удлинением синтезируемого полирибонуклеотида (элонгацией нити РНК), продолжающимся вплоть до достижения РНК-полимеразой области терминатора. Последний представляет собой нуклеотидную последовательность ДНК, которая узнается РНК-полимеразой при участии других белковых факторов терминации, что приводит к окончанию синтеза транскрипта и его отсоединению от матрицы. В большинстве случаев терминатор находится в конце структурного гена, обеспечивая синтез одной моногенной молекулы мРНК. При этом у прокариот возможен синтез полигенной молекулы мРНК, кодирующей синтез двух и большего числа полипептидных цепочек. Происходит непрерывное транскрибирование нескольких расположенных рядом друг с другом структурных генов, имеющих один общий терминатор. Полигенная мРНК может содержать в своем составе нетранслируемые межгенные области (спейсеры), разделяющие кодирующие участки для отдельных полипептидов, что, вероятно, обеспечивает последующее разделение и самих синтезируемых полипептидов.

Поскольку структурные гены эукариот имеют прерывистое (мозаичное) строение, то их транскрипция имеет специфические особенности, отличающие ее от транскрипции у прокариот. В случае эукариотического гена, кодирующего синтез полипептида, этот процесс начинается с транскрибирования всей нуклеотидной последовательности, содержащей как экзонные, так и интронные участки ДНК. Образовавшаяся при этом молекула мРНК, отражающая структуру всего мозаичного гена, которую называют гетерогенной ядерной РНК (гяРНК) либо проматричной РНК (про-мРНК), претерпевает затем процесс созревания (процессинг мРНК).

Процессинг состоит в ферментативном разрезании первичного транскрипта (гяРНК) с последующим удалением его интронных участков и воссоединением (сплайсингом) экзонных участков, формирующих непрерывную кодирующую последовательность зрелой мРНК, которая в дальнейшем участвует в трансляции генетической информации. В качестве примера можно рассмотреть схему процессинга мРНК, синтезируемой при транскрипции гена β-глобиновой цепочки (рис. 1.16), структура которого обсуждалась ранее (см. рис. 1.13).

В процессинге принимают участие и короткие молекулы мяРНК, состоящие примерно из 100 нуклеотидов, которые представляют собой последовательности, являющиеся комплементарными последовательностям на концах интронных участков гяРНК. Спаривание комплементарных нуклеотидов мяРНК и гяРНК способствует сворачиванию в петлю интронных участков и сближению соответствующих экзонных участков гяРНК, что, в свою очередь, делает их доступными разрезающему действию ферментов (нуклеаз). Следовательно, молекулы мяРНК обеспечивают правильность вырезания интронов из гяРНК.

Во время процессинга происходит также модификация 5"-и 3"-концов формирующейся зрелой молекулы мРНК. Принципиальный смысл этого процесса можно рассмотреть на схемах


процессинга гена β-глобина человека (см. рис. 1.16) и полной нуклеотидной последовательности зрелой мРНК, образующейся в результате этого процесса. Как видно из рис. 1.17, на 5"-конце последовательности имеется короткий нетранслируемый (лидирующий) участок, состоящий из 17 триплетов, которые маркированы цифрами со знаком "минус". Этот участок кодируется транскрибируемой (но нетранслируемой) областью первого экзона β-гена (заштрихована на рис. 1.16). Модификация этого участка состоит в образовании 5"-концевого кэпа (от англ, cap — колпачок, шапочка), представляющего собой остаток 7-метилгуанозина, присоединенный к соседнему нуклеотиду необычным способом (с помощью три-фосфатной связи). Предполагается, что основная функция кэпа связана с узнаванием специфической последовательности молекулы рРНК, входящей в состав рибосомы, что обеспечивает точное прикрепление всего лидирующего участка молекулы мРНК к определенному участку этой рибосомы и инициацию процесса трансляции. Возможно также, что кэп предохраняет зрелую мРНК от преждевременного ферментативного разрушения во время ее транспортировки из ядра в цитоплазму клетки.

Модификация 3 "-конца мРНК β-глобина, также имеющего короткую нетранслируемую последовательность, кодируемую соответствующей областью третьего экзона β-гена (см. рис. 1.16), связана с образованием полиаденилового (поли А) "хвоста" молекулы, состоящего из 100 — 200 последовательно соединенных остатков адениловой кислоты. Для действия фермента, осуществляющего полиаденилирование, не нужна матрица, но требуется присутствие на 3"-конце мРНК сигнальной последовательности ААУААА (см. рис. 1.17). Предполагается, что полиадениловый "хвост" обеспечивает транспорт зрелой мРНК к рибосоме, защищая ее от ферментативного разрушения, но сам постепенно разрушается ферментами цитоплазмы, отщепляющими один за другим концевые нуклеотиды.

Трансляция как очередной этап реализации генетической информации заключается в синтезе полипептида на рибосоме, при котором в качестве матрицы используется молекула мРНК (считывание информации в направлении 5" → 3"). Следует заметить, что в клетках прокариот, не имеющих настоящего ядра с оболочкой, хромосомный генетический материал (ДНК) практически находится в цитоплазме, что определяет непрерывный характер взаимосвязи процессов транскрипции и трансляции. Иными словами, образовавшийся лидирующий 5"-конец молекулы мРНК, синтез которой еще не завершен, уже способен вступать в контакт с рибосомой, инициируя синтез полипептида, т.е. транскрипция и трансляция идут одновременно. Что касается эукариот, то процессы транскрипции их ядерной генетической информации и ее трансляции должны быть разделены во времени в связи с процессингом молекул РНК и необходимостью их последующей упаковки и


Рис. 1.17. Нуклеотидная последовательность зрелой мРНК -глобинового гена человека. Последовательность начинается с 7-метилгуанозина на 5"-конце (кэп-сайт), за которым следует короткий нетранслируемый участок РНК. Первый транслируемый кодон (АУГ) выделен шрифтом и помечен цифрой 0, поскольку кодируемая им аминокислота (метионин) в дальнейшем выщепляется из полипептида (первой аминокислотой зрелого белка будет валин, кодируемый ГУГ). Выделены также стоп-кодон УАА (кодон 147), на котором заканчивается трансляция (полипептид состоит из 146 аминокислот), и сигнальная последовательность для полиаденилирования (ААУААА) на 3"-конце транспортировки из кариоплазмы в цитоплазму с участием специальных транспортных белков.

Как и в случае транскрипции, процесс трансляции можно условно подразделить на три основные стадии — инициацию, элонгацию и терминацию.

Для инициации трансляции принципиально важное значение имеет специфичность структурной организации группы идентичных рибосом (полирибосомы, или полисомы), которая может участвовать в синтезе первичной структуры определенной белковой молекулы (полипептида), кодируемой соответствующей мРНК. Как известно, отдельная рибосома представляет собой клеточную органеллу, состоящую из молекул рРНК, которые определяют ее специфичность, и из белков. В составе рибосомы имеются 2 структурные субъединицы (большая и малая), которые можно дифференцировать на основании их способности по-разному осаждаться при ультрацентрифугировании препаратов очищенных рибосом из разрушенных клеток, т. е. по коэффициенту седиментации (величине 5). При определенных условиях в клетке может происходить разделение (диссоциация) этих двух субъединиц либо их объединение (ассоциация).

Рибосомы прокариот, а также митохондрий и хлоропластов состоят из большой и малой субъединиц с величинами 505 и 305 соответственно, тогда как у эукариот эти субъединицы имеют другие размеры (605 и 405). Поскольку процесс трансляции более детально был исследован у бактерий, то чаще всего его рассматривают в связи со структурой рибосом этих организмов. Как видно из рис. 1.18, рибосома содержит 2 участка, имеющих прямое отношение к инициации трансляции, обозначенные как P-участок (аминоацильный) и Р- участок (пептидильный), специфичность которых определяется сочетанием соответствующих областей субъединиц 505 и 305. При диссоциации субъединиц рибосомы эти участки становятся "недостроенными", что приводит к изменению их функциональной специфичности.

В процессе трансляции участвуют также молекулы тРНК, функции которых состоят в транспортировке аминокислот из цитозоля (цитоплазматического раствора) к рибосомам. Молекула тРНК, имеющая вторичную структуру в форме "клеверного листа", содержит в своем составе тройку нуклеотидов (антикодон), которая обеспечивает ее комплементарное соединение с соответствующим кодоном (триплетом) молекулы мРНК, кодирующей синтез полипептида на рибосоме, и акцепторный участок (на 3"-конце молекулы), к которому присоединяется определенная аминокислота (см. рис. 1.7). Процесс присоединения каждой из 20 аминокислот к акцепторному концу соответствующей тРНК связан с ее активацией определенным вариантом фермента аминоацил-тРНК-


синтетазы с использованием энергии аденозинтрифосфатов (молекул АТФ). Образовавшийся при этом специфический комплекс тРНК и аминокислоты, который получил название аминоацил-тРНК, перемещается затем к рибосоме и участвует в синтезе полипептида.

Инициация трансляции обеспечивается точным соединением лидирующего 5"-конца молекулы мРНК с определенной областью малой субъединицы диссоциированной рибосомы таким образом, что в "недостроенном" Р-участке оказывается стартовый (инициирующий) кодон АУГ этой молекулы (рис. 1.19). Функциональная особенность такого Р-участка состоит в том, что он может быть занят только инициирующей аминоацил-тРНК с антикодоном УАЦ, которая у эукариот несет аминокислоту метионин, а у бактерий — формилметионин. Поскольку синтез пояипептида всегда начинается с N-конца и нарастает в направлении к С-концу, то все белковые молекулы, синтезируемые в клетках прокариот, должны начинаться с N-формилметионина, а у эукариот — с N-метионина. Однако, в дальнейшем эти аминокислоты ферментативно выщепляются во время процессинга белковой молекулы (см. рис. 1.17).

После образования инициирующего комплекса в "недостроенном" Р-участке (см. рис. 1.19) становится возможным воссоединение малой и большой субъединиц рибосомы, что приводит к "достраиванию" Р-участка и A-участка. Лишь после этого следующая аминоацил-тРНК может занимать A-участок на основе принципа

комплементарности ее антикодона соответствующему кодону мРНК, находящемуся в этом участке (см. рис. 1.19).

Процесс элонгации начинается с образования пептидной связи между инициирующей (первой в цепочке) и последующей (второй) аминокислотами. Затем происходит перемещение рибосомы на один триплет мРНК в направлении 5"→ 3", что сопровождается отсоединением инициирующей тРНК от матрицы (мРНК), от инициирующей аминокислоты и выходом ее в цитоплазму. При этом вторая по счету аминоацил-тРНК передвигается из A-участка в Р-участок, а освободившийся А -участок занимается следующей (третьей по счету) аминоацил-тРНК. Процесс последовательного передвижения рибосомы "триплетными шагами" по нити мРНК повторяется, сопровождаясь освобождением тРНК, поступающих в Р-участок, и наращиванием аминокислотной последовательности синтезируемого полипептида.

Терминация трансляции связана с вхождением одного из трех известных стоп-триплетов мРНК в Л-участок рибосомы. Поскольку такой триплет не несет информации о какой-либо аминокислоте, но узнается соответствующими белками терминации, то процесс синтеза полипептида прекращается и он отсоединяется от матрицы (мРНК).

После выхода из функционирующей рибосомы свободный 5"-конец мРНК может вступать в контакт со следующей рибосомой полисомной группы, инициируя синтез еще одного (идентичного) полипептида. Следовательно, рассмотренный рибосомный цикл последовательно повторяется с участием нескольких рибосом одной и той же полисомы, в результате чего синтезируется группа идентичных полипептидов.

Посттрансляционная модификация полипептида представляет собой завершающий этап реализации генетической информации в клетке, приводящий к превращению синтезированного полипептида в функционально активную молекулу белка. При этом первичный полипептид может претерпевать процессинг, состоящий в ферментативном удалении инициирующих аминокислот, отщеплении других (ненужных) аминокислотных остатков и в химической модификации отдельных аминокислот. Затем происходит процесс сворачивания линейной структуры полипептида за счет образования дополнительных связей между отдельными аминокислотами и формирование вторичной структуры белковой молекулы (рис. 1.20). На этой основе формируется еще более сложная третичная структура молекулы.

В случае белковых молекул, состоящих более чем из одного полипептида, происходит образование комплексной четвертичной структуры, в которой объединяются третичные структуры отдельных полипептидов. В качестве примера можно рассмотреть модель молекулы гемоглобина человека (рис. 1.21), состоящей из



двух α-цепочек и двух β-цепочек, которые формируют стабильную тетрамерную структуру с помощью водородных связей. Каждая из глобиновых цепочек содержит также молекулу тема, который в комплексе с железом способен связывать молекулы кислорода, обеспечивая их транспортировку эритроцитами крови.

Базисные термины и понятия: акцепторный конец тРНК; аминоацил-тРНК; антикодон; гяРНК (про-РНК); инициация транскрипции и трансляции; инициирующая аминоацил-тРНК и аминокислота; инициирующий кодон мРНК; комплементарность; кэп; лидирующий 5"-конец мРНК; матричность; модификация концов молекулы мРНК; моногенная молекула мРНК; мРНК (иРНК); мяРНК; обратная транскриптаза (ревертаза); обратная транскрипция; общий перенос; перенос (передача) информации; полигенная молекула мРНК; полипептид; полирибосома (полисома); посттрансляционная модификация полипептида; промотор; процессинг РНК и полипептида; рибосома; РНК-полимераза; рРНК; специализированный перенос; сплайсинг; стартовая точка транскрипции; терминатор; терминация транскрипции и трансляции; транскрипт; транскрипция генетической информации; трансляция генетической информации; тРНК; элонгация транскрипции и трансляции; A-участок рибосомы; Р-участок рибосомы.

Генетический код – способ записи в молекуле ДНК информации о количестве и порядке расположения аминокислот в белке.

Свойства:

    Триплетность - одна аминокислота кодируется тремя нуклеотидами

    Неперекрываемость - один и тот же нуклеотидне может входить одновременно в состав двух или более триплетов

    Однозначность (специфичность) - определённый кодон соответствует только одной

    Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусовдочеловека

    Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.

14.Этапы реализации наследственной информации у прокариот и эукариот.

Репликация (синтез) ДНК

Синтез ДНК всегда начинается в строго определенных точках. Фермент топоизомераза раскручивает спираль. Геликаза разрушает водородные связи между цепями ДНК и образует вилку репликаций. SSB-белки препятствуют повторному формированию водородных связей.

РНК-праймаза синтезирует короткие фрагменты РНК (праймеры),которые присоединяются к 3"-концу.

ДНК-полимераза начинают от праймера и синтезирует дочернюю цепь(5" 3")-

Направление синтеза одной цепи ДНК совпадает с направлением движения вилки репликаций, поэтому данная цепь синтезируется непрерывно. Здесь синтез идет быстро. Направление синтеза второй цепи противоположно напралению вилки репликаций. Поэтому синтез данной цепи происходит в виде отдельных участков и идет медленно (фрагменты Оказаки).

Созревание ДНК: отщепляется РНК-праймеры, достраиваются недостающие нуклеотиды, фрагменты ДНК соединяются с помощью лигазы. Топоизомераза раскручивает спираль.

Этапы реализации наследственной информации (у эукариот)

1.Транскрипция

2.Процессинг

3.Трансялция

4.Посттрансляционные изменения

Трансляция – синтез молекулы РНК на основе молекулы ДНК. Ключевой фермент – РНК-полимераза.

РНК-полимераза должна распознать промотер и взаимодействовать с ним. Промотер –особый участок ДНК, который располагается перед информативной частью гена. Взаимодействие с промотором необходимо для активации РНК-полимеразы. После активации РНК-полимераза обеспечивает разрыв водородных связей между цепями ДНК.

Синтез РНК всегда происходит по определенной кодогенной цепи ДНК.На этой цепи промотер располагается ближе к 3"-концу.

Синтез РНК происходит по принципам комплементарности и антипараллельности.

РНК-полимераза достигает стоп-кодона (терминатор или терминирующей кодон).Это является сигналом для прекращения синтеза. Фермент инактивируется, отделяется от ДНК при этом освобождается вновь синтезированная молекула ДНК – первичный трансткрипт – про-РНК. Восстанавливается исходная структура ДНК.

Особенности строения гена эукариот:

У эукариотов гены включают в себя различные по функции участки

А) Интроны- фрагменты ДНК (гена), которые не кодируют аминокислоты в белке

Б)Экзоны – участки ДНК, которые кодируют аминокислоты в белке.

Прирывистая природа гена была обнаружена Роберцом и Шарпом (Ноб. Премия 1903г).

Количество интронов и экзонов в разных генах сильно отличается.

Процессинг (созревание)

Происходит созревание первичного транскрипта и образуется зрелая молекула матричной РНК, которая может участвовать в синтезе белка на рибосомах.

    На 5"- конце РНК формируется особый участок (структура) – КЭП или шапочка. КЭП обеспечивает взаимодействие с малой субъединицей рибосомы.

    На 3"-конце РНК присоединяется от 100 до 200 молекул нуклеотидов, несущих аденин (полиА). При синтезе белка эти нуклеотиды постепенно отщепляется, разрушение полиА является сигналом для разрушения молекул РНК.

    К некоторым нуклеотидам РНК присоединяется группа CH 3 – метилирование. Это увеличивает устойчивость ДНК к действию ферментов цитоплазмы.

    Сплайсинг – происходит вырезание интронов и сшивание между собой экзонов. Фермент рестриктаза удаляет, лигаза- сшивает)

Зрелая матричная РНК включает в себя:

Лидер обеспечивает связывание матричной РНК с субъединицей рибосомы.

СК – стартовый кодон – одинаковый у всех матричных РНК, кодирует аминокислоту

Кодирующий участок – кодирует аминокислоты в белке.

Стоп-кодон – сигнал о прекращаемся синтезе белка.

Во время процессинга происходит жесткий отбор в цитоплазму из ядра выходит около 10% молекул от числа первичных транскриптов.

Альтернативный сплайсинг

У человека имеется 25-30 тысяч генов.

Однако у человека выделено около 100 тысяч белков.

Альтернативный сплайсинг – это ситуация, при которой в клетках разных тканей один и тот же ген обеспечивает синтез одинаковых молекул проРНК. В разных клетках по разному определяется количество и границы между экзонами и интронами. В результате из одинаковых первичных транскриптов получаются различные мРНК и синтезируются разные белки.

Альтернативный сплайсинг доказан примерно для 50% генов человека.

Трансляция – это процесс сборки пептидной цепи на рибосомах согласно информации, заложенной в иРНК.

1.Инициация (начало)

2.Элонгация (удлинение молекулы)

3.Терминация (конец)

Инициация.

Молекула матрРНК с помощью КЭПа контактирует с малой субъединицей рибосомы. С помощью лидера РНК связывается с субъединицей рибосомы. К стартовому кодону присоединяется транспРНК, которая несет транспортную кислоту метионин. Затем присоединяется большая субъединица рибосомы. В целой рибосоме формируется два активных центра: аминоацильный и пептидильный. Аминоакцильный свободен, а пептидильный занят тРНК с метионином.

Элонгация.

В аминоакцильный цент входит мРНК, антикодон которой соответствует кодируещему.

После этого рибосома сдвигается относительно мРНК на 1 кодон.При этом аминоакцильный центр освобождается. В пептидильном центре находится мРНК, соединяется с второй аминокислотой. Процесс циклически повторяется.

3.Терминация

В аминоацильный центр поступает стоп-кодон, который распознается специальным белком, это является сигналом для прекращения синтеза белка. Субъединицы рибосомы разъединяются, освобождая при этом мРНК и вновь синтезируется полипептид.

4.Пострансляционные изменения.

При трансляции образуется первичная структура полипептида.Этого недостаточно для выполнения функций белка, поэтому белок изменяется, что обеспечивает его активность.

Образуется:

А) вторичная структура (водородные связи)

Б)глобула – третичная структура (дисульфидные связи)

В) четвертичная структура – гемоглобин

Г)Гликозилирование – присоединение к белку остатков сахаров (антитела)

Д) расщепление большого полипептида на несколько фрагментов.

Различия в реализации наследственной информации прокариот и эукариот:

1.У прокариот отстутсвуют экзоны и интроны, поэтому отсутствуют этапы процессинга и сплайсинга.

2.У прокариот транскрипция и трансляция происходит одновременно, т.е. идет синтез РНК и уже начинается синтез ДНК.

3.У эукариот синтез различных видов РНК контролируется различными ферментами. У прокариот все типы РНК синтезируются одним ферментом

4.У эукариот каждый ген имеет свой собственный уникальный промотер, у прокариот один промотер может контролировать работу несколькихгенов.

5. Только у прокариот имеется система Оперона

После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.

Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.

Что такое наследственная информация?

Итак, с чего все начиналось? Еще в 1868 нашли в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.

Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.

В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке. Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически. Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.

Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.

Функции ДНК

К функциям относятся хранение наследственной информации и ее передача потомству. Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий. Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.

Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.

Состав нуклеиновых кислот

Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:

  • Ортофосфорная кислота.
  • Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
  • Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.

Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.

Уровни организации наследственной информации

Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.

Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.

Разделяют несколько видов генов:

  • по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
  • по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.

Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка .

А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.

Каков генетический код человека?

Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.

У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая - от матери.

Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.

Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом - №17. А самая большая пара - 1 и 3.

Диаметр двойной спирали у человека - всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.

Как передается генетический код?

Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации - находятся внутри каждой клетки организма. Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку. После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.

Но у человека другой процесс передачи генов - половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.

Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах. Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов. Передача же информации осуществляется с помощью половых гамет — мужских и женских.

Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.

Реализация наследственной информации

В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.

Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.

Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.

Принцип комплементарности

Состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э. Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице. И точно так же отношение гуанина к цитозину всегда равно единице.

На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин - с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.

РНК и его виды

Что такое наследственная информация? нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.

Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.

  1. Информационная (иРНК) , или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
  2. Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
  3. рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.

Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.

Репарация поврежденной молекулы ДНК

Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.

Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.

Почему происходят мутации?

Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.

Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.

Геномные мутации наиболее серьезны . Их причина - это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.

Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.

Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.

Вспомните!

Какова структура белков и нуклеиновых кислот?

Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации - вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.

ДНК – двойная спираль, РНК – одинарные цепи, состоящие из нуклеотидов.

Какие типы РНК вам известны?

и-РНК, т-РНК, р-РНК.

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.

т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.

Где образуются субъединицы рибосом?

р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.

Какую функцию рибосомы выполняют в клетке?

Биосинтез белка – сборка белковой молекулы

Вопросы для повторения и задания

1. Вспомните полное определение понятия «жизнь».

Ф. Энгельс «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка. И у неорганических тел может происходить подобный обмен веществ, который и происходит с течением времени повсюду, так как повсюду происходят, хотя бы и очень медленно, химические действия. Но разница заключается в том, что в случае неорганических тел обмен веществ разрушает их, в случае же органических тел он является необходимым условием их существования»

2. Назовите основные свойства генетического кода и поясните их значение.

Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов, т.е. закодировать 64 аминокислоты, но в живом используется только 20.

Код однозначен – каждый триплет шифрует только одну аминокислоту.

Между генами имеются знаки препинания – знаки необходимы для правильной группировки в триплеты монотонной последовательности нуклеотидов, т.к. между триплетами нет знаков раздела. Роль разметки генов выполняют три триплета, не кодирующие никаких аминокислот – УАА, УАГ, УГА. Они означают конец белковой молекулы, как точка в предложении.

Внутри гена нет знаков препинания – поскольку генкод подобен языку; посмотрим это свойство на примере фразы:

ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ

Ген хранится в таком виде:

ЖИЛБЫЛКОТТИХБЫЛСЕРМИЛМНЕТОТКОТ

Смысл будет восстановлен, если правильно сгруппировать тройки, даже при отсутствии знаков препинания. Если же мы начнем группировку со второй буквы (второго нуклеотида), то получится такая последовательность:

ИЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ

Эта последовательность уже не имеет биологического смысла, и если она будет реализована, то получится чужеродное для данного организма вещество. Поэтому ген в цепи ДНК имеет строго фиксированное начало считывания и завершение.

Код универсален – един для всех живущих на Земле существ: у бактерии, грибов, человека одни и те же триплеты кодируют одни и те же аминокислоты.

3. Какие процессы лежат в основе передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?

В основе передачи наследственной информации из поколения в поколение лежит мейоз. Транскрипция (от лат. transcription - переписывание). Информация о структуре белков хранится в виде ДНК в ядре клетки, а синтез белков происходит на рибосомах в цитоплазме. В качестве посредника, передающего информацию о строении определённой белковой молекулы к месту её синтеза, выступает информационная РНК. Трансляция (от лат. trans lation - передача). Молекулы иРНК выходят через ядерные поры в цитоплазму, где начинается второй этап реализации наследственной информации - перевод информации с «языка» РНК на «язык» белка.

4. Где синтезируются все виды рибонуклеиновых кислот?

Все виды РНК синтезируются на матрице ДНК.

5. Расскажите, где происходит синтез белка и как он осуществляется.

Этапы биосинтеза белка:

– Транскрипция (от лат. переписывание): процесс синтеза и-РНК на матрице ДНК, это перенос генетической информации с ДНК на РНК, транскрипция катализируется ферментом РНК-полимеразой. 1) Движения РНК-полимеразы – расплетание и восстановление двойной спирали ДНК, 2) Информация с гена ДНК – на и-РНК по принципу комплементарности.

– Соединение аминокислот с т-РНК: Строение т-РНК: 1) аминокислота ковалентно присоединяется т-РНК с помощью фермента т-РНК-синтетазы соответвственно антикодону, 2) К черешку листа т-РНК присоединяется определенная аминокислота

– Трансляция: рибосомный синтез белка из аминокислот на и-РНК, протекающий в цитоплазме. 1) Инициация - начало синтеза. 2) Элонгация - собственно синтез белка. 3) Терминация - узнавание стоп-кодона – окончание синтеза.

6. Рассмотрите рис. 45. Определите, в каком направлении - справа налево или слева направо - движется относительно и-РНК изображённая на рисунке рибосома. Докажите свою точку зрения.

и-РНК движется свела направо рибосома всегда движется в противоположном направлении, чтобы не мешать процессы, так как на одной нити и-РНК одновременно может сидеть несколько рибосом (полисома). А также показано в какую сторону движутся т-РНК – справа налево как и рибосома.

Подумайте! Вспомните!

1. Почему углеводы не могут выполнять функцию хранения информации?

Нет принципа комплементарности у углеводов, невозможно создавать генетические копии.

2. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?

Образование в клетках других органических молекул, таких как жиры, углеводы, витамины и т. д., связано с действием белков-катализаторов (ферментов). Например, ферменты, обеспечивающие синтез жиров у человека, «делают» человеческие липиды, а аналогичные катализаторы у подсолнечника - подсолнечное масло. Ферменты углеводного обмена у животных образуют резервное вещество гликоген, а у растений при избытке глюкозы синтезируется крахмал.

3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?

В состоянии спирализации, так как в таком состоянии ДНК входит в состав хромосом.

4. Какие особенности строения молекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка. Состав РНК – нуклеотиды комплементарные нуклеотидам ДНК, малый размер по сравнению с ДНК (что обеспечивает выход из ядерных пор).

5. Объясните, почему молекула ДНК не могла быть построена из нуклеотидов трёх типов.

Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов (43), т.е. закодировать 64 аминокислоты, но в живом используется только 20. Это необходимо для замены любого нуклеотида, если вдруг в клетке его нет, то нуклеотид будет автоматически заменен на аналогичный, кодирующий эту же аминокислоту. Если бы было три нуклеотида, то 33 это будет всего 9 аминокислот, что невозможно, так как необходимо 20 аминокислот для любого организма.

6. Приведите примеры технологических процессов, в основе которых лежит матричный синтез.

Матричный принтер,

Нанотехнологии,

Матрица фотоаппарата

Матрица экрана ноутбука

Матрица жидко-кристаллических экранов

7. Представьте, что в ходе некоего эксперимента для синтеза белка были взяты тРНК из клеток крокодила, аминокислоты мартышки, АТФ дрозда, иРНК белого медведя, необходимые ферменты квакши и рибосомы щуки. Чей белок был в итоге синтезирован? Объясните свою точку зрения.

Генетический код зашифрован в и-РНК, значит – белого медведя.