Собственный опыт

Сколько вариантов комбинаций из 5 цифр. Формулы комбинаторики

Число сочетаний

Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений .

Явные формулы

Число сочетаний из n по k равно биномиальному коэффициенту

При фиксированном значении n производящей функцией чисел сочетаний с повторениями из n по k является:

Двумерной производящей функцией чисел сочетаний с повторениями является:

Ссылки

  • Р. Стенли Перечислительная комбинаторика. - М.: Мир, 1990.
  • Вычисление числа сочетаний онлайн

Wikimedia Foundation . 2010 .

Смотреть что такое "Число сочетаний" в других словарях:

    70 семьдесят 67 · 68 · 69 · 70 · 71 · 72 · 73 40 · 50 · 60 · 70 · 80 · 90 · 100 Факторизация: 2×5×7 Римская запись: LXX Двоичное: 100 0110 … Википедия

    Световое число, условное число, однозначно выражающее внеш. условия при фотосъёмке (обычно яркость объекта съёмки и светочувствительность применяемого фотоматериала). Любому значению Э. ч. можно подобрать неск. сочетаний диафрагменное число… … Большой энциклопедический политехнический словарь

    Форма числа, выделяющая два предмета как по отношению к единичному предмету, так и по отношению к множеству предметов. В современном русском языке эта форма не существует, но остатки ее влияния сохранились. Так, сочетания два стола (ср. мн. ч.… … Словарь лингвистических терминов

    Комбинаторная математика, комбинаторика, раздел математики, посвященный решению задач выбора и расположения элементов нек рого, обычно конечного, множества в соответствии с заданными правилами. Каждое такое правило определяет способ построения… … Математическая энциклопедия

    В комбинаторике сочетанием из по называется набор элементов, выбранных из данного множества, содержащего различных элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания… … Википедия

    Занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о разумности ожидания наступления одних событий по сравнению с другими, хотя приписывание численных значений вероятностям событий часто бывает излишним… … Энциклопедия Кольера

    1) то же, что математический Комбинаторный анализ. 2) Раздел элементарной математики, связанный с изучением количества комбинаций, подчинённых тем или иным условиям, которые можно составить из заданного конечного множества объектов… … Большая советская энциклопедия

    - (греч. paradoxos неожиданный, странный) в широком смысле: утверждение, резко расходящееся с общепринятым, устоявшимся мнением, отрицание того, что представляется «безусловно правильным»; в более узком смысле два противоположных утверждения, для… … Философская энциклопедия

    - (или принцип включений исключений) комбинаторная формула, позволяющая определить мощность объединения конечного числа конечных множеств, которые в общем случае могут пересекаться друг с другом … Википедия

    Математическая теория, занимающаяся определением числа различных способов распределения данных предметов в известном порядке; имеет особенно важное значение в теории уравнений и в теории вероятностей. Простейшие задачи этого рода заключаются в… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

  • Число судьбы. Гороскоп совместимости. Желания. Страсти. Фантазии (количество томов: 3) , Майер Максим. Число судьбы. Как составить индивидуальный нумерологический прогноз. Нумерология - одна из самых древних эзотерических систем. Невозможно точно установить времяее возникновения. Однако в…

В данной статье речь пойдет об особом разделе математики под названием комбинаторика. Формулы, правила, примеры решения задач - все это вы сможете найти здесь, прочитав статью до самого конца.

Итак, что же это за раздел? Комбинаторика занимается вопросом подсчета каких-либо объектов. Но в данном случае объектами выступают не сливы, груши или яблоки, а нечто иное. Комбинаторика помогает нам находить вероятность какого-либо события. Например, при игре в карты - какова вероятность того, что у противника есть козырная карта? Или такой пример - какова вероятность того, что из мешка с двадцатью шариками вы достанете именно белый? Именно для подобного рода задач нам и нужно знать хотя бы основы данного раздела математики.

Комбинаторные конфигурации

Рассматривая вопрос основных понятий и формул комбинаторики, мы не можем не уделить внимание комбинаторным конфигурациям. Они используются не только для формулировки, но и для решения различных Примерами таких моделей служат:

  • размещение;
  • перестановка;
  • сочетание;
  • композиция числа;
  • разбиение числа.

О первых трех мы поговорим более подробно далее, а вот композиции и разбиению мы уделим внимание в данном разделе. Когда говорят о композиции некого числа (допустим, а), то подразумевают представление числа а в виде упорядоченной суммы неких положительных чисел. А разбиение - это неупорядоченная сумма.

Разделы

Прежде чем мы перейдем непосредственно к формулам комбинаторики и рассмотрению задач, стоит обратить внимание на то, что комбинаторика, как и другие разделы математики, имеет свои подразделы. К ним относятся:

  • перечислительная;
  • структурная;
  • экстремальная;
  • теория Рамсея;
  • вероятностная;
  • топологическая;
  • инфинитарная.

В первом случае речь идет об исчисляющей комбинаторике, задачи рассматривают перечисление или подсчет разных конфигураций, которые образованы элементами множеств. На данные множества, как правило, накладываются какие-либо ограничения (различимость, неразличимость, возможность повтора и так далее). А количество этих конфигураций подсчитывается при помощи правила сложения или умножения, о которых мы поговорим немного позже. К структурной комбинаторике относятся теории графов и матроидов. Пример задачи экстремальной комбинаторики - какова наибольшая размерность графа, который удовлетворяет следующим свойствам… В четвертом пункте мы упомянули теорию Рамсея, которая изучает в случайных конфигурациях наличие регулярных структур. Вероятностная комбинаторика способна нам ответить на вопрос - какова вероятность того, что у заданного множества присутствует определенное свойство. Как нетрудно догадаться, топологическая комбинаторика применяет методы в топологии. И, наконец, седьмой пункт - инфинитарная комбинаторика изучает применение методов комбинаторики к бесконечным множествам.

Правило сложения

Среди формул комбинаторики можно найти и довольно простые, с которыми мы достаточно давно знакомы. Примером является правило суммы. Предположим, что нам даны два действия (С и Е), если они взаимоисключаемы, действие С выполнимо несколькими способами (например а), а действие Е выполнимо b-способами, то выполнить любое из них (С или Е) можно а+b способами.

В теории это понять достаточно трудно, постараемся донести всю суть на простом примере. Возьмем среднюю численность учеников одного класса - допустим, это двадцать пять. Среди них пятнадцать девочек и десять мальчиков. Ежедневно в классе назначается один дежурный. Сколько есть способов назначить дежурного по классу сегодня? Решение задачи достаточно простое, мы прибегнем к правилу сложения. В тексте задачи не сказано, что дежурными могут быть только мальчики или только девочки. Следовательно, им может оказаться любая из пятнадцати девочек или любой из десяти мальчиков. Применяя правило суммы, мы получаем достаточно простой пример, с которым без труда справится школьник начальных классов: 15 + 10. Подсчитав, получаем ответ: двадцать пять. То есть существует всего двадцать пять способов назначить на сегодня дежурного класса.

Правило умножения

К основным формулам комбинаторики относится и правило умножения. Начнем с теории. Допустим, нам необходимо выполнить несколько действий (а): первое действие выполняется с1 способами, второе - с2 способами, третье - с3 способами и так далее до последнего а-действия, выполняемого са способами. Тогда все эти действия (которых всего у нас а) могут быть выполнены N способами. Как высчитать неизвестную N? В этом нам поможет формула: N = с1 * с2 * с3 *…* са.

Опять же, в теории ничего не понятно, переходим к рассмотрению простого примера на применение правила умножения. Возьмем все тот же класс из двадцати пяти человек, в котором учится пятнадцать девочек и десять мальчиков. Только на этот раз нам необходимо выбрать двух дежурных. Ими могут быть как только мальчики или девочки, так и мальчик с девочкой. Переходим к элементарному решению задачи. Выбираем первого дежурного, как мы решили в прошлом пункте, у нас получается двадцать пять возможных вариантов. Вторым дежурным может быть любой из оставшихся человек. У нас было двадцать пять учеников, одного мы выбрали, значит вторым дежурным может быть любой из оставшихся двадцати четырех человек. Наконец, применяем правило умножения и получаем, что двоих дежурных можно избрать шестью сотнями способов. Мы данное число получили умножением двадцати пяти и двадцати четырех.

Перестановка

Сейчас мы рассмотрим еще одну формулу комбинаторики. В данном разделе статьи мы поговорим о перестановках. Рассмотреть проблему предлагаем сразу же на примере. Возьмем бильярдные шары у нас их n-ое количество. Нам нужно подсчитать: сколько есть вариантов расставить их в ряд, то есть составить упорядоченный набор.

Начнем, если у нас нет шаров, то и вариантов расстановки у нас так же ноль. А если у нас шар один, то и расстановка тоже одна (математически это можно записать следующим образом: Р1 = 1). Два шара можно расставить двумя разными способами: 1,2 и 2,1. Следовательно, Р2 = 2. Три шара можно расставить уже шестью способами (Р3=6): 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,2,1; 3,1,2. А если таких шаров не три, а десять или пятнадцать? Перечислять все возможные варианты очень долго, тогда нам на помощь приходит комбинаторика. Формула перестановки поможет нам найти ответ на интересующий нас вопрос. Pn = n *P (n-1). Если попытаться упростить формулу, то получаем: Pn = n* (n - 1) *…* 2 * 1. А это и есть произведение первых натуральных чисел. Такое число называется факториалом, а обозначается как n!

Рассмотрим задачу. Вожатый каждое утро выстраивает свой отряд в шеренгу (двадцать человек). В отряде есть три лучших друга - Костя, Саша и Леша. Какова вероятность того, что они будут стоять рядом? Чтобы найти ответ на вопрос, нужно вероятность «хорошего» исхода поделить на общее количество исходов. Общее число перестановок составляет 20! = 2,5 квинтиллиона. Как посчитать количество «хороших» исходов? Предположим, что Костя, Саши и Леша - это один сверхчеловек. Тогда мы имеем всего восемнадцать субъектов. Число перестановок в данном случае равняется 18 = 6,5 квадриллионов. При всем этом, Костя, Саша и Леша могут произвольно перемещаться между собой в своей неделимой тройке, а это еще 3! = 6 вариантов. Значит всего «хороших» расстановок у нас 18! * 3! Нам остается только найти искомую вероятность: (18! * 3!) / 20! Что равняется примерно 0,016. Если перевести в проценты, то это получается всего 1,6%.

Размещение

Сейчас мы рассмотрим еще одну очень важную и необходимую формулу комбинаторики. Размещение - это наш следующий вопрос, который предлагаем вам рассмотреть в данном разделе статьи. Мы идем на усложнение. Предположим, что мы хотим рассмотреть возможные перестановки, только не из всего множества (n), а из меньшего (m). То есть мы рассматриваем перестановки из n предметов по m.

Основные формулы комбинаторики стоит не просто заучивать, а понимать их. Даже несмотря на то, что они усложняются, так как у нас не один параметр, а два. Предположим, что m = 1, то и А = 1, m = 2, то А = n * (n - 1). Если далее упрощать формулу и перейти на запись при помощи факториалов, то получится вполне лаконичная формула: А = n! / (n - m)!

Сочетание

Мы рассмотрели практически все основные формулы комбинаторики с примерами. Теперь перейдем к заключительному этапу рассмотрения базового курса комбинаторики - знакомство с сочетанием. Сейчас мы будем выбирать m предметов из имеющихся у нас n, при этом всем мы будем выбирать всеми возможными способами. Чем же тогда это отличается от размещения? Мы не будем учитывать порядок. Этот неупорядоченный набор и будет являться сочетанием.

Сразу введем обозначение: С. Берем размещения m шариков из n. Мы перестаем обращать внимание на порядок и получаем повторяющиеся сочетания. Чтобы получить число сочетаний нам надо поделить число размещений на m! (m факториал). То есть С = А / m! Таким образом, способов выбрать из n шаров немножко, равняется примерно столько, сколько выбрать почти все. Этому есть логическое выражение: выбрать немножко все равно, что выкинуть почти все. Еще в данном пункте важно упомянуть и то, что максимальное число сочетаний можно достигнуть при попытке выбрать половину предметов.

Как выбрать формулу для решения задачи?

Мы подробно рассмотрели основные формулы комбинаторики: размещение, перестановка и сочетание. Теперь наша задача - облегчить выбор необходимой формулы для решения задачи по комбинаторике. Можно воспользоваться следующей довольно простой схемой:

  1. Задайте себе вопрос: порядок размещения элементов учитывается в тексте задачи?
  2. Если ответ нет, то воспользуйтесь формулой сочетания (С = n! / (m! * (n - m)!)).
  3. Если ответ нет, то необходимо ответить на еще один вопрос: все ли элементы входят в комбинацию?
  4. Если ответ да, то воспользуйтесь формулой перестановки (Р = n!).
  5. Если ответ нет, то воспользуйтесь формулой размещения (А = n! / (n - m)!).

Пример

Мы рассмотрели элементы комбинаторики, формулы и некоторые другие вопросы. Теперь перейдем к рассмотрению реальной задачи. Представьте, что перед вами лежат киви, апельсин и банан.

Вопрос первый: сколькими способами их можно переставить? Для этого воспользуемся формулой перестановок: Р = 3! = 6 способов.

Вопрос второй: сколькими способами можно выбрать один фрукт? Это очевидно, у нас всего три варианта - выбрать киви, апельсин или банан, но применим формулу сочетаний: С = 3! / (2! * 1!) = 3.

Вопрос третий: сколькими способами можно выбрать два фрукта? Какие есть у нас вообще варианты? Киви и апельсин; киви и банан; апельсин и банан. То есть три варианта, но это легко проверить при помощи формулы сочетания: С = 3! / (1! * 2!) = 3

Вопрос четвертый: сколькими способами можно выбрать три фрукта? Как видно, выбрать три фрукта можно одним-единственным способом: взять киви, апельсин и банан. С = 3! / (0! * 3!) = 1.

Вопрос пятый: сколькими способами можно выбрать хотя бы один фрукт? Это условие подразумевает, что мы можем взять один, два или все три фрукта. Следовательно, мы складываем С1 + С2 + С3 =3 + 3 + 1 = 7. То есть у нас есть семь способов взять со стола хотя бы один фрукт.

Рассмотрим задачу подсчета числа выборок из данного множества в общем виде. Пусть имеется некоторое множество N , состоящее из n элементов. Любое подмножество, состоящее из m элементов можно рассматривать без учета их порядка, так и с его учетом, т.е. при изменении порядка переходим к другой m – выборке.

Сформулируем следующие определения:

Размещения без повторения

Размещением без повторения из n элементов по m N , содержащее m различных элементов .

Из определения следует, что два размещения отличаются друг от друга, как элементами, так и их порядком, даже если элементы одинаковы.

Теорема 3 . Число размещений без повторения равно произведению m сомножителей, наибольшим из которых является число n . Записывают:

Перестановки без повторений

Перестановками из n элементов называются различные упорядочения множества N .

Из этого определения следует, что две перестановки отличаются только порядком элементов и их можно рассматривать как частный случай размещений.

Теорема 4 . Число различных перестановок без повторений вычисляется по формуле

Сочетания без повторений

Сочетанием без повторения из n элементов по m называется любое неупорядоченное подмножество множества N , содержащее m различных элементов.

Из определения следует, что два сочетания различаются только элементами, порядок не важен.

Теорема 5 . Число сочетаний без повторений вычисляют по одной из следующих формул:

Пример 1 . В комнате 5 стульев. Сколькими способами можно разместить на них

а) 7 человек; б) 5 человек; в) 3 человека?

Решение: а) Прежде всего надо выбрать 5 человек из 7 для посадки на стулья. Это можно сделать
способом. С каждым выбором конкретной пятерки можно произвести
перестановок местами. Согласно теореме умножения искомое число способов посадки равно.

Замечание: Задачу можно решать, используя только теорему произведения, рассуждая следующим образом: для посадки на 1-й стул имеется 7 вариантов, на 2-й стул-6 вариантов, на 3-й -5, на 4-й -4 и на 5-й -3. Тогда число способов посадки 7 человек на 5 стульев равно . Решения обоими способами согласуются, так как

б) Решение очевидно -

в) - число выборов занимаемых стульев.

- число размещений трех человек на трех выбранных стульях.

Общее число выборов равно .

Не трудно проверить формулы
;

;

Число всех подмножеств множества, состоящего из n элементов.

Размещения с повторением

Размещением с повторением из n элементов по m называется всякое упорядоченное подмножество множества N , состоящее из m элементов так, что любой элемент ожжет входить в это подмножество от 1 до m раз, либо вообще в нем отсутствовать .

Число размещений с повторением обозначают и вычисляют по формуле, представляющей собой следствие из теоремы умножения:

Пример 2 . Пусть дано множество из трех букв N = {a, b, c}. Назовем словом любой набор из букв, входящих в это множество. Найдем количество слов длиной 2, которые можно составить из этих букв:
.

Замечание: Очевидно, размещения с повторением можно рассматривать и при
.

Пример 3 . Требуется из букв {a, b}, составить всевозможные слова длиной 3. Сколькими способами это можно сделать?

Ответ :

Мы иногда делаем выбор из множества без учета порядка . Такой выбор называется комбинацией . Если вы играете в карты, например, вы знаете, что в большинстве ситуаций порядок, в котором вы держите карты, не имеет значения.

Пример 1 Найдите все комбинации 3-х букв, взятых из набора в 5 букв {A, B, C, D, E}.

Решение Эти комбинации следующие:
{A, B, C}, {A, B, D},
{A, B, E}, {A, C, D},
{A, C, E}, {A, D, E},
{B, C, D}, {B, C, E},
{B, D, E}, {C, D, E}.
Существует 10 комбинаций из трех букв, выбранных из пяти букв.

Когда мы находим все комбинации из набора с 5 объектами, если мы берем 3 объекта за один раз, мы находим все 3-элементные подмножества. В таком случае порядок объектов не рассматривается. Тогда,
{A, C, B} называется одним и тем же набором как и {A, B, C}.

Подмножество
Множество A есть подмножеством B, и означает что A это подмножество и/или совпадает с B если каждый элемент A является элементом B.

Элементы подмножество не упорядочены. Когда рассматриваются комбинации, не рассматривается порядок!

Комбинация
Комбинация, содержащая k объектов является подмножеством, состоящим из k объектов.

Мы хотим записать формулу для вычисления число сочетаний из n объектов, если взято к объектов одновременно.

Обозначения комбинации
Число сочетаний из n объектов, если взято к объектов одновременно, обозначается n C k .

Мы называем n C k число сочетаний . Мы хотим записать общую формулу для n C k для любого k ≤ n. Во-первых, это верно, что n C n = 1, потому что множество с n элементами имеет только одно подмножестов с n элементами, есть само множество. Во-вторых, n C 1 = n, потому что множество с n элементами имеет только n подмножеств с 1 элементом в каждом. Наконец, n C 0 = 1, потому что множество с n элементами имеет только одно подмножество с 0 элементами, то есть пустое множество ∅. Чтобы рассмотреть другие сочетания, давайте вернемся к примеру 1 и сравним число комбинаций с числом перестановок.

Обратите внимание, что каждая комбинация из 3-х элементов имеет 6, или 3!, перестановок.
3! . 5 C 3 = 60 = 5 P 3 = 5 . 4 . 3,
so
.
В общем, число сочетаний из k элементов, выбранных из n объектов, n C k раз перестановок этих элементов k!, должно быть равно числу перестановок n элементов по k элементов:
k!. n C k = n P k
n C k = n P k /k!
n C k = (1/k!). n P k
n C k =

Комбинации k объектов из n объектов
Общее число комбинаций к элементов из n объектов обозначается n C k , определяется
(1) n C k = ,
или
(2) n C k =

Другой тип обозначения для n C k это биноминальный коэффициент . Причина для такой терминологии будет понятна ниже.

Биноминальный коэффициент

Пример 2 Вычислите , используя формулы (1) и (2).

Решение
a) Согласно (1),
.
b) Согласно (2),


Имейте в виду, что не означает n/k.

Пример 3 Вычислите и .

Решение Мы используем формулу (1) для первого выражения и формулу (2) для второго. Тогда
,
используя (1), и
,
испоьлзуя формулу (2).

Обратите внимание, что
,
и используя результат примера 2 дает нам
.
Отсюда вытекает, что число 5-ти элементного подмножества из множества 7 элементов то же самое, что и число 2-элементного подмножества множества из 7 элементов. Когда 5 элементов выбираются из набора, они не включают в себя 2 элемента. Чтобы увидеть это, рассмотрим множество {A, B, C, D, E, F, G}:


В целом, мы имеем следующее. Этот результат дает альтернативный способ вычисления комбинации.

Подмножества размера k и размера
и n C k = n C n-k
Число подмножеств размера к множества с n объектами такое же, как и число подмножеств размера n - к. Число сочетаний k объектов из множества n объектов, такое же как и число сочетаний из n объектов, взятых одновременно.

Теперь мы будем решать задачи с комбинациями.

Пример 4 Мичиганская лотерея. Проводящаяся в штате Мичиган два раза в неделю лотерея WINFALL имеет джек-пот, который, по крайней мере, равен 2 млн. долларов США. За один доллар игрок может зачеркнуть любые 6 чисел от 1 до 49. Если эти числа совпадают с теми, которые выпадают при проведении лотереи, игрок выигрывает. (