Непознанное

Реферат: История открытия и подтверждения периодического закона Д. Менделеева

Есть в истории мировой науки открытия, которые смело можно назвать революционными. Их не так уж и много, но именно они выводили науку на новые рубежи, именно они показывали принципиально новый подход к решению поставленных задач, именно они имели огромное мировоззренческое и методологическое значение, более глубоко и полно раскрывая научную картину мира. К таковым можно отнести, например, теорию происхождения видов Ч.Дарвина, законы наследственности Г.Менделя, теорию относительности А.Эйнштейна. Периодический закон Д.И.Менделеева из разряда таких открытий.

В истории мировой науки и культуры имя Д.И.Менделеева занимает одно из самых почетных мест в ряду величайших корифеев мысли всех времен и народов. Это был не только гениальный и разносторонний ученый, оставивший потомкам основательные и оригинальные труды по физике, химии, метеорологии, метрологии, технике, различным отраслям промышленности и сельского хозяйства, экономике, но и выдающийся педагог, передовой общественный деятель, всю жизнь посвятивший неутомимому труду на благо и процветание своей Родины и науки.

Любая из его работ, будь то классический курс Основы химии, исследования по теории растворов или упругости газов и т.д., могла бы не только сделать имя ученого известным своим современникам, но и оставить значимый след в истории науки. Но все же первое, о чем мы думаем, говоря о Д.И.Менделееве, - это открытый им периодический закон и составленная таблица химических элементов. Поразительная, ставшая привычной четкость таблицы Менделеева из школьного учебника наших дней скрывает от нас гигантскую работу ученого по осознанию всего, что было открыто до него о превращениях веществ, работу, посильную только гению, благодаря которой и появилось открытие, не имеющее себе равных в истории науки, ставшее не только венцом атомно-молекулярного учения, но и оказавшиеся широким обобщением всего фактического материала химии, накопленного в течение ряда веков. Поэтому периодический закон стал прочной основой всего дальнейшего развития химии и других естественных наук.

Можно сказать, что путь к этому открытию Д.И.Менделеев начинает со своих первых работ, например Изоморфизм и Удельные объемы, в которых при изучении взаимосвязи свойств с составом начинает анализировать сначала свойства отдельных элементов, затем естественных групп и всех классов соединений, включая простые вещества. Но наиболее близко он подходит к этой проблеме при создании своего учебника Основы химии. Дело в том, что среди имевшихся учебников на русском и иностранных языках ни один не удовлетворял его полностью. После Международного конгресса в Карлсруэ требовался учебник химии, основанный на новых принципах, принятых большинством химиков и отражающий все новейшие достижения химической теории и практики. В процессе подготовки второй части Основ химии и было сделано открытие, не имевшее себе равных в истории науки. В течение двух последующих лет Д.И.Менделеев был занят важными теоретическими и экспериментальными исследованиями, связанными с выяснением ряда вопросов, возникших в связи с этим открытием. Итогом этой работы стала статья Периодическая законность химических элементов, опубликованная в 1871г. в Анналах химии и фармации. В ней были разработаны и последовательно изложены все стороны открытого им закона, а так же сформулированы важнейшие его приложения, т.е. Д.И.Менделеев указал путь направленного поиска в химии будущего. После Д.И.Менделеева химики знали, где и как искать неизвестное. Много замечательных ученых, основываясь на периодическом законе, предсказывали и описывали неизвестные химические элементы и их свойства. Все предсказанное, новые неизвестные элементы и их свойства и свойства их соединений, законы их поведения в природе - все было найдено, все подтвердилось. История науки не знает другого подобного триумфа. Открыт новый закон природы. Вместо разрозненных, не связанных между собой веществ перед наукой встала единая стройная система, объединившая в одно целое все элементы Вселенной.

Но не только в открытии нового заключался научный завет, оставленный Д.И.Менделеевым. Он поставил перед наукой еще более грандиозную задачу: объяснить взаимную связь между всеми элементами, между их физическими и химическими свойствами. После открытия периодического закона стало ясно, что атомы всех элементов построены по единому плану, что их строение может быть только таким, какое определяет периодичность их химических свойств. На развитие знаний о строении атома, о природе веществ закон Д.И.Менделеева оказал огромное и решающее влияние. В свою очередь, успехи атомной физики, появление новых методов исследования, развитие квантовой механики расширили и углубили сущность периодического закона, сохранили его актуальность и в наши дни.

Хотелось бы привести слова Д.И.Менделеева, записанные им в свой дневник 10 июля 1905г.: По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает (Ю. Соловьев. История химии).

Химия, как ни одна другая наука, приобрела за последние столетия вес и значимость. Использование на практике результатов исследований глубоко затронуло жизнь людей. С этим связан в наши дни интерес к истории химии, а также к жизни и деятельности великих химиков, к числу которых, без преувеличения, относится и Дмитрий Иванович Менделеев. Он являет собой образец настоящего ученого, достигшего значительных успехов в любом деле, за которое бы он не взялся. Не могут не вызывать уважение такие черты характера замечательного русского ученого, как независимость научного мышления, доверие лишь к результатам экспериментальных исследований, смелость в выводах даже тогда, когда они вступали в противоречие с общепризнанными представлениями. Но нельзя не согласиться, что периодический закон и составленная система элементов самое значительная его работа. Эта тема вызвала у меня интерес потому, что исследования в данной области по-прежнему остаются очень актуальными. Судить об этом можно по недавнему открытию российскими и американскими учеными 118 элемента периодической системы Д.И.Менделеева. Это научное событие еще раз подчеркивает, что, несмотря на более чем вековую историю, периодический закон остается основой научного исследования. Данная работа ставит своей целью не только рассказать об открытии этого великого закона, о той поистине титанической работе, предшествующей этому событию, но и является попыткой разобраться в предпосылках, проанализировать сложившуюся ситуацию с классификацией и систематизацией химических элементов до 1869г. и, кроме того, затронуть новейшую историю учения о периодичности.

Предпосылки открытия периодического закона

Любое открытие в науке, конечно, никогда не бывает внезапным, не возникает из ничего на пустом месте. Это сложный и длительный процесс, свою лепту в который вносят многие и многие замечательные ученые. Аналогичная ситуация сложилась и с периодическим законом. И, чтобы яснее представить те предпосылки, которые создали необходимые условия для открытия и обоснования периодического закона, следует рассмотреть основные направления исследований в области химии к середине XIX века (прил. таб. 1).

Надо сказать, что в течение первых десятилетий XIX в. в развитии химии наблюдался быстрый прогресс. Возникшая в самом начале столетия, химическая атомистика явилась мощным стимулом для разработки теоретических проблем и развития экспериментальных исследований, которые привели к открытиям основных химических законов (закон кратных отношений и закон постоянных пропорций, закон объемов реагирующих газов, закон Дюлонга и Пти, правило изоморфизма и других). Значительное развитие получили и экспериментальные исследования, в основном химико-аналитического характера, связанные с установлением атомных весов элементов, открытием новых элементов и изучением состава различных химических соединений. Но с определением атомных весов возникали трудности, связанные главным образом с тем, что оставались неизвестными точные формулы простейших соединений (окислов), на основе которых исследователи рассчитывали атомные веса. Между тем, уже открытые некоторые закономерности, которые могли бы служить важными критериями при установлении точных значений атомных весов, применялись крайне редко (объемный закон Гей-Люссака, закон Авогадро). Большинство химиков считали их случайными, не имеющими строгой фактической основы. Такое отсутствие уверенности в правильности определений атомных весов привело к появлению многочисленных систем атомных весов и эквивалентов и даже породило сомнения в необходимости принятия в химии самого понятия атомного веса. В результате такой неразберихи даже сравнительно простые соединения изображались в середине XIX в. множеством формул, например, вода изображалась одновременно четырьмя формулами, уксусная кислота - девятнадцатью и т.д. Но в то же время многие химики продолжали поиски новых методов определения атомных весов, а также новых критериев, позволяющих хотя бы косвенно подтвердить правильность полученных на основе анализа окислов значений. Уже существовали предложенные Жераром понятия атома, молекулы и эквивалента, но пользовались ими преимущественно молодые химики. Влиятельные химики старых поколений придерживались представлений, вошедших в науку в 20-х и 30-х годах благодаря Берцелиусу, Либиху и Дюма. Создалось такое положение, когда химики переставали понимать друг друга. В такой сложной обстановке возникла идея собрать наиболее видных ученых разных стран, чтобы договориться о единстве представлений по самым общим вопросам химии, в частности - об основных химических понятиях. Этот Международный конгресс состоялся в 1860г. в Карлсруэ. В числе семи русских химиков участвовал в нем и Д.И.Менделеев. Основная цель конгресса - прийти к единству в определениях фундаментальных понятий химии - атом, молекула, эквивалент - была достигнута. Особенно большое впечатление на участников конгресса, и Д.И.Менделеева в том числе, произвело выступление С.Канниццаро, изложившего основы атомно-молекулярной теории. В последствии Д.И.Менделеев неоднократно отмечал огромное значение конгресса в Карлсруэ для прогресса химии вообще, и для генезиса идеи периодического закона химических элементов в частности, а С.Канниццаро считал своим предшественником, т.к. установленные им атомные массы дали необходимую точку опоры.

Первые попытки систематизировать известные к тому времени элементы предпринял в 1789г. А.Лавуазье в своем учебнике химии. Его Таблица простых тел включала 35 простых веществ. А к моменту открытия периодического закона их уже насчитывалось 63. Надо сказать, что в первой половине XIX в. ученые предлагали различные классификации элементов, сходных по своим свойствам. Однако попытки установить закономерности изменений свойств в зависимости от атомного веса носили случайный характер и ограничивались большей частью констатацией отдельных фактов правильных отношений численных значений атомных весов между отдельными элементами в группах сходных элементов. Например, немецкий химик И.Дёберейнер в 1816 - 1829гг. при сопоставлении атомных весов некоторых химически сходных элементов нашел, что для многих широко распространенных в природе элементов эти числа довольно близки, а для таких элементов, как Fe, Co, Ni, Cr, Mn, они практически одинаковы. Кроме того, он отметил, что относительный атомный вес SrO представляет собой приблизительное среднее арифметическое из атомных весов CaO и ВаО. На этой основе Деберейнер предложил закон триад, состоящий в том, что сходные по химическим свойствам элементы могут быть сведены в группы по три элемента (триады), например Cl, Br, J или Са, Sr, Ва. При этом атомный вес среднего элемента триады близок к половине суммы атомных весов крайних элементов.

Одновременно с Деберейнером аналогичной проблемой занимался Л.Гмелин. Так, в своем известном справочном руководстве - Handbuch der anorganischen Chemie он привел таблицу химически сходных элементов, расставленных по группам в определенном порядке. Но принцип построения его таблицы был несколько иным (прил. таб. 2). Вверху таблицы, вне групп элементов, были расположены три базисных элемента - O, N, H. Под ними расставлены триады, тетрады и пентады, причем под кислородом расположены группы металлоидов (по Берцелиусу), т.е. электроотрицательных элементов, под водородом - металлы. Электроположительные и электроотрицательные свойства групп элементов убывают сверху вниз. В 1853г. таблица Гмелина была расширена и улучшена И.Г.Гледстоном, включившим в нее редкоземельные и вновь открытые элементы (Be, Er, Y, Di и др.). В дальнейшем законом триад занимался ряд ученых, например Э.Ленссен. В 1857г. он составил таблицу из 20 триад и предложил метод расчета атомных весов на основе трех триад, или эннеад (девяток). Он был так уверен в абсолютной точности закона, что даже попытался расчетать неизвестные еще атомные веса некоторых редкоземельных элементов.

Дальнейшие попытки установления взаимосвязи между физическими и химическими свойствами элементов также сводились к сопоставлениям численных значений атомных весов. Так М.И.Петтенкофер в 1850г. заметил, что атомные веса некоторых элементов отличаются на число, кратное 8. Поводом для таких сопоставлений послужило открытие гомологических рядов органических соединений. Именно при попытках установить существование подобных же рядов для элементов М.Петтенкофер, произведя расчеты, нашел, что разность в атомных весах у некоторых элементов составляет 8, иногда 5 или 18. В 1851г. подобные же соображения о существовании правильных численных отношений между значениями атомных весов элементов высказал Ж.Б.Дюма.

В 60-х годах XIX в. появились сопоставления атомных и эквивалентных весов и химических свойств элементов несколько иного рода. Наряду с сопоставлениями свойств элементов в группах стали сопоставляться между собой и сами группы элементов. Такие попытки привели к созданию разнообразных таблиц и графиков, в которых объединялись все или большинство известных элементов. Автором первой таблицы был В.Одлинг. Он разбил 57 элементов (в конечном варианте) на 17 групп - монад, диад, триад, тетрад и пентад не включив, при этом, ряд элементов. Смысл этой таблицы был довольно прост и не представлял чего-либо принципиально нового. Через несколько лет, точнее в 1862г., французский химик Б. де Шанкуртуа предпринял попытку выразить соотношения между атомными весами элементов в геометрической форме (прил. таб. 3). Он расположил все элементы в порядке возрастания их атомных весов на боковой поверхности цилиндра по винтовой линии, идущей под углом 45о. Боковая поверхность цилиндра была разбита на 16 частей (атомный вес кислорода). Атомные веса элементов отложены на кривой в соответствующем масштабе (за единицу принят атомный вес водорода). Если развернуть цилиндр, то на поверхности (плоскости) получится ряд отрезков прямых, параллельных друг другу. На первом сверху отрезке находятся точки для элементов с атомными весами от 1 до 16, на втором - от 16 до 32, на третьем - от 32 до 48 и т.д. Л.А.Чугаев в своей работе Периодическая система химических элементов отмечал, что в системе де Шанкуртуа ясно выступает периодическое чередование свойств…Ясно, что в этой системе заключается уже зародыш периодического закона. Но система Шанкуртуа дает обширный простор произволу. С одной стороны, среди элементов-аналогов попадаются нередко элементы совершенно посторонние. Так, за кислородом и серой, между S и Те попадается титан; Мn попадает в число аналогов Li, Na и К; железо помещается на одну образующую с Са и т.д. С другой стороны, та же система дает два места для углерода: одно - для С с атомным весом 12, другое, отвечающее атомному весу 44 (Н. Фигуровский. Очерк общей истории химии). Таким образом, зафиксировав некоторые соотношения между атомными весами элементов, Шанкуртуа не смог прийти к напрашивающемуся обобщению - установлению периодического закона.

Почти одновременно с винтовой линией де Шанкартуа появилась табличная система Дж.А.Р.Ньюлэндса, названная им законом октав и имеющая много общего с таблицами Одлинга (прил. таб. 4). 62 элемента в ней расположены в порядке возрастания эквивалентных весов в 8 столбцах и 7 группах, расположенных горизонтально. Характерно, что у символов элементов вместо атомных весов стоят номера. Всего их 56. В ряде случаев под одним и тем же номером стоит по два элемента. Ньюлэндс подчеркивал, что номера химически сходных элементов отличаются друг от друга на число 7 (или кратное 7), например, элемент с порядковым номером 9 (натрий) повторяет свойства элемента 2 (литий) и т.д. Иными словами, наблюдается такая же картина, как в музыкальной гамме - восьмая нота повторяет первую. Отсюда и название таблицы. Закон октав Ньюлэндса неоднократно подвергался анализу и критике с различных точек зрения. Периодичность изменения свойств элементов просматривается лишь в скрытом виде, а то, что в таблице не оставлено ни одного свободного места для еще не открытых элементов делает эту таблицу лишь формальным сопоставлением элементов и лишает ее значения системы, выражающей закон природы. Хотя, как отмечает Л.А.Чугаев, если бы Ньюлэндс пользовался при составлении своей таблицы вместо эквивалентов новейшими значениями атомных весов, незадолго перед тем установленных Жераром и Канниццаро, то он мог бы избежать многих противоречий.

Среди других исследователей, занимавшихся в 60-х годах XIX века сопоставлениями атомных весов элементов с учетом их различных свойств, можно назвать немецкого химика Л.Мейера. В 1864г. он опубликовал книгу Современные теории химии и их значение для химической статики в которой приведена таблица из 44 элементов (известно в это время 63), расставленных в шести столбцах в соответствии с их валентностью по водороду. Из этой таблицы видно, что Мейер стремился, прежде всего, констатировать правильность в разностях значений атомных весов в группах сходных элементов. Однако он был далек от того, чтобы заметить наиболее существенную черту внутренней связи между элементами - периодичность их свойств. Даже в 1870г., уже после появления нескольких сообщений Д.И.Менделеева о периодическом законе, Мейер, опубликовавший кривую периодического изменения атомных объемов, не смог увидеть в этой кривой, представляющей собой одно из выражений периодического закона, основного признака закона. Между тем, через несколько месяцев после появления первых сообщений Д.И.Менделеева об открытом им периодическом законе, Л.Мейер выступил с претензией на приоритет этого открытия и в течение ряда лет настойчиво высказывал притязания по этому поводу.

Таковы в самых общих чертах основные попытки установить внутреннюю связь между элементами, предпринимавшиеся до появления первых сообщений Д.И.Менделеева о периодическом законе.

Д.И.Менделеев ни в статьях, посвященных периодическому закону, ни в автобиографических заметках почти не упоминает о том, как было совершено открытие. Но когда однажды, лет через тридцать после открытия периодического закона, один журналист спросил его: Как вам пришла в голову периодическая система?, Д.И.Менделеев ответил: Я над ней, может быть, двадцать лет думал (Н.Фигуровский. Д. И. Менделеев.1834 - 1907гг.). Действительно, можно определенно утверждать, что к открытию периодического закона Д.И.Менделеева привела вся его предшествовавшая научная деятельность. Начало было положено уже в его первых работах, посвященным изоморфизму и удельным объемам. Первыми элементами, выделяющимися среди других своей индивидуальностью, на которые обратил внимание Д.И.Менделеев, были кремний и углерод. Общие формулы важнейших бинарных соединений углерода и кремния были тождественны, но при изучении зависимости свойств их соединений от состава выявились следующие различия: в составе - определенные соединения характерны для углерода, а неопределенные - для кремния; в строении соединений - наличие устойчивых радикалов и гомоцепей, а также ненасыщенных или непредельных соединений у углерода и гетероцепей у кремния. Это приводило к существенным различиям и в свойствах большинства соединений этих двух элементов. Ученого заинтересовало, какие элементы еще, кроме кремния, способны образовывать неопределенные соединения. Ими оказались, в первую очередь, бор и фосфор. Говоря о способности разных элементов образовывать соли и подчеркивая неопределенность состава многих соединений, Д.И.Менделеев отмечал в 1864г.: Неопределенные соединения суть соединения по сходству (растворы, сплавы, изоморфные смеси образуются преимущественно сходными телами), а истинные химические соединения суть соединения по различию - соединения тел с далекими свойствами (М. Младенцев. Д. И. Менделеев. Его жизнь и деятельность).

На основе изучения кристаллических форм соединений и их связи с составом Д.И.Менделеев пришел к выводу о возможном подчинении индивидуального (состав) определенного соединения общему (одинаковая кристаллическая форма, присущая нескольким соединениям). Действительно, число типов кристаллических форм значительно уступает числу возможных химических соединений. Изучая явление изоморфизма, Д.И.Менделеев сделал еще один вывод о соотношении индивидуального и общего: некоторые соединения двух различных элементов оказывались изоморфными. Но эта изоморфность проявлялась не для всех ступеней окисления сравниваемых соединений, а лишь для некоторых. Кроме того, было замечено, что образование изоморфных смесей возможно и в случае, когда концентрация одного из веществ заметно уступает концентрации другого. Также Д.И.Менделеев обратил внимание на существование полимерного изоморфизма и на ряд K2O, Na2O, MgO, FeO, Fe2O3, Al2O3, SiO2, где оксиды поставлены по степени усиления кислотных свойств. Это положение он сопроводил таким комментарием: При замещении группами сумма тел, стоящих по краям, замещается суммою тел, заключающихся между ними.

Рассмотрение этих вопросов привело Д.И.Менделеева к поиску связи между классами соединений или их рядами, имеющими общие формулы. Причину различия между ними он видел в природе элементов.

В результате своих исследований Д.И.Менделеев сделал вывод о том, что взаимоотношения разнообразных свойств элементов характеризуются категориями общего (единого), специфического (особенного) и индивидуального (единичного). Общие свойства - это свойства, относящиеся, прежде всего, к понятию элемент и являющиеся едиными конкретными характеристиками атома как целого. Такие свойства Д.И.Менделеев называл коренными, и первым из них он считал атомный вес (атомную массу) элемента. Что касается свойств соединений, то они могут быть обобщены в рамках определенной совокупности соединений, причем в основу можно положить разнообразные критерии. Такие свойства называют специфическими (особенными), например металлические и неметаллические свойства простых веществ, кислотно-основные свойства соединений, т.д. Под индивидуальными понимают те уникальные свойства, которые отличают два элемента-аналога или два соединения одного класса, например различная растворимость сульфатов магния и кальция и т.д. Отсутствие необходимых данных о внутреннем строении молекул и атомов заставило Д.И.Менделеева рассматривать в своей работе Удельные объемы такие свойства, как атомные и молекулярные объемы. Эти свойства вычислялись из свойств общих (атомная и молекулярная масс) и конкретных свойств соединений (плотность простого или сложного вещества). Анализируя характер изменения таких свойств, Д.И.Менделеев подчеркивал, что закономерности изменения удельных весов и атомных объемов в рядах элементов нарушаются теми изменениями в физической и химической природе элементов, которые связаны с количеством атомов, входящих в молекулу, и качеством атомов или формой химических соединений. Таким образом, такие свойства хотя и были связаны с общими свойствами, но неизбежно оказывались в числе специфических - отражали объективные различия в природе элементов. Это представление о трех типах свойств, их взаимосвязи между собой и путях отыскания закономерностей общего характера и индивидуальных проявлений легло в дальнейшем в основу учения о периодичности.

Итак, подводя итог всему выше изложенному, мы можем сказать о том, что к середине XIX века вопрос о систематизации накопленного материала составлял в химии, как впрочем, и в любой другой науке, одну из основных задач. Простые и сложные вещества изучались в соответствии с принятыми в то время в науке классификациями: во-первых - по физическим свойствам, во-вторых - по химическим свойствам. Рано или поздно необходимо было попытаться связать обе классификации воедино. Таких попыток еще до Д.И.Менделеева было сделано немало. Но ученые, пытавшиеся обнаружить какие-то численные закономерности при сопоставлении атомных весов элементов, игнорировали химические свойства и другие связи между элементами. В результате они не только не смогли прийти к периодическому закону, но даже не смогли устранить несообразности при сопоставлениях. Действительно, перечисленные попытки Одлинга, Ньюлэндса, Шанкуртуа, Мейера и других авторов представляют собой лишь гипотетические схемы, содержащие только намек на наличие внутренних взаимосвязей свойств элементов, лишенные признаков научной теории и тем более закона природы. Недочеты, имевшиеся во всех этих построениях, вызывали сомнение в правильности идеи о существовании всеобщей связи между элементами даже и у самих авторов. Тем не менее, Д.И.Менделеев замечает в Основах химии, что в построениях де Шанкуртуа и Ньюлэндса видны некоторые зародыши периодического закона. Задача разработать классификацию элементов на основе всей совокупности сведений о составе, свойствах, иногда и строении соединений выпала на долю Д.И.Менделеева. Изучение взаимосвязи свойств с составом заставило его проанализировать сначала свойства отдельных элементов (проявилось в изучении изоморфизма, удельных объемов, в сопоставлении свойств углерода и кремния), затем естественных групп (атомные массы и химические свойства) и всех классов соединений (совокупность физико-химических свойств), включая простые вещества. А толчком к поискам такого рода стали работы Дюма. Таким образом, мы с полным правом можем утверждать, что в своей работе Д.И.Менделеев не имел соавторов, а имел лишь предшественников. И в отличие от своих предшественников Д.И.Менделеев не искал частных закономерностей, а стремился решить общую проблему принципиального характера. При этом, опять-таки, в отличие от своих предшественников, оперировал с проверенными количественными данными, и лично экспериментально проверял сомнительные характеристики элементов.

Открытие периодического закона

Открытие периодического закона химических элементов - явление не обычное в истории науки, а, пожалуй, исключительное. Естественно поэтому, что интерес вызывает как возникновение самой идеи о периодичности свойств химических элементов, так и творческий процесс разработки этой идеи, ее воплощение во всеобъемлющий закон природы. В настоящее время, основываясь на собственных свидетельствах Д.И.Менделеева, а также на опубликованных материалах и документах, можно с достаточной достоверностью и полнотой восстановить основные этапы творческой деятельности Д.И.Менделеева, связанной с разработкой системы элементов.

В 1867г. Дмитрий Иванович был назначен профессором химии Петербургского университета. Заняв, таким образом, кафедру химии в столичном университете, т.е. став, по существу, лидером университетских химиков России, Менделеев принял все зависящие от него меры по существенному улучшению преподавания химии в Петербургском и других русских университетах. Важнейшей и неотложной задачей, возникшей перед Дмитрием Ивановичем в этом направлении, было создание учебника химии, отражавшего важнейшие достижения химии того времени. И учебник Г.И.Гесса, и различные переводные издания, которыми пользовались студенты, сильно устарели и, естественно, не могли удовлетворить Д.И.Менделеева. Вот поэтому он и решил написать совершенно новый курс, составленный по его собственному плану. Курс был озаглавлен Основы химии. К началу 1869г. работа над вторым выпуском первой части учебника, посвященном химии углерода и галогенов, подошла к концу и Дмитрий Иванович намеривался без промедления продолжить работу над второй частью. Обдумывая план второй части, Д.И.Менделеев обратил внимание на то, что порядок расположения материала об элементах и их соединениях в уже имеющихся учебных пособиях по химии в значительной степени случаен и не отражает взаимосвязей не только между группами химически несходных элементов, но даже и между отдельными сходными элементами. Размышляя над вопросом о последовательности рассмотрения групп химически несходных элементов, он пришел к выводу, что должен существовать какой-то научно обоснованный принцип, который надо положить в основу плана второй части курса. В поисках такого принципа Д.И.Менделеев решил сопоставить группы химически сходных элементов, чтобы обнаружить искомую закономерность. После нескольких неудачных попыток он написал на карточках символы известных в то время элементов и рядом выписал их основные физико-химические свойства. Комбинируя распределение этих карточек, Д.И.Менделеев обнаружил, что если все известные элементы расположить в порядке возрастания их атомных масс, то возможно выделить группы химически сходных элементов, разделив весь ряд на периоды и поместив их друг под другом, не изменяя порядка расположения элементов. Так 1 марта 1869г. была составлена, вначале фрагментарно, а потом и полностью, первая таблица - система элементов. Вот как рассказывал об этом впоследствии сам Д.И.Менделеев. Меня неоднократно спрашивали: на основании чего, исходя из какой мысли найден был мною и защищаем периодический закон? Приведу здесь посильный ответ. … Посвятив свои силы изучению вещества, я вижу в нем два таких признака, или свойства: массу, занимающую пространство и проявляющуюся в притяжении, а яснее или реальнее всего - в весе, и индивидуальность, выраженную в химических превращениях, а яснее всего - формулированную в представлении о химических элементах. Когда думаешь о веществе, помимо всякого представления о материальных атомах, нельзя для меня избежать двух вопросов: сколько и какого дано вещества, чему и соответствуют понятия массы и химизма. История же науки, касающейся вещества, т.е. химии, приводит волей или неволей к требованию признания не только вечности массы вещества, но и к вечности химических элементов. Поэтому невольно зарождается мысль о том, что между массою и химическими особенностями элементов необходимо должна быть связь, а так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде атомов, то надо искать функционального соответствия между индивидуальными свойствами элементов и их атомными весами. Искать же чего-нибудь… нельзя иначе, как смотря и пробуя. Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причем, сомневаясь во многих неясностях, я ни на минуту не сомневался в общности сделанного вывода, так как случайности допустить было невозможно (Н. Фигуровский. Дмитрий Иванович Менделеев).

Полученную таблицу ученый озаглавил Опыт системы элементов, основанной на их атомном весе и химическом сходстве. Он сразу же увидел, что эта таблица не только дает основу логического плана второй части курса Основы химии, но, прежде всего, выражает важнейший закон природы. Через несколько дней напечатанная таблица (с русскими и французскими заглавиями) была разослана многим видным русским и зарубежным ученым-химикам. Основные положения своего открытия, аргументы в пользу сделанных им выводов и обобщений Д.И.Менделеев излагает в статье Соотношение свойств с атомным весом элементов. Эта работа начинается с обсуждения вопроса о принципах классификации элементов. Ученый дает исторический обзор попыток классификации в XlX веке и приходит к выводу, что в настоящее время нет ни одного общего принципа, выдерживающего критики, могущего служить опорой при суждении об относительных свойствах элементов и позволяющего расположить их в более или менее строгую систему. Только относительно некоторых групп элементов не существует сомнения, что они образуют одно целое, представляют естественный ряд сходных проявлений материи (М. Младенцев. Д. И. Менделеев. Его жизнь и деятельность). Далее, Дмитрий Иванович объясняет причины, побудившие его к изучению отношений между элементами тем, что предприняв составление руководства к химии, названного Основы химии, он должен был остановиться на какой-нибудь системе простых тел, чтобы в распределении их не руководствоваться случайными, как бы инстинктивными побуждениями, а каким-либо определенно-точным началом. Это точное начало, т.е. принцип системы элементов, по заключению Д.И.Менделеева, должно быть основано на величине атомных весов элементов. Сопоставляя затем элементы с наименьшими атомными весами, Менделеев строит первый основополагающий фрагмент периодической системы (прил. таб. 8). Он констатирует, что для элементов с большими атомными весами наблюдаются подобные же соотношения. Этот факт дает возможность сформулировать важнейший вывод, что величина атомного веса определяет природу элемента настолько же, насколько вес частицы определяет свойства и многие реакции сложного тела. После обсуждения вопроса о возможном взаимном расположении всех известных элементов Д.И.Менделеев приводит свою таблицу Опыт системы элементов…. Завершается статья краткими выводами, ставшими основными положениями периодического закона: Элементы, расположенные по величине их атомного веса, представляют явственную периодичность свойств… Сопоставление элементов или групп по величине атомного веса соответствует так называемой атомности их и до некоторой степени различию химического характера… Должно ожидать открытия еще многих неизвестных простых тел, например, сходных с Al и Si элементов с паем 65 - 75… Величина атомного веса элемента иногда может быть исправлена, зная его аналогии. Так, пай Те должен быть не 128, а 123 - 126? (Н. Фигуровский. Дмитрий Иванович Менделеев). Таким образом, статья Соотношение свойств с атомным весом элементов ясно и отчетливо отражает последовательность умозаключений Д.И.Менделеева, приведших к созданию периодической системы элементов, а выводы свидетельствуют, насколько правильно оценивал ученый важность своего открытия с самого начала. Статья была направлена в Журнал Русского химического общества и появилась в печати в мае 1869г. Кроме того, она предназначалась для доклада на очередном собрании Русского химического общества, которое состоялось 18 марта. Так как Д.И.Менделеев в это время отсутствовал, от его имени выступил секретарь Химического общества Н.А.Меншуткин. В протоколах общества осталась сухая запись об этом собрании: Н.Меншуткин сообщает от имени Д.Менделеева опыт системы элементов, основанный на их атомном весе и химическом сходстве. За отсутствием Д.Менделеева обсуждение этого сообщения отложено до следующего заседания (Детская энциклопедия). Ученые, современники Д.И.Менделеева, впервые услышавшие об этой периодической системе элементов, остались к ней равнодушны, не смогли сразу понять новый закон природы, перевернувший впоследствии весь ход развития научной мысли.

Итак, казалось бы, поставленная первоначально задача - найти точное начало, принцип рационального распределения материала во второй части Основ химии - была решена, и Д.И.Менделеев мог продолжать далее работу над курсом. Но теперь внимание ученого целиком захватили система элементов и возникшие новые идеи и вопросы, разработка которых представлялась ему более значительной и важной, чем написание учебного пособия по химии. Увидев в созданной системе закон природы, Дмитрий Иванович целиком переключился на исследования, связанные с некоторыми неясностями и противоречиями в найденной им закономерности.

Эта напряженная работа продолжалась в течение почти двух лет, с 1869г. по 1871г. Результатом проведенных исследований стали такие публикации Д.И.Менделеева, как об атомных объемах элементов (говориться о том, что атомные объемы простых веществ являются периодической функцией от атомных масс); о количестве кислорода в соляных окислах (показано, что высшая валентность элемента в солеобразующем оксиде есть периодическая функция от атомной массы); о месте церия в системе элементов (доказывается, что атомный вес церия, равный 92, не верен и должен быть увеличен до 138, а так же приводится новый вариант системы элементов). Из последующих статей наибольшее значение для развития основных положений периодического закона имели две - Естественная система элементов и применение ее к указанию свойств неоткрытых элементов, вышедшая на русском языке, и Периодическая законность для химических элементов, напечатанная на немецком языке. В них изложены не только все данные по периодическому закону, собранные и полученные Д.И.Менделеевым, но и различные идеи и выводы, еще не публиковавшиеся. Обе статьи как бы завершают огромную исследовательскую работу, проделанную ученым. Именно в этих статьях периодический закон получил окончательное оформление и формулировку.

В начале первой статьи Д.И.Менделеев констатирует, что отдельные факты ранее не укладывались в рамки периодической системы. Так, часть элементов, а именно церитовые элементы, уран и индий, не находили надлежащего места в этой системе. Но …в настоящее время, - пишет далее Д.И.Менделеев, - такие отступления от периодической законности … уже могут быть устранены с гораздо большею полнотою, чем то было возможно в прежнее время (Н. Фигуровский. Дмитрий Иванович Менделеев). Он обосновывает предложенные им места в системе для урана, церитовых металлов, индия и др. Центральное положение в статье занимает таблица периодической системы в более совершенной форме по сравнению с первыми вариантами. Дмитрий Иванович предлагает и новое название - Естественная система элементов, подчеркивая тем самым, что периодическая система представляет собой естественное расположение элементов и ни в чем не носит характера искусственности. В основании системы лежит распределение элементов по величине их атомного веса, при этом тотчас же замечается периодичность. На основании этого составляется для элементов семь групп или семь семейств, которые обозначены в таблице римскими цифрами. Кроме того, некоторые элементы в периодах, начинающихся с калия и рубидия, отнесены к восьмой группе. Далее Д.И.Менделеев характеризует отдельные закономерности в периодической системе, указывая на наличие в ней больших периодов, на различия свойств элементов одной и той же группы, принадлежащие к четным и нечетным рядам. В качестве одной из важных характеристик системы Дмитрий Иванович принимает высшие оксиды элементов и вносит в таблицу типы формул оксидов для каждой группы элементов. Здесь же обсуждается вопрос о типических формулах других соединений элементов, свойствах этих соединений в связи с обоснованием места отдельных элементов в периодической системе. После сопоставления некоторых физико-химических характеристик элементов Д.И.Менделеев ставит вопрос о возможности предсказания свойств еще не открытых химических элементов. Он указывает на то, что в периодической системе бросается в глаза наличие ряда клеток, не занятых известными элементами. Это относится, прежде всего, к пустым клеткам в третьей и четвертой группах элементов-аналогов - бора, алюминия и кремния. Д.И.Менделеев делает смелое допущение о существовании в природе элементов, которые должны в будущем, когда они будут открыты, занять пустующие клетки в таблице. Он предлагает не только условные названия (экабор, экаалюминий, экасилиций), но и на основании их положения в периодической системе описывает, какими физическими и химическими свойствами должны обладать эти элементы. В работе обсуждается вопрос и о возможности существования элементов, способных заполнить другие пустующие клетки таблицы. И, как бы подводя итог сказанному, Д.И.Менделеев пишет о том, что применение предложенной системы элементов к сличению как их самих, так и соединений, образуемых ими, представляет такие выгоды, каких не давала ни одна из точек зрения, до сих пор применяемых в химии.

Вторая обширная работа - О законе периодичности - была задумана ученым в 1871г. Именно в ней предполагалось дать полное и обоснованное изложение открытия для того, чтобы познакомить с ним широкие круги мировой научной общественности. Основную часть этой работы составила статья Периодическая законность химических элементов, опубликованная в Анналах химии и фармации. Статья явилась итогом более чем двухлетней работы ученого. После вводной части, в которой даны некоторые важные определения и, прежде всего, определение понятий элемент и простое тело, а также изложены некоторые общие соображения о свойствах элементов и соединений и возможностях их сопоставлений и обобщений, Д.И.Менделеев в нескольких параграфах рассматривает важнейшие положения периодического закона и выводы из него в связи с проведенными собственными исследованиями. Так, в Сущности закона периодичности на основе сопоставлений атомных весов элементов, формул их окислов и гидратов окисей Дмитрий Иванович констатирует, что между атомными весами и всеми другими свойствами элементов существует тесная закономерная зависимость. Общим признаком закономерного изменения свойств элементов, расположенных в порядке возрастания их атомных весов, является периодичность свойств. Он пишет, что по мере возрастания атомного веса элементы сперва имеют все новые и новые изменчивые свойства, а потом эти свойства вновь повторяются в новом порядке, в новой строке и в ряде элементов и в той же последовательности, как и в предшествовавшем ряде. А потому закон периодичности можно сформулировать следующим образом: свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости (т.е. правильно повторяются) от их атомного веса. Далее высказанное фундаментальное положение иллюстрируется большим числом примеров периодического изменения свойств как элементов, так и образуемых ими соединений. Второй параграф Применение закона периодичности к систематике элементов начинается словами о том, что система элементов имеет значение не только педагогическое, не только облегчает изучение разнообразных фактов, приводя их в порядок и связь, но имеет и чисто научное значение, открывая аналогии и указывая через то новые пути для изучения элементов. Здесь перечисляются способы расчета атомных весов элементов и свойства их соединений на основании положения элементов в периодической системе (бериллий, ванадий, таллий), в частности способ пропорций. В Применении закона периодичности к определению атомных весов мало исследованных элементов обсуждается положение некоторых элементов в периодической системе и описывается метод расчета атомных весов на основе системы элементов. Дело в том, что ко времени открытия периодического закона атомные веса ряда элементов были, как выражается Д.И.Менделеев, установлены на признаках иногда очень шатких. Поэтому некоторые элементы при размещении их в периодической системе только по принятому в то время атомному весу оказывались явно не на месте. Основываясь на рассмотрении комплекса физических и химических свойств таких элементов, Д.И.Менделеев предложил соответствующее их свойствам место в системе, причем в ряде случаев пришлось пересмотреть принятый до тех пор их атомный вес. Так индий, атомный вес которого принимался за 75 и который на этом основании должен был быть помещен во вторую группу, ученый перенес в третью группу, исправив при этом атомный вес на 113. Для урана с атомным весом 120 и положением в третьей группе на основании подробного анализа физических и химических свойств и свойств его соединений было предложено место в шестой группе, а атомный вес удвоен (240). Далее автор рассматривал весьма трудный, особенно в то время, вопрос о размещении в периодической системе редкоземельных элементов - церия, дидима, лантана, иттрия, эрбия. Но решен этот вопрос был только спустя тридцать с лишним лет. Заканчивается эта работа Применением закона периодичности к определению свойств не открытых еще элементов, пожалуй, особенно важным для подтверждения периодического закона. Здесь Д.И.Менделеев указывает, что в некоторых местах таблицы явно недостает нескольких элементов, которые в дальнейшем должны быть открыты. Он предсказывает свойства еще не открытых элементов, прежде всего аналогов бора, алюминия и кремния (экабор, экаалюминий, экасилиций). Эти предсказания свойств не известных еще элементов характеризуют не только научную смелость гениального ученого, основанную на твердой уверенности в открытом им законе, но и силу научного предвидения. Через несколько лет, после открытия галлия, скандия и германия, когда все его предсказания блестяще подтвердились, периодический закон был признан во всем мире. А пока, в первые годы после выхода статьи, эти предсказания остались почти незамеченными ученым миром. Кроме того, в статье был затронут вопрос об исправлениях атомных весов некоторых элементов на основе периодического закона и применению периодического закона к получению дополнительных данных о формах химических соединений элементов.

Итак, к концу 1871г. все основные положения периодического закона и весьма смелые выводы из него, сделанные Д.И.Менделеевым, были опубликованы в систематическом изложении. Эта статья завершила первый и важнейший этап исследований Д.И.Менделеева по периодическому закону, она стала плодом более чем двухлетней титанической работы над решением разнохарактерных проблем, возникших перед ученым после составления им первой таблицы Опыт системы элементов в марте 1869г. В последующие годы Дмитрий Иванович от случая к случаю возвращался к разработке и обсуждению отдельных проблем, связанных с дальнейшим развитием периодического закона, но он уже не занимался длительными систематическими исследованиями в этой области, как это имело место в 1869 - 1871гг. Вот как сам Д.И.Менделеев оценивал в конце 90-х годов свой труд: Это лучший свод моих взглядов и соображений о периодичности элементов и оригинал, по которому писалось потом так много про эту систему. Это причина главная моей научной известности, потому что многое оправдалось гораздо позднее (Р. Добротин. Летопись жизни и деятельности Д. И. Менделеева). В статье разработаны и последовательно изложены все стороны открытого им закона, а также сформулированы важнейшие его приложения. Здесь Д.И.Менделеев дает отточенную, ставшую канонической формулировку периодического закона: … свойства элементов (а, следовательно, и образованных из них простых и сложных тел) находятся в периодической зависимости от их атомного веса (Р. Добротин. Летопись жизни и деятельности Д. И. Менделеева). В этой же статье ученый дает и критерий фундаментальности законов природы вообще: Каждый закон природы получает научное значение только лишь в случае, если он, так сказать, допускает практические следствия, т.е. такие логические выводы, которые объясняют необъясненное и указывают на неизвестные до сих пор явления, и особенно если закон приводит к предсказаниям, которые могут быть проверены опытом. В последнем случае очевидно значение закона и возможно проверить его справедливость, что, по крайней мере, побуждает к разработке новых областей науки (Р. Добротин. Летопись жизни и деятельности Д. И. Менделеева). Применяя этот тезис к периодическому закону, Дмитрий Иванович называет следующие возможности его приложения: к системе элементов; к определению свойств еще неизвестных элементов; к определению атомного веса малоисследованных элементов; к исправлению величин атомных весов; к пополнению сведений о формах химических соединений. Кроме того, Д.И.Менделеев указывает на возможность приложимости периодического закона: к правильному представлению о так называемых молекулярных соединениях; для определения случаев полимерии среди неорганических соединений; к сравнительному изучению физических свойств простых и сложных тел (Р.Добротин. Летопись жизни и деятельности Д. И. Менделеева). Можно сказать, что в этой статье ученый наметил широкую программу исследований по неорганической химии, опирающуюся на учение о периодичности. Действительно, многие важные направления неорганической химии в конце XIX - начале ХХ века фактически развивались по путям, намеченным великим русским ученым - Д.И.Менделеевым, а открытие и последующее признание периодического закона можно рассматривать как завершение и обобщение целого периода в развитии химии.

Триумф периодического закона

Как и всякое другое великое открытие, такое крупнейшее научное обобщение, как периодический закон, имевшее, к тому же глубокие исторические корни, должно было бы вызвать отклики, критику, признание или непризнание, приложения в исследованиях. Но как это ни странно, в первые годы после открытия закона откликов и выступлений химиков, дающих его оценку, фактически не последовало. Во всяком случае, в начале 70-х годов не появилось сколько - ни будь серьезных откликов на статьи Д.И.Менделеева. Химики предпочитали молчать, конечно не потому, что они ничего не слышали об этом законе или не понимали его, а, как объяснял впоследствии такое отношение Э.Резерфорд, просто химики его времени были более заняты собиранием и добыванием фактов, чем размышлением об их соотношении. Однако выступления Д.И.Менделеева не остались совершенно незамеченными, хотя и вызвали неожиданную реакцию со стороны отдельных иностранных ученых. Но все появившееся в иностранных журналах публикации касались не сущности открытия Д.И.Менделеева, а ставили вопрос о приоритете этого открытия. У великого русского ученого было немало предшественников, пытавшихся подойти к решению вопроса о систематизации элементов и, поэтому, когда Д.И.Менделеев показал, что периодический закон - это фундаментальный закон природы, некоторые из них предъявили свои права на приоритет в открытии этого закона. Так, корреспондент Немецкого химического общества в Лондоне Р.Герстель выступил с заметкой, в которой утверждал, что идея Д.И.Менделеева о естественной системе элементов была высказана еще за несколько лет до него В.Одлингом. Несколько ранее появилась книга немецкого химика Х.В.Бломстранда, в которой он предложил классификацию элементов по их аналогии с водородом и кислородом. Все элементы были разделены автором на две большие группы по признаку электрической полярности в духе электрохимической теории И.Я. Берцелиуса. Со значительными искажениями принципы периодической системы были изложены и в брошюре Г.Баумгауэра. Но больше всего публикаций было посвящено системе элементов Л.Мейера, целиком основанной на принципах естественной систематики Д.М.Менделеева, которая, как он утверждал, была опубликована еще в 1864г. Л.Мейер был крупным представителем неорганической химии в Германии в 60 - 80-х годах ХlХ века. Все его работы были посвящены, в основном, изучению физико-химических свойств элементов: атомных масс, теплоемкости, атомных объемов, валентности, изоморфизма и различных способов их определения. Главную цель своих исследований он видел в собирании точных экспериментальных данных (уточнение атомных масс, установление физических констант) и не ставил перед собой широких задач по обобщению накопленного материала в отличие от Д.И.Менделеева, который при изучении различных физико-химических свойств старался отыскать взаимосвязь между всеми элементами, выяснить характер изменения свойств элементов. Этими выступлениями, в сущности, и ограничивается первоначальная реакция ученого мира на открытие периодического закона и на основные статьи о периодическом законе, опубликованные Д.И.Менделеевым в 1869 - 1871гг. В основе своей они были направлены на то, чтобы подвергнуть сомнению новизну и приоритет открытия и вместе с тем использовать основную идею Д.И.Менделеева для собственных построений систем элементов.

Но прошло всего четыре года, и весь мир заговорил о периодическом законе, как о гениальнейшем открытии, об оправдании блестящих предсказаний Д.И.Менделеева. Дмитрий Иванович, с самого начала полностью уверенный в особой научной важности открытого им закона, не мог и предполагать, что уже через несколько лет он станет свидетелем научного триумфа своего открытия. Еще в феврале 1874г. французский химик П.Лекок де Буабодран проводил химическое исследование цинковой обманки с металлургического завода в Пьеррфитте в Пиренеях. Это исследование шло медленно и закончилось открытием в 1875г. нового элемента - галлия, названного в честь Франции, которую древние римляне называли Галлией. Известие об открытии появилось в Докладах Парижской академии наук и в ряде других изданий. Д.И.Менделеев, внимательно следивший за научной литературой, сразу же узнал в новом элементе предсказанный им экаалюминий, несмотря на то, что в первом сообщении автора открытия галлий был описан лишь в самых общих чертах и некоторые его свойства были определены неправильно. Так, предполагалось, что удельный вес экаалюминия 5,9, а удельный вес открытого элемента - 4,7. Д.И.Менделеев отправил Л. Де Буабодрану письмо, в котором не только обращал внимание на свои работы по периодическому закону, но и указал на ошибку при определении удельного веса. Лекок де Буабодран, никогда до этого не слышавший ни о русском ученом, ни об открытом им периодическом законе химических элементов воспринял это выступление с неудовольствием, но затем, познакомившись со статьей Д.И.Менделеева о периодическом законе, повторил свои опыты и действительно оказалось, что предсказанная Д.И.Менделеевым величина удельного веса точно совпала с определенной Л.де Буабодраном опытным путем. Это обстоятельство, конечно, не могло не произвести самого сильного впечатления как на самого Лекока де Буабодрана, так и на весь ученый мир. Таким образом, предвидение Д.И.Менделеева блестяще оправдалось (прил. таб. 5). Вся история открытия и изучения соединений галлия, получившая освещение в литературе того времени, невольно привлекла к себе внимание химиков и стала первым толчком ко всеобщему признанию периодического закона. Спрос на основную работу Д.И.Менделеева Периодическая законность химических элементов, опубликованную в Анналах Либиха, оказался настолько большим, что потребовалось перевести ее на английский и французский языки, а многие ученые стремились внести свой вклад в поиски новых, еще неизвестных элементов, предсказанных и описанных Д.И.Менделеевым. Это В.Крукс, В.Рамзай, Т.Карнелли, Т.Торп, Г.Хартли - в Англии; П.Лекок де Буабодран, Ш.Мариньяк - во Франции; К.Винклер - в Германии; Ю.Томсен - в Дании; И.Ридберг - в Швеции; Б.Браунер - в Чехии и т.д. Их Д.И.Менделеев называл укрепителями закона. В лабораториях различных стран начались химико-аналитические исследования.

К числу таких ученых принадлежал и профессор аналитической химии Упсальского университета Л.Ф.Нильсон. Работая с минералом эвксенитом, содержащим редкоземельные элементы, он получил, кроме основного продукта, какую-то неизвестную ему землю (оксид). При тщательном и подробном изучении этой неизвестной земли в марте 1879г. Нильсон обнаружил новый элемент, основные свойства которого совпадали со свойствами описанного Д.И.Менделеевым в 1871г. экабора. Этот новый элемент был назван скандием в честь Скандинавии, где он был открыт и нашел свое место в третьей группе периодической системы элементов между кальцием и титаном так, как это и было предсказано Д.И.Менделеевым (прил. таб. 6). История открытия экабора-скандия еще раз нагляднейшим образом подтвердила не только смелые предвидения Д.И.Менделеева, но и чрезвычайную важность для науки открытого им периодического закона. Уже после открытия галлия стало совершенно очевидным, что периодический закон представляет собой в полном смысле слова путеводную звезду химии, указывающую, в каком направлении следует вести поиски новых, неизвестных еще химических элементов.

Через несколько лет после открытия скандия, а точнее в 1886г., периодический закон вновь привлек к себе всеобщее внимание. В Германии вблизи Фрейберга в районе горы Химмельсфюрст на серебряном руднике был найден новый неизвестный минерал. Профессор А.Вейсбах, открывший этот минерал, назвал его аргиродитом. Качественный анализ нового минерала был произведен химиком Г.Т.Рихтером, а количественный анализ - известным химиком-аналитиком К.А.Винклером. В ходе исследований Винклер получил неожиданный и странный результат. Оказалось, что суммарное процентное содержание элементов, входящих в состав аргиродита, равно лишь 93%, а не 100%, как это следовало бы. Очевидно, какой-то элемент, содержащийся к тому же в минерале в значительном количестве, был упущен при анализе. Восемь повторных анализов, выполненных с особой тщательностью, дали тот же результат. Винклер предположил, что имеет дело с не открытым еще элементом. Он назвал этот элемент германий и описал его свойства. Тщательное изучение свойств германия и его соединений скоро привело Винклера к несомненному выводу, что новый элемент - экасилиций Д.И.Менделеева (прил. таб. 7). Такое необыкновенно близкое совпадение предсказанных и найденных опытным путем свойств германия поразило ученых, а сам Винклер в одном из сообщений в Немецком химическом обществе сравнил предсказание Д.И.Менделеева с предсказаниями астрономов Адамса и Леверье о существовании планеты Нептун, сделанными только на основании расчетов.

Блестящее подтверждение предсказаний Д.И.Менделеева оказало большое влияние на все дальнейшее развитие химии и всего естествознания. С середины 80-х гг. периодический закон был, безусловно, признан всем ученым миром и вошел в арсенал науки как основа научного исследования. С этого времени на основе периодического закона началось систематическое исследование соединений всех известных элементов и поиски неизвестных, но предвидимых законом соединений. Если до открытия периодического закона ученые, исследовавшие различные, особенно вновь открываемые, минералы, работали в сущности вслепую, не зная, где искать новые, неизвестные элементы и каковы должны быть их свойства, то, основываясь на периодическом законе, открытие новых элементов оказалось возможным совершать почти без всяких неожиданностей. Периодический закон позволил точно и однозначно установить число не открытых еще элементов с атомными весами в пределах от 1 до 238 - от водорода до урана. В течение всего каких-нибудь пятнадцати лет все предсказания русского исследователя исполнились, и на пустующие до тех пор места в системе стали новые элементы с заранее точно вычисленными свойствами. Однако еще при жизни Д.И.Менделеева периодический закон дважды подвергся серьезным испытаниям. Новые открытия казались в начале не только необъяснимыми с точки зрения периодического закона, но даже противоречащими ему. Так, в 90-х годах У.Рамзай и Дж.У.Рэлей открыли целую группу инертных газов. Для Д.И.Менделеева само по себе это открытие не было полной неожиданностью. Он предполагал возможность существования аргона и других элементов - его аналогов - в соответствующих клетках периодической системы. Однако свойства вновь открытых элементов и прежде всего их инертность (нулевая валентность) вызвали серьезные затруднения при размещении новых газов в периодической системе. Казалось, что для этих элементов нет мест в периодической системе и Д.И.Менделеев далеко не сразу согласился с пополнением периодической системы нулевой группой. Но скоро стало очевидным, что периодическая система с честью выдержала испытание и после внесения в нее нулевой группы приобрела еще более стройный и законченный вид. На рубеже XIX и ХХ столетий была открыта радиоактивность. Свойства радиоактивных элементов настолько не соответствовали традиционным представлениям об элементах и атомах, что возникло сомнение в справедливости периодического закона. К тому же число вновь открытых радиоактивных элементов оказалось таким, что возникли, как представлялось, непреодолимые затруднения с размещением этих элементов в периодической системе. Однако вскоре, правда уже после смерти Д.И.Менделеева, возникшие затруднения были полностью устранены, и периодический закон приобрел дополнительные черты и новый смысл, что привело к расширению его научного значения.

В ХХ веке менделеевское учение о периодичности остается одной из основ современных представлений о строении и свойствах вещества. Это учение включает два центральных понятия - о законе периодичности и о периодической системе элементов. Система служит своеобразным графическим выражением периодического закона, который в отличие от многих других фундаментальных законов природы не может быть выражен в виде какого-либо математического уравнения или формулы. На протяжении ХХ века содержание учения о периодичности постоянно расширялось и углублялось. Это и рост числа химических элементов, обнаруженных в природе и синтезированных. Например, европий, лютеций, гафний, рений - стабильные элементы, существующие в земной коре; радон, франций, протактиний - природные радиоактивные элементы; технеций, прометий, астат - синтезированные элементы. Размещение некоторых новых элементов в периодической системе не вызывало затруднений, поскольку существовали закономерные пробелы в определенных ее подгруппах (гафний, рений, технеций, радон, астат, т.д.). Лютеций, прометий, европий оказались членами редкоземельного семейства, и вопрос об их месте стал составной частью проблемы размещения редкоземельных элементов. Проблема места трансактиниевых элементов и сейчас еще является дискуссионной. Таким образом, новые элементы в ряде случаев потребовали дополнительной разработки представлений о структуре периодической системы. Детальное изучение свойств элементов привело к неожиданным открытиям и к установлению новых важных закономерностей. Явление периодичности оказалось гораздо более сложным, чем это представлялось в ХlХ веке. Дело в том, что принцип периодичности, найденный Д.И.Менделеевым для химических элементов, оказался распространенным и на атомы элементов, на атомный уровень организации материи. Периодические изменения свойств элементов объясняются существованием электронной периодичности, повторением сходных типов электронных конфигураций атомов по мере увеличения значений зарядов их ядер. Если на элементном уровне периодическая система представляла обобщение эмпирических фактов, то на атомном уровне это обобщение получило теоретическую основу. Дальнейшее углубление представлений о периодичности шло по двум направлениям. Одно связано с совершенствованием теории периодической системы благодаря появлению квантовой механики. Другое напрямую относится к попыткам систематизации изотопов и разработке ядерных моделей. Именно на этом пути возникло понятие о ядерной (нуклонной) периодичности. Ядерная периодичность носит качественно иной характер по сравнению с электронной (если в атомах действуют кулоновские силы, то в ядрах проявляются специфические ядерные силы). Мы сталкиваемся здесь с еще более глубоким уровнем проявления периодичности - ядерным (нуклонным), характеризующимся многими специфическими чертами.

Итак, история периодического закона представляет интересный пример открытия и дает критерий для суждения о том, что такое открытие. Д.И.Менделеев многократно повторял, что истинный закон природы, дающий возможности для предвидения и предсказания, следует отличать от случайно замеченных закономерностей и правильностей. Открытие предсказанных ученым галлия, скандия и германия продемонстрировало огромное значение научного предвидения, базирующегося на прочной основе теоретических положений и расчетов. Д.И.Менделеев не был пророком. Не интуиция талантливого ученого, не какая-то особая способность предвидеть будущее явилось основой для описания свойств еще не открытых элементов. Лишь непоколебимая уверенность в справедливости и огромном научном значении открытого им периодического закона, понимание значения научного предвидения дали ему возможность выступить перед научным миром со смелыми и казавшимися многим невероятными предсказаниями. Д.И.Менделеев страстно желал, чтобы открытый им всеобщий закон природы стал основой и руководством для дальнейших попыток человечества проникнуть в тайны строения вещества. Он говорил, что законы природы не терпят исключений и поэтому с полной уверенностью высказывал то, что являлось прямым и очевидным следствием из открытого закона. В конце ХlХ и в ХХ веках периодический закон подвергся серьезным испытаниям. Неоднократно казалось, что вновь установленные факты противоречат периодическому закону. Так было при открытии благородных газов и явлений радиоактивности, изотопии и т.д. Трудности возникли с размещением в системе редкоземельных элементов. Но, несмотря ни на что, периодический закон доказал, что он действительно один из основополагающих великих законов природы. На основе периодического закона происходило все дальнейшее развитие химии. На базе этого закона была установлена внутренняя структура атомов и выяснены закономерности их поведения. Периодический закон с полным основанием называют путеводной звездой при изучении химии, при ориентировке в сложнейшем лабиринте беспредельного многообразия веществ и их превращений. Подтверждением этому служит и открытие российских и американских ученых в городе Дубне (Московская область) нового, 118 элемента периодической системы. По словам директора Объединенного института ядерных исследований, член-корреспондента РАН А.Сисакяна ученые увидели этот элемент с помощью физических ускорителей в лабораторных условиях. 118-й элемент на сегодняшний день самый тяжелый из всех элементов периодической системы, существующих на Земле. Это открытие еще раз подтвердило истину, что периодический закон - великий закон природы, открытый Д. И. Менделеевым, остается незыблемым.

Триумф периодического закона был триумфом и для самого Д.И.Менделеева. В 80-х годах он, и ранее хорошо известный среди ученых Западной Европы выдающимися исследованиями, приобрел высокий авторитет во всем мире. Виднейшие представители науки оказывали ему всевозможные знаки уважения, восхищаясь его научным подвигом. Д.И.Менделеев был избран членом многих иностранных академий наук и ученых обществ, получил немало почетных званий, отличий и наград.

В 1869 году великим русским ученым-химиком Д. И. Менделеевым было сделано открытие, определившее дальнейшее развитие не только самой химии, но и многих других наук.

Вся предыстория открытия периодического закона не представляет собой явления, выходящего за рамки обычных историко-научных явлений. В истории науки едва ли можно указать пример появления крупных обобщений, которым не предшествовала бы длительная и более или менее сложная предыстория. Как отмечал сам Д. И. Менделеев, нет ни одного сколько-нибудь общего закона природы, который бы основался сразу. Всегда его утверждению предшествует много предчувствий, а признание закона наступает не с момента зарождения первой мысли о нем и даже не тогда, когда он вполне осознан во всем его значении, а лишь по утверждении его следствий опытами, которые и должны признаваться высшей инстанцией соображений и мнений. Действительно, можно констатировать вначале появление лишь частных, иногда даже случайных наблюдений и сопоставлений. Варианты подобных сопоставлений с одновременным расширением сопоставляемых фактических данных приводят иногда к частным обобщениям, лишенным, однако, основных признаков закона природы. Именно таковы все доменделеевские попытки систематизации элементов, в том числе таблицы Ньюлендса, Одлинга, Мейера, график Шанкуртуа и другие. В отличие от своих предшественников Д. И. Менделеев не искал частных закономерностей, а стремился решить общую проблему принципиального характера. При этом, опять-таки, в отличие от своих предшественников, оперировал с проверенным количественными данными, и лично проверял экспериментально сомнительные характеристики элементов. Можно определенно утверждать, что к открытию периодического закона его привела вся предшествующая научная деятельность, что открытие это явилось завершением более ранних попыток Д. И. Менделеева изучить и сопоставить физические и химические свойства разнообразных веществ, точно сформулировать идею о тесной внутренней связи между различными веществами и прежде всего - между химическими элементами. Если не учитывать ранних исследований ученого по изоморфизму, внутреннему сцеплению в жидкостях, по растворам и т.д., то было бы невозможно объяснить внезапность открытия периодического закона. Нельзя не поражаться гению Д. И. Менделеева, сумевший уловить великое единство в необъятном хаосе, в беспорядке накопленных до него химиками разрозненных фактов и сведений. Он сумел установить естественный закон химических элементов в то время, когда еще почти ничего не было известно о строении вещества.

Итак, к концу ХlХ века в результате открытия периодического закона сложилась следующая картина развития неорганической химии. К концу 90-х годов закон получил всеобщее признание, позволил ученым предвидеть новые открытия и систематизировать накапливающийся экспериментальный материал, сыграл выдающуюся роль в обосновании и дальнейшем развитии атомно-молекулярного учения. Периодический закон стимулировал открытие новых химических элементов. С момента открытия галлия предсказательные способности системы стали очевидными. Но в то же время они были еще ограниченными вследствие незнания физических причин периодичности и определенного несовершенства структуры системы. С открытием на Земле гелия и аргона английский ученый В. Рамзай отважился на предсказание других, неизвестных еще благородных газов - найденных вскоре неона, криптона и ксенона. В периодическую систему, опубликованную в восьмом издании учебника Основы химии в 1906г., Д. И. Менделеев включил 71 элемент. Эта таблица подводила итог огромной работы по открытию, изучению и систематике элементов за 37 лет. Здесь нашли свое место галлий, скандий, германий, радий, торий; пять инертных газов образовали нулевую группу. В свете периодического закона многие понятия общей и неорганической химии приобрели более строгую форму (химический элемент, простое тело, валентность). Фактом своего существования периодическая система во многом способствовала правильной интерпретации результатов, достигнутых при изучении радиоактивности, помогала определять химические свойства обнаруживаемых элементов. Так, без системы не могла бы быть понятна инертная природа эманаций, оказавшихся впоследствии изотопами самого тяжелого благородного газа - радона. Но классические физико-химические методы исследования оказались не в состоянии решить проблемы, связанные с анализом причин различных отступлений от периодического закона, но они в значительной мере подготовили основу для раскрытия физического смысла места элемента в системе. Изучение различных физических, механических, кристаллографических и химических свойств элементов показало их общую зависимость от более глубоких и скрытых для того времени внутренних свойств атомов. Сам Д. И. Менделеев отчетливо сознавал, что периодическая изменяемость простых и сложных тел подчиняется некоторому высшему закону, природу которого, а тем более причины не было еще средств охватить. Науке еще только предстояло решить эту проблему.

В начале ХХ века периодическая система столкнулась с таким серьезным препятствием, как массовое открытие радиоэлементов. Для них не находилось достаточно места в менделеевской таблице. Эта трудность была преодолена спустя шесть лет после смерти ученого благодаря формулировке понятий об изотопии и о заряде ядра атома, численно равном порядковому номеру элемента в периодической системе. Учение о периодичности вступило в новый, физический этап своего развития. Наиболее важным достижением оказалось объяснение физических причин периодического изменения свойств элементов и, как следствие, структуры периодической системы. Именно периодическая система элементов послужила Н. Бору важнейшим источником информации при разработке теории строения атоиов. А создание такой теории означало переход менделеевского учения о периодичности на новый уровень - атомный, или электронный. Стали ясными физические причины проявления химическими элементами и их соединениями самых разнообразных свойств, остававшихся непонятными для химии ХlХ века. На протяжении 20 - 30-х годов были открыты почти все стабильные изотопы химических элементов; в настоящее время их число составляет примерно 280. Кроме того, в природе обнаружено свыше 40 изотопов радиоактивных элементов, синтезировано около 1600 искусственных изотопов. Закономерности распределения элементов в периодической системе позволили объяснить явление изоморфизма - замещение в кристаллических решетках минералов атомов и атомных групп другими атомами и атомными группами.

Огромное значение имеет учение о периодичности в развитии геохимии. Эта наука возникла в последней четверти ХIХ века, когда начали интенсивно изучать проблему распространенности элементов в земной коре и закономерности их распределения в различных рудах и минералах. Периодическая система способствовала выявлению многих геохимических закономерностей. Были выделены определенные поля-блоки, охватывающие сходные в геохимическом отношении элементы, развита идея сходства и различия элементов, расположенных по диагоналям системы. В свою очередь это позволило изучить законы выделения элементов в ходе геологического развития земной коры и их совместного присутствия в природе.

ХХ век называют веком широчайшего использования катализа в химии. И здесь периодическая система служит основой для систематизации веществ с каталитическими свойствами. Так было выяснено, что для гетерогенных реакций окисления-восстановления каталитическим эффектом обладают все элементы побочных подгрупп таблицы. Для реакций кислотно-основного катализа, к которому в промышленных условиях относят, например, крекинг, изомеризацию, полимеризацию, алкилирование, т.д., катализаторами являются щелочные и щелочноземельные металлы: Li, Na, K, Rb, Cs, Ca; в реакциях кислотного - все р-элементы второго и третьего периодов (кроме Ne и Ar), а также Br И J.

На основе ядерного уровня представлений о периодичности решают и проблемы космохимии. Изучение состава метеоритов и лунного грунта, данные, полученные автоматическими станциями на Венере и Марсе показывают, что в состав этих объектов входят те же химические элементы, которые известны и на Земле. Таким образом, закон периодичности применим и для других областей Вселенной.

Можно было бы назвать еще многие направления научных исследований, где периодическая система элементов выступает в качестве необходимого инструмента познания. Не зря в своем докладе на Юбилейном менделеевском съезде, посвященном столетию открытия периодического закона, академик С. И. Вольфкович сказал о том, что периодический закон явился основным рубежом в истории химии. Он явился источником неисчислимых исследований химиков, физиков, геологов, астрономов, философов историков и продолжает разносторонне влиять на биологию, астрономию, технологию и другие науки. А закончить свою работу мне хотелось бы словами немецкого физика и химика В. Мейера, писавшего, что смелость мысли и прозорливость Менделеева будет во все времена вызывать восхищение (Ю. Соловьев. История химии).

Здесь читатель найдет информацию об одном из важнейших законов, когда-либо открытых человеком в научной области - периодическом законе Менделеева Дмитрия Ивановича. Вы ознакомитесь с его значением и влиянием на химию, будут рассмотрены общие положения, характеристика и детали периодического закона, история открытия и основные положения.

Что такое периодический закон

Периодический закон - это природный закон фундаментального характера, который был открыт впервые Д. И. Менделеевым еще в 1869 году, а само открытие произошло благодаря сравнению свойств некоторых химических элементов и величин массы атома, известных в те времена.

Менделеев утверждал, что, согласно его закону, простые и сложные тела и разнообразные соединения элементов зависят от их зависимости периодического типа и от веса их атома.

Периодический закон является уникальным в своем роде и это связано с тем фактом, что он не выражается математическими уравнениями в отличие от других фундаментальных законов природы и вселенной. Графически свое выражение он находит в периодической системе химических элементов.

История открытия

Открытие периодического закона произошло в 1869 году, но попытки систематизировать все известные х-кие элементы начались задолго до этого.

Первую попытку создать такую систему предпринял И. В. Деберейнер в 1829. Он классифицировал все известные ему химические элементы в триады, связанные между собой близостью половины суммы атомных масс, входящих в эту группу трех компонентов. Следом за Деберейнером предприняли попытку создать уникальную таблицу классификации элементов А. де Шанкуртуа, он назвал свою систему «земной спиралью», а после него была составлена Джоном Ньюлендсом октава Ньюлендса. В 1864 практически одновременно Уильям Олдинг и Лотар Мейер опубликовали созданные независимо друг от друга таблицы.

Периодический закон был представлен научному сообществу на обозрение восьмого марта 1869, и произошло это во время заседания Русского х-кого общества. Менделеев Дмитрий Иванович заявил при всех о своем открытии и в том же году был выпущен менделеевский учебник «Основы химии», где впервые была показана периодическая таблица, созданная им. Годом позже, в 1870, он написал статью и отдал ее на обозрение в РХО, где впервые было употреблено понятие периодического закона. В 1871 Менделеев дал исчерпывающую характеристику своего з-на в знаменитой статье периодической законности химических элементов.

Неоценимый вклад в развитие химии

Значение периодического закона невероятно велико для научного сообщества всего мира. Это связано с тем, что открытие его дало мощный толчок развитию, как химии, так и других наук о природе, например, физике и биологии. Открытой была взаимосвязь элементов с их качественными химическими и физическими характеристиками, также это позволило понять суть построения всех элементов по одному принципу и дало начало современной формулировке понятий о химических элементах, конкретизировать знания представление о веществах сложного и простого строения.

Использование периодического закона позволило решать проблему химического прогнозирования, определить причину поведения известных химических элементов. Атомная физика, а в том числе и ядерная энергетика, стали возможными вследствие этого же закона. В свою очередь, данные науки позволили расширить горизонты сущности этого закона и углубиться в его понимание.

Химические свойства элементов периодической системы

По сути, химические элементы взаимосвязаны между собой характеристиками, свойственными им в состоянии свободного как атома, так и иона, сольватированного или гидратированного, в простом веществе и форме, которую могут образовать их многочисленные соединения. Однако х-кие свойства обычно заключаются в двух явлениях: свойства, характерные для атома в свободном состоянии, и простого вещества. К такому роду свойств относится множество их видов, но самые важные это:

  1. Атомная ионизация и ее энергия, зависящая от положения элемента в таблице, его порядкового числа.
  2. Энергетическое родство атома и электрона, которая так же, как и атомная ионизация, зависит от места нахождения элемента в периодической таблице.
  3. Электроотрицательность атома, не носящая постоянное значение, а способная изменяться в зависимости от различного рода факторов.
  4. Радиусы атомов и ионов - тут, как правило, используются эмпирические данные, что связано с волновой природой электронов в состоянии движения.
  5. Атомизация простых веществ - описание возможностей элемента к реакционной способности.
  6. Степени окисления - формальная характеристика, однако фигурирующая как одна из важнейших характеристик элемента.
  7. Потенциал окисления для простых веществ - это измерение и показание потенциала вещества к действию его в водных растворах, а также уровень проявления свойств окислительно-восстановительного характера.

Периодичность элементов внутреннего и вторичного типа

Периодический закон дает понимание еще одной немаловажной составной частицы природы - внутренней и вторичной периодичности. Вышеупомянутые области изучения атомных свойств, на самом деле, гораздо сложнее, чем можно подумать. Связано это с тем фактом, что элементы s, p, d таблицы меняют свои качественные характеристики в зависимости от положения в периоде (периодичность внутреннего характера) и группе (периодичность вторичного характера). Например, внутренний процесс перехода элемента s от первой группы до восьмой к p-элементу сопровождается точками минимума и максимума на кривой линии энергии ионизированного атома. Данное явление показывает внутреннюю непостоянность периодичности изменения свойств атома по положению в периоде.

Итоги

Теперь читатель имеет четкое понимание и определение того, что являет собой периодический закон Менделеева, осознает его значение для человека и развития различных наук и имеет представление о его современных положениях и истории открытия.

В книге видного советского историка химии Н.Ф.Фигуровского "Очерк общей истории химии. Развитие классической химии в XIX столетии" (М., Наука, 1979). приведены основные периоды открытия 63 химических элементов с древнейших времен до 1869 г. - года установления Дмитрием Ивановичем Менделеевым (1834-1907) Периодического закона:

1. Древнейший период (от V тысячелетия до н.э. и до 1200 г. н.э.).

К этому длительному периоду относится знакомство человека с 7 металлами древности - золотом, серебром, медью, свинцом, оловом, железом и ртутью. Кроме этих элементарных веществ в древности были известны сера и углерод, встречающиеся в природе в свободном состоянии.

2. Алхимический период.

В этот период (от 1200 до 1600 г.) было установлено существование нескольких элементов, выделенных либо в процессе алхимических поисков путей трансмутации металлов, либо в процессах производства металлов и переработки различных руд ремесленниками-металлургами. Сюда относятся мышьяк, сурьма, висмут, цинк, фосфор.

3. Период возникновения и развития технической химии (конец XVII в.-1751 г.).

В это время в результате практического изучения особенностей различных металлических руд и преодоления трудностей, возникавщих при выделении металлов, а также открытий в процессе минералогических экспедиций было установлено существование платины, кобальта, никеля.

4. Первый этап химико-аналитического периода в развитии химии (1760-1805 гг.). В этот период с помощью качественного и весового количественного анализов был открыт ряд элементов, причем часть из них лишь в виде "земель": магний, кальций (установление различия извести и магнезии), марганец, барий (барит), молибден, вольфрам, теллур, уран (окисел), цирконий (земля), стронций (земля), титан (окисел), хром, бериллий (окисел), иттрий (земля), тантал (земля), церий (земля), фтор (плавиковая кислота), палладий, родий, осмий и иридий.

5. Этап пневматической химии. В это время (1760-1780 гг.) были открыты газообразные элементы - водород, азот, кислород и хлор (последний считался сложным веществом - окисленной соляной кислотой до 1809 г.).

6. Этап получения элементов в свободном состоянии путем электролиза (Г.Дэви, 1807-1808 гг.) и химическим путем: калий, натрий, кальций, стронций, барий и магний. Все они, впрочем, и ранее были известны в виде "огнепостоянных" (едких) щелочей и щелочных земель, или мягких щелочей.

7. Второй этап химико-аналитического периода в развитии химии (1805-1850 гг.). В это время в результате усовершенствования методов количественного анализа и разработки систематического хода качественного анализа были открыты бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан (земля), эрбий (земля), тербий (земля), рутений, ниобий.

8. Период открытия элементов с помощью спектрального анализа, непосредственно вслед за разработкой и введением этого метода в практику (1860-1863 гг.): цезий, рубидий, таллий и индий."

Как известно, первая в истории химии "Таблица простых тел" была составлена А.Лавуазье в 1787 г. Все простые вещества были разделены на четыре группы: "I. Простые вещества, представленные во всех трех царствах природы, которые можно рассматривать как элементы тел: 1) свет, 2) теплород, 3) кислород, 4) азот, 5) водород. II. Простые неметаллические вещества, окисляющиеся и дающие кислоты: 1) сурьма, 2) фосфор, 3) уголь, 4) радикал муриевой кислоты, 5) радикал плавиковой кислоты, 6) радикал борной кислоты. III. Простые металлические вещества, окисляемые и дающие кислоты: 1) сурьма, 2) серебро, 3) мышьяк, 4) висмут, 5) кобальт, 6) медь, 7) олово, 8) железо, 9) марганец, 10) ртуть, 11) молибден, 12) никель, 13) золото, 14) платина, 15) свинец, 16) вольфрам, 17) цинк. IV. Простые вещества, солеобразующие и землистые: 1) известь (известковая земля), 2) магнезия (основание сульфата магния), 3) барит (тяжелая земля), 4) глинозем (глина, квасцовая земля), 5) кремнезем (кремнистая земля)".

Эта таблица легла в основу химической номенклатуры, разработанной Лавуазье. Д.Дальтон ввел в науку важнейшую количественную характеристику атомов химических элементов - относительный вес атомов или атомный вес.

При отыскании закономерностей в свойствах атомов химических элементов ученые прежде всего обратили внимание на характер изменения атомных весов. В 1815-1816 гг. английский химик У.Праут (1785-1850) опубликовал в "Анналах философии" две анонимные статьи, в которых была высказана и обоснована идея, что атомные веса всех химических элементов являются целочисленными (т.е. кратными атомному весу водорода, который принимался тогда равным единице): "Если взгляды, которые мы решились высказать, правильны, то мы почти можем считать, что первоматерия древних воплощена в водороде...". Гипотеза Праута была очень заманчивой и вызвала постановку многих экспериментальных исследований с целью возможно более точного определения атомных весов химических элементов.

В 1829 г. немецкий химик И.Деберейнер (1780-1849) сопоставлял атомные веса у сходных химических элементов: Литий, Кальций, Хлор, Сера, Марганец, Натрий, Стронций,Бром, Селен, Хром,Калий, Барий, Иод,Теллур, Железо и нашел, что атомный вес среднего элемента равен полусумме атомных весов крайних элементов. Поиски новых триад привели Л.Гмелина (1788-1853) - автора всемирно известного справочного руководства по химии - к установлению многочисленных групп сходных элементов и к созданию их своеобразной классификации.

В 60-х гг. XIX века ученые перешли к сопоставлению между собой уже самих групп химически сходных элементов. Так, профессор Парижской горной школы А.Шанкуртуа (1820-1886) расположил все химические элементы на поверхности цилиндра в порядке возрастания их атомных весов так, чтобы получилась "винтовая линия". При таком расположении сходные элементы часто попадали на одну и ту же вертикальную линию. В 1865 г. английским химиком Д.Ньюлендсом (1838-1898) была опубликована таблица, которая включала в себя 62 химических элемента. Элементы были расположены и пронумерованы в порядке возрастания атомных весов.

Ньюлендс использовал нумерацию, чтобы подчеркнуть, что через каждые семь элементов свойства химических элементов повторяются. При обсуждении в Лондонском химическом обществе в 1866 г. новой статьи Ньюлендса (ее к публикации не рекомендовали) профессор Дж.Фостер с сарказмом спросил: "Не пробовали ли Вы расположить элементы в алфавитном порядке их названий и не заметили ли при таком расположении каких-либо новых закономерностей?"

В 1868 г. английский химик У.Олдинг (1829-1921) предложил таблицу, которая, по мнению автора, демонстрировала закономерную взаимосвязь между всеми элементами.

В 1864 г. немецкий профессор Л.Майер (1830-1895) составил таблицу из 44 химических элементов (из 63 известных).

Оценивая этот период, Д.И.Менделеев писал "Нет ни одного сколько-нибудь общего закона природы, который бы основался сразу, всегда его утверждению предшествует много предчувствий, а признание закона наступает не тогда, когда он вполне осознан во всем его значении, а лишь по утверждении его следствий опытами, которые естествоиспытатели должны признавать высшею инстанциею своих соображений и мнений".

В 1868 г. Д.И.Менделеев начал работать над курсом "Основы химии". Для наиболее логичного расположения материала необходимо было как-то расклассифицировать 63 химических элемента. Первый вариат Периодической системы химических элементов был предложен Д.И.Менделеевым в марте 1869 г.

Через две недели на заседании Русского химического общества был зачитан доклад Менделеева "Соотношение свойств с атомным весом элементов", в котором обсуждались возможные принципы классификации химических элементов:

1) по их отношению к водороду (формулы гидридов); 2) по их отношению к кислороду (формулы высших кислородных окислов); 3) по валентности; 4) по величине атомного веса.

Далее в течение следующих лет (1869-1871 гг.) Менделеев изучал и перепроверял те закономерности и "несообразности", которые были замечены в первом варианте "Системы элементов". Подводя итог этой работы, Д.И.Менделеев писал: "По мере возрастания атомного веса элементы сперва имеют все новые и новые изменчивые свойства, а потом эти свойства вновь повторяются в новом порядке, в новой строке и в ряде элементов и в той же последовательности, как и в предшествовавшем ряде. А потому Закон периодичности можно сформулировать следующим образом: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости (т.е. правильно повторяются) от их атомного веса". Законы природы исключений не терпят... Утверждение закона возможно только при помощи вывода из него следствий, без него невозможных и неожидаемых, и оправдания тех следствий и опытной проверке. Поэтому-то увидев периодический закон, я со своей стороны (1869-1871) вывел из него такие логические следствия, которые могли показать, верен он или нет. К числу их относится предсказание свойств неоткрытых элементов и исправление атомных весов многих, мало в то время обследованных элементов... Надобно что-либо одно - или считать периодический закон верным до конца и составляющим новое орудие химических знаний, или его отвергнуть".

В течение 1872-1874 гг. Менделеев стал заниматься другими проблемами, а в химической литературе о Периодическом законе почти не упоминалось.

В 1875 г. французский химик Л.де Буабодран сообщил, что при исследовании цинковой обманки он спектроскопически обнаружил в ней новый элемент. Он получил соли этого элемента и определил его свойства. В честь Франции он назвал новый элемент галлием (так Францию называли древние римляне). Сравним, что предсказывал Д.И.Менделеев и что было найдено Л.де Буабодраном:

В первом сообщении Л. де Буабодрана удельный вес галлия был найден равным 4.7. Д.И.Менделеев указал ему на его ошибку. При более тщательном измерении удельный вес галлия оказался равен 5.96.

В 1879 г. появилось сообщение шведского химика Л.Нильсона (1840-1899) об открытии им нового химического элемента - скандия. Л.Нильсон отнес скандий к редкоземельным элементам. П.Т.Клеве указал Л.Нильсону на то, что соли скандия бесцветны, его окись нерастворима в щелочах и что скандий представляет собой предсказанный Д.И.Менделеевым экабор. Сравним их свойства.

Анализируя новый минерал в феврале 1886 г. немецкий профессор К.Винклер (1838-1904) открыл новый элемент и считал его аналогом сурьмы и мышьяка. Возникла дискуссия. К.Винклер согласился, что открытый им элемент - это предсказанный Д.И.Менделеевым экасилиций. К.Винклер назвал этот элемент германием.

Итак, ученые-химики трижды подтвердили существование предсказанных Менделеевым химических элементов. Более того, именно предсказанные Менделеевым свойства этих элементов и их положение в Периодической системе позволили исправить ошибки, которые невольно допускали экспериментаторы. Дальнейшее развитие химии происходило на прочной основе Периодического закона, который в 80-х годах XIX в. был признан всеми учеными как один из важнейших законов природы. Таким образом, важнейшей характеристикой любого химического элемента является его место в Периодической системе Д.И.Менделеева .

Введение

Трудно себе представить современную науку без открытия Д.И. Менделеева. Данному закону уже чуть менее 150 лет и он продолжает свое триумфальное шествие. Не возможно изучать химию иначе, как на основе периодического закона и периодической системы элементов. Они относятся к таким научным закономерностям, которые отражают явления, реально существующие в природе, и поэтому никогда не потеряют своего значения.

Целью настоящей работы является выяснения условий и хода открытия, сделанного Д.И. Менделеевым, выяснить структуру периодической системы и зависимость свойств элементов, понять схему строения атома химического элемента, определить прогностическую функцию периодического закона.

Свойства простых веществ, а также формы, и свойства их соединений находятся в периодической зависимости от зарядов ядер атомов.

Открытие периодического закона

В начале 19 в. происходит быстрое развитие химической науки. Если в конце 18 века было известно лишь 25 химических элементов (такие H, C, N, О, P, Cl, и прочие), то к 60-м годам 19 века из число равно 63. Параллельно с открытием новых элементов шло накопление сведений об их атомном весе, физических и химических свойствах, что привело к необходимости классификации элементов.

Немецкий ученый Деберейнер в 1829 г. сгруппировал элементы по триадам:

И сформулировал правило триад: атомные веса трех родственных элементов связаны таким образом, что атомный вес среднего элемента является средним арифметическим весов более легкого и более тяжелого.

В 1864 г. английский ученый Ньюленд пытался разбить все известные элементы на октавы:

H, Li, Be, B, C, N, O;

F, Na, Mg, Al, Si, P, S.

Всего до Менделеева было опубликовано свыше 30 работ по систематике элементов. Однако, общего закона, связывающего все химические элементы, эти ученые не открыли, т.к. они изучали закономерности между сходными элементами в естественных группах, а закономерную связь между группами не искали; а так же, пользуясь неверными атомными массами объединяли в одну группу элементы, далекие по химическим свойствам.

17 февраля 1869 г. (по старому стилю) профессор Петербургского университета Дмитрий Иванович Менделеев сделал первый набросок таблицы химических элементов. В этой таблице он расположил элементы в порядке возрастания их атомных весов и проследил периодическую повторяемость их атомных весов:

Менделеев Д.И. назвал его «Опыт системы элементов, основанный на их атомном весе и химическом свойстве». Это была самая первая таблица периодической системы элементов.

Но чтобы обнаруженная закономерность могла называться законом и была признана другими учеными как закон, надо было еще много работать. И два с половиной года - а вплоть до декабря 1871 г. - он занимался разработкой своего открытия.

Менделеев видел три обстоятельства, которые, по его мнению, способствовали открытию периодического закона:

  • · были более или менее точно определены величины атомных весов большинства химических элементов;
  • · появилось четкое понятие о группах сходных по химическим свойствам элементов;
  • · к 1869 г. была изучена химия многих редких элементов, без знания которой трудно было бы прийти к какому-либо обобщению.

Менделеев сопоставил между собой все известные элементы о величине атомных весов и логично объединил их в структуре своей таблицы. Он характеризовал течение своего творческого процесса: «Искать же что-либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя. Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причем, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить было невозможно».

На первой карточке у Менделеева Д.И было написано название, атомный вес и свойства водорода, вторую карточку с атомным весом и свойствами металла лития он поместил под карточкой водорода. На третье место рядом с литием Менделеев Д.И положил карточку, на которой было написано - Ве(9), а не Ве (14), т.к. принял во внимание особенности химических свойств бериллия: они представляли плавный переход от свойств лития к свойствам бора.

Карточку бора Менделеев Д.И поместил на четвертое место. На пятое углерод. На шестом месте - азот, далее следовали кислород и фтор. Девятая же карточка, принадлежащая металлу натрию, была помещена под второй, на которой были написаны химические характеристики металла лития. На следующее место был поставлен магний за ним алюминий. Под углеродом была положена карточка кремния, под кислородом - сера, под фтором - хлор.

Таки образом, в вертикальных рядах оказались химически сходные элементы. Металл литий по своим свойствам похож на металл натрий. Также как бериллий и магний схожи друг с другом - они образуют с металлами очень схожие соединения. Свойства кислорода и серы также сходны между собой. Под карточкой натрия была помещена карточка с очень схожим на натрий калием, и калий стал началом нового ряда. Под магнием Менделеев Д.И. поместил сходный с магнием кальций. Следующим в порядке возрастания атомного веса должен был идти ванадий, но вместо этого Менделеев Д.И рядом с кальцием оставляет пустую карточку. Вслед за пустой карточкой он ставит карточку титана, хотя на тот момент атомный вес титана химиками считался не 48 а 52. Таким образом, Менделеев Д.И предсказал истинное значение атомного веса для титана, также как и для бериллия. После чего, за титаном следует карточка ванадия, а уже далее карточки хрома и марганца. Этот период в таблице Менделеева длинный. За марганцем идут железо (Fe)-56, кобальт (Co)-59, никель(Ni)-59, медь(Cu)-63, цинк (Zn)-65. Но вслед за цинком ученый вновь оставил в своей таблице подряд два пустых места. Далее следовали карточки с мышьяком, селеном и бромом, завершавшим длинный период. При этом карточки мышьяка, селена и брома оказались под сходными с ними элементами конца предыдущего короткого периода, т.е. элементов фосфора, серы и хлора.

В 1871 году в журнале Русского химического общества появилась статья Менделеева Д.И «Естественная система элементов и применение ее к указанию свойств неоткрытых элементов». В данной статье он описал три до этого времени неизвестных научному миру химических элемента, причем так обстоятельно, как не смог бы этого сделать иной исследователь, державший в руках их соединения и посвятивший долгие годы изучению их в лаборатории. Этот факт можно назвать великим предсказанием, т.к. менделеевский экаалюминий соответствует галлию, экабор - скандию, экасилиций - германию. Также в данной статье Менделеев Д.И впервые употребляет понятие «закон периодичности», называя свою систему естественной. В том же году появляется очередная статья Менделеева Д.И. под названием «Периодическая законность химических элементов», о которой сам автор впоследствии говорил: «Это лучший свод моих взглядов и соображений о периодичности элементов …..». В данной статье Менделеев Д.И впервые приводит каноническую формулировку периодического закона, просуществовавшую до его физического обоснования: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Реферат

«История открытия и подтверждения периодического закона Д.И. Менделеева»

Санкт-Петербург 2007


Введение

Периодический закон Д.И. Менделеева – это фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д.И. Менделеевым в феврале 1869 г. При сопоставлении свойств всех известных в то время элементов и величин их атомных масс (весов). Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «…свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.


1. Попытки других ученых вывести периодический закон

Периодическая система, или периодическая классификация, элементов имела огромное значение для развития неорганической химии во второй половине XIX в. Это значение в настоящее время колоссально, потому что сама система в результате изучения проблем строения вещества постепенно приобрела ту степень рациональности, которой невозможно было достичь, зная только атомные веса. Переход от эмпирической закономерности к закону составляет конечную цель всякой научной теории.

Поиски основы естественной классификации химических элементов и их систематизации начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX в. число известных химических элементов было ещё слишком невелико, а принятые значения атомных масс многих элементов неточны.

Не считая попыток Лавуазье и его школы дать классификацию элементов на основе критерия аналогии в химическом поведении, первая попытка периодической классификации элементов принадлежит Дёберейнеру.

Триады Дёберейнера и первые системы элементов

В 1829 г. немецкий химик И. Дёберейнер предпринял попытку систематизации элементов. Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами: Li–Na–K; Ca–Sr–Ba; S–Se–Te; P–As–Sb; Cl–Br–I.

Сущность предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме (среднему арифметическому) атомных масс двух крайних элементов триады. Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами.

Идеи Дёберейнера были развиты Л. Гмелиным, который показал, что взаимосвязь между свойствами элементов и их атомными массами значительно сложнее, нежели триады. В 1843 г. Гмелин опубликовал таблицу, в которой химически сходные элементы были расставлены по группам в порядке возрастания соединительных (эквивалентных) весов. Элементы составляли триады, а также тетрады и пентады (группы из четырёх и пяти элементов), причём электроотрицательность элементов в таблице плавно изменялись сверху вниз.

В 1850-х гг. М. фон Петтенкофер и Ж. Дюма предложили т.н. дифференциальные системы, направленные на выявление общих закономерностей в изменении атомного веса элементов, которые детально разработали немецкие химики А. Штреккер и Г. Чермак.

В начале 60-х годов XIX в. появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

А. де Шанкуртуа располагал все известные в то время химические элементы в единой последовательности возрастания их атомных масс и полученный ряд наносил на поверхность цилиндра по линии, исходящей из его основания под углом 45° к плоскости основания (т.н. земная спираль ). При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т.д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы – ничего общего с ними не имеющий титан.

Таблица Ньюлендса

Английский учёный Дж. Ньюлендс в 1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав . Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

В том же 1864 г. появилась первая таблица немецкого химика Л. Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

В 1870 г. вышла работа Мейера, содержащая новую таблицу под названием «Природа элементов как функция их атомного веса», состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин «периодичность», уже предложенный к тому времени Менделеевым.

2. Что было сделано до дня великого открытия

Предпосылки открытия периодического закона следует искать в книге Д.И. Менделеева (далее Д.И.) «Основы химии». Первые главы 2-й части этой книги Д.И. написал в начале 1869 г. 1-я глава была посвящена натрию, 2-я – его аналогам, 3-я – теплоемкости, 4-я – щелочноземельным металлам. Ко дню открытия периодического закона (17 февраля 1869 г.) он, вероятно, уже успел изложить вопрос о соотношении таких полярно-противоположных элементов, как щелочные металлы и галоиды, которые были сближены между собой по величине их атомности (валентности), а также вопрос о соотношении самих щелочных металлов по величине их атомных весов. Он вплотную подошел и к вопросу о сближении и сопоставлении двух групп полярно-противоположных элементов по величине атомных весов их членов, что фактически уже означало отказ от принципа распределения элементов по их атомности и переход к принципу их распределения по атомным весам. Этот переход представлял собой не подготовку к открытию периодического закона, а уже начало самого открытия

К началу 1869 г. Значительная часть элементов была объединена в отдельные естественные группы и семейства по признаку общности химических свойств; наряду с этим другая часть их представлял собой разрозненные, стоявшие особняком отдельные элементы, которые не были объединены в особые группы. Твердо установленными считались следующие:

– группа щелочных металлов – литий, натрий, калий, рубидий и цезий;

– группа щелочноземельных металлов – кальций, стронций и барий;

– группа кислорода – кислород, сера, селен и теллур;

– группа азота – азот, фосфор, мышьяк и сурьма. Кроме того, сюда часто присоединяли висмут, а в качестве неполного аналога азота и мышьяка рассматривали ванадий;

– группа углерода – углерод, кремний и олово, причем в качестве неполных аналогов кремния и олова рассматривали титан и цирконий;

– группа галогенов (галоидов) – фтор, хлор, бром и йод;

– группа меди – медь и серебро;

– группа цинка – цинк и кадмий

– семейство железа – железо, кобальт, никель, марганец и хром;

– семейство платиновых металлов – платина, осмий, иридий, палладий, рутений и родий.

Сложнее дело обстояло с такими элементами, которые могли быть отнесены к разным группам или семействам:

– свинец, ртуть, магний, золото, бор, водород, алюминий, таллий, молибден, вольфрам.

Кроме того был известен ряд элементов, свойства которых были еще недостаточно изучены:

– семейство редкоземельных элементов – иттрий, «эрбий», церий, лантан и «дидим»;

– ниобий и тантал;

– бериллий;

3. День великого открытия

Д.И. был весьма разносторонним ученым. Он давно и очень сильно интересовался вопросами сельского хозяйства. Он принимал самое близкое участие в деятельности Вольного экономического общества в Петербурге (ВЭО), членом которого он состоял. ВЭО организовало в ряде северных губерний артельное сыроварение. Одним из инициаторов этого начинания был Н.В. Верещагин. В конце 1868 г., т.е. в то время как Д.И. заканчивал вып. 2 своей книги, Верещагин обратился в ВЭО с просьбой прислать кого-нибудь из членов Общества для того, чтобы на месте обследовать работу артельных сыроварен. Согласие на такого рода поездку выразил Д.И. В декабре 1868 г. он обследовал ряд артельных сыроварен в Тверской губернии. Для завершения обследования нужна было дополнительная командировка. Как раз на 17 февраля 1869 г. и был назначен отъезд.