Инф. технологии

Степень окисления k. Валентность и степень окисления - подготовка к егэ по химии

Валентность является сложным понятием. Этот термин претерпел значительную трансформацию одновременно с развитием теории химической связи. Первоначально валентностью называли способность атома присоединять или замещать определённое число других атомов или атомных групп с образованием химической связи.

Количественной мерой валентности атома элемента считали число атомов водорода или кислорода (данные элементы считали соответственно одно- и двухвалентными), которые элемент присоединяет, образуя гидрид формулы ЭH x или оксид формулы Э n O m .

Так, валентность атома азота в молекуле аммиака NH 3 равна трём, а атома серы в молекуле H 2 S равна двум, поскольку валентность атома водорода равна одному.

В соединениях Na 2 O, BaO, Al 2 O 3 , SiO 2 валентности натрия, бария и кремния соответственно равны 1, 2, 3 и 4.

Понятие о валентности было введено в химию до того, как стало известно строение атома, а именно в 1853 году английским химиком Франклендом. В настоящее время установлено, что валентность элемента тесно связана с числом внешних электронов атомов, поскольку электроны внутренних оболочек атомов не участвуют в образовании химических связей.

В электронной теории ковалентной связи считают, что валентность атома определяется числом его неспаренных электронов в основном или возбуждённом состоянии, участвующих в образовании общих электронных пар с электронами других атомов.

Для некоторых элементов валентность является величиной постоянной. Так, натрий или калий во всех соединениях одновалентны, кальций, магний и цинк - двухвалентны, алюминий - трёхвалентен и т. д. Но большинство химических элементов проявляют переменную валентность, которая зависит от природы элемента - партнёра и условий протекания процесса. Так, железо может образовывать с хлором два соединения - FeCl 2 и FeCl 3 , в которых валентность железа равна соответственно 2 и 3.

Степень окисления - понятие, характеризующее состояние элемента в химическом соединении и его поведение в окислительно-восстановительных реакциях; численно степень окисления равна формальному заряду, который можно приписать элементу, исходя из предположения, что все электроны каждой его связи перешли к более электроотрицательному атому.

Электроотрицательность - мера способности атома к приобретению отрицательного заряда при образовании химической связи или способность атома в молекуле притягивать к себе валентные электроны, участвующие в образовании химической связи. Электроотрицательность не является абсолютной величиной и рассчитывается различными методами. Поэтому приводимые в разных учебниках и справочниках значения электроотрицательности могут отличаться.

В таблице 2 приведена электроотрицательность некоторых химических элементов по шкале Сандерсона, а в таблице 3 - электроотрицательность элементов по шкале Полинга.

Значение электроотрицательности приведено под символом соответствующего элемента. Чем больше численное значение электроотрицательности атома, тем более электроотрицательным является элемент. Наиболее электроотрицательным является атом фтора, наименее электроотрицательным - атом рубидия. В молекуле, образованной атомами двух разных химических элементов, формальный отрицательный заряд будет у атома, численное значение электроотрицательности у которого будет выше. Так, в молекуле диоксида серы SO 2 электроотрицательность атома серы равна 2,5, а значение электроотрицательности атома кислорода больше - 3,5. Следовательно, отрицательный заряд будет на атоме кислорода, а положительный - на атоме серы.

В молекуле аммиака NH 3 значение электроотрицательности атома азота равно 3,0, а водорода - 2,1. Поэтому отрицательный заряд будет у атома азота, а положительный - у атома водорода.

Следует чётко знать общие тенденции изменения электроотрицательности. Поскольку атом любого химического элемента стремится приобрести устойчивую конфигурацию внешнего электронного слоя - октетную оболочку инертного газа, то электроотрицательность элементов в периоде увеличивается, а в группе электроотрицательность в общем случае уменьшается с увеличением атомного номера элемента. Поэтому, например, сера более электроотрицательна по сравнению с фосфором и кремнием, а углерод более электроотрицателен по сравнению с кремнием.

При составлении формул соединений, состоящих из двух неметаллов, более электроотрицательный из них всегда ставят правее: PCl 3 , NO 2 . Из этого правила есть некоторые исторически сложившиеся исключения, например NH 3 , PH 3 и т.д.

Степень окисления обычно обозначают арабской цифрой (со знаком перед цифрой), расположенной над символом элемента, например:

Для определения степени окисления атомов в химических соединениях руководствуются следующими правилами:

  1. Степень окисления элементов в простых веществах равна нулю.
  2. Алгебраическая сумма степеней окисления атомов в молекуле равна нулю.
  3. Кислород в соединениях проявляет главным образом степень окисления, равную –2 (во фториде кислорода OF 2 + 2, в пероксидах металлов типа M 2 O 2 –1).
  4. Водород в соединениях проявляет степень окисления + 1, за исключением гидридов активных металлов, например, щелочных или щёлочноземельных, в которых степень окисления водорода равна – 1.
  5. У одноатомных ионов степень окисления равна заряду иона, например: K + - +1, Ba 2+ - +2, Br – - –1, S 2– - –2 и т. д.
  6. В соединениях с ковалентной полярной связью степень окисления более электроотрицательного атома имеет знак минус, а менее электроотрицательного - знак плюс.
  7. В органических соединениях степень окисления водорода равна +1.

Проиллюстрируем вышеприведённые правила несколькими примерами.

Пример 1. Определить степень окисления элементов в оксидах калия K 2 O, селена SeO 3 и железа Fe 3 O 4 .

Оксид калия K 2 O. Алгебраическая сумма степеней окисления атомов в молекуле равна нулю. Степень окисления кислорода в оксидах равна –2. Обозначим степень окисления калия в его оксиде за n, тогда 2n + (–2) = 0 или 2n = 2, отсюда n = +1, т. е. степень окисления калия равна +1.

Оксид селена SeO 3 . Молекула SeO 3 электронейтральна. Суммарный отрицательный заряд трёх атомов кислорода составляет –2 × 3 = –6. Следовательно, чтобы уравнять этот отрицательный заряд до ноля, степень окисления селена должна быть равна +6.

Молекула Fe 3 O 4 электронейтральна. Суммарный отрицательный заряд четырёх атомов кислорода составляет –2 × 4 = –8. Чтобы уравнять этот отрицательный заряд, суммарный положительный заряд на трёх атомах железа должен быть равен +8. Следовательно, на одном атоме железа должен быть заряд 8/3 = +8/3.

Следует подчеркнуть, что степень окисления элемента в соединении может быть дробным числом. Такие дробные степени окисления не имеют смысла при объяснении связи в химическом соединении, но могут быть использованы для составления уравнений окислительно-восстановительных реакций.

Пример 2. Определить степень окисления элементов в соединениях NaClO 3 , K 2 Cr 2 O 7 .

Молекула NaClO 3 электронейтральна. Степень окисления натрия равна +1, степень окисления кислорода равна –2. Обозначим степень окисления хлора за n, тогда +1 + n + 3 × (–2) = 0, или +1 + n – 6 = 0, или n – 5 = 0, отсюда n = +5. Таким образом, степень окисления хлора равна +5.

Молекула K 2 Cr 2 O 7 электронейтральна. Степень окисления калия равна +1, степень окисления кислорода равна –2. Обозначим степень окисления хрома за n, тогда 2 × 1 + 2n + 7 × (–2) = 0, или +2 + 2n – 14 = 0, или 2n – 12 = 0, 2n = 12, отсюда n = +6. Таким образом, степень окисления хрома равна +6.

Пример 3. Определим степени окисления серы в сульфат-ионе SO 4 2– . Ион SO 4 2– имеет заряд –2. Степень окисления кислорода равна –2. Обозначим степень окисления серы за n, тогда n + 4 × (–2) = –2, или n – 8 = –2, или n = –2 – (–8), отсюда n = +6. Таким образом, степень окисления серы равна +6.

Следует помнить, что степень окисления иногда не равна валентности данного элемента.

Например, степени окисления атома азота в молекуле аммиака NH 3 или в молекуле гидразина N 2 H 4 равны –3 и –2 соответственно, тогда как валентность азота в этих соединениях равна трём.

Максимальная положительная степень окисления для элементов главных подгрупп, как правило, равна номеру группы (исключения: кислород, фтор и некоторые другие элементы).

Максимальная отрицательная степень окисления равна 8 - номер группы.

Тренировочные задания

1. В каком соединении степень окисления фосфора равна +5?

1) HPO 3
2) H 3 PO 3
3) Li 3 P
4) AlP

2. В каком соединении степень окисления фосфора равна –3?

1) HPO 3
2) H 3 PO 3
3) Li 3 PO 4
4) AlP

3. В каком соединении степень окисления азота равна +4?

1) HNO 2
2) N 2 O 4
3) N 2 O
4) HNO 3

4. В каком соединении степень окисления азота равна –2?

1) NH 3
2) N 2 H 4
3) N 2 O 5
4) HNO 2

5. В каком соединении степень окисления серы равна +2?

1) Na 2 SO 3
2) SO 2
3) SCl 2
4) H 2 SO 4

6. В каком соединении степень окисления серы равна +6?

1) Na 2 SO 3
2) SO 3
3) SCl 2
4) H 2 SO 3

7. В веществах, формулы которых CrBr 2 , K 2 Cr 2 O 7 , Na 2 CrO 4 , степень окисления хрома соответственно равна

1) +2, +3, +6
2) +3, +6, +6
3) +2, +6, +5
4) +2, +6, +6

8. Минимальная отрицательная степень окисления химического элемента, как правило, равна

1) номеру периода
3) числу электронов, недостающих до завершения внешнего электронного слоя

9. Максимальная положительная степень окисления химических элементов, расположенных в главных подгруппах, как правило, равна

1) номеру периода
2) порядковому номеру химического элемента
3) номеру группы
4) общему числу электронов в элементе

10. Фосфор проявляет максимальную положительную степень окисления в соединении

1) HPO 3
2) H 3 PO 3
3) Na 3 P
4) Ca 3 P 2

11. Фосфор проявляет минимальную степень окисления в соединении

1) HPO 3
2) H 3 PO 3
3) Na 3 PO 4
4) Ca 3 P 2

12. Атомы азота в нитрите аммония, находящиеся в составе катиона и аниона, проявляют степени окисления соответственно

1) –3, +3
2) –3, +5
3) +3, –3
4) +3, +5

13. Валентность и степень окисления кислорода в перекиси водорода соответственно равны

1) II, –2
2) II, –1
3) I, +4
4) III, –2

14. Валентность и степень окисления серы в пирите FeS2 соответственно равны

1) IV, +5
2) II, –1
3) II, +6
4) III, +4

15. Валентность и степень окисления атома азота в бромиде аммония соответственно равны

1) IV, –3
2) III, +3
3) IV, –2
4) III, +4

16. Атом углерода проявляет отрицательную степень окисления в соединении с

1) кислородом
2) натрием
3) фтором
4) хлором

17. Постоянную степень окисления в своих соединениях проявляет

1) стронций
2) железо
3) сера
4) хлор

18. Степень окисления +3 в своих соединениях могут проявлять

1) хлор и фтор
2) фосфор и хлор
3) углерод и сера
4) кислород и водород

19. Степень окисления +4 в своих соединениях могут проявлять

1) углерод и водород
2) углерод и фосфор
3) углерод и кальций
4) азот и сера

20. Степень окисления, равную номеру группы, в своих соединениях проявляет

1) хлор
2) железо
3) кислород
4) фтор

Степень окисления - условная величина, использующаяся для записи окислительно-восстановительных реакций. Для определения степени окисления используется таблица окисления химических элементов.

Значение

Степень окисления основных химических элементов основана на их электроотрицательности. Значение равно числу смещённых в соединениях электронов.

Степень окисления считается положительной, если электроны смещаются от атома, т.е. элемент отдаёт электроны в соединении и является восстановителем. К таким элементам относятся металлы, их степень окисления всегда положительная.

При смещении электрона к атому значение считается отрицательным, а элемент - окислителем. Атом принимает электроны до завершения внешнего энергетического уровня. Окислителями является большинство неметаллов.

Простые вещества, не вступающие в реакцию, всегда имеют нулевую степень окисления.

Рис. 1. Таблица степеней окисления.

В соединении положительную степень окисления имеет атом неметалла с меньшей электроотрицательностью.

Определение

Определить максимальную и минимальную степень окисления (сколько электронов может отдавать и принимать атом) можно по периодической таблице Менделеева.

Максимальная степень равна номеру группы, в которой находится элемент, или количеству валентных электронов. Минимальное значение определяется по формуле:

№ (группы) – 8.

Рис. 2. Таблица Менделеева.

Углерод находится в четвёртой группе, следовательно, его высшая степень окисления +4, а низшая - -4. Максимальная степень окисления серы +6, минимальная - -2. Большинство неметаллов всегда имеет переменную - положительную и отрицательную - степень окисления. Исключением является фтор. Его степень окисления всегда равна -1.

Следует помнить, что к щелочным и щелочноземельным металлам I и II групп соответственно, это правило не применимо. Эти металлы имеют постоянную положительную степень окисления - литий Li +1 , натрий Na +1 , калий K +1 , бериллий Be +2 , магний Mg +2 , кальций Ca +2 , стронций Sr +2 , барий Ba +2 . Остальные металлы могут проявлять разную степень окисления. Исключением является алюминий. Несмотря на нахождение в III группе, его степень окисления всегда +3.

Рис. 3. Щелочные и щелочноземельные металлы.

Из VIII группы высшую степень окисления +8 могут проявлять только рутений и осмий. Находящиеся в I группе золото и медь проявляют степень окисления +3 и +2 соответственно.

Запись

Чтобы правильно записывать степень окисления, следует помнить о нескольких правилах:

  • инертные газы не вступают в реакции, поэтому их степень окисления всегда равна нулю;
  • в соединениях переменная степень окисления зависит от переменной валентности и взаимодействия с другими элементами;
  • водород в соединениях с металлами проявляет отрицательную степень окисления - Ca +2 H 2 −1 , Na +1 H −1 ;
  • кислород всегда имеет степень окисления -2, кроме фторида кислорода и пероксида - O +2 F 2 −1 , H 2 +1 O 2 −1 .

Что мы узнали?

Степень окисления - условная величина, показывающая, сколько электронов принял или отдал атом элемента в соединении. Величина зависит от количества валентных электронов. Металлы в соединениях всегда имеют положительную степень окисления, т.е. являются восстановителями. Для щелочных и щелочноземельных металлов степень окисления всегда одинаковая. Неметаллы, кроме фтора, могут принимать положительную и отрицательную степень окисления.

Формальный заряд атома в соединениях — вспомогательная величина, обычно ее используют в описаниях свойств элементов в химии. Этот условный электрический заряд и есть степень окисления. Его значение изменяется в результате многих химических процессов. Хотя заряд является формальным, он ярко характеризует свойства и поведение атомов в окислительно-восстановительных реакциях (ОВР).

Окисление и восстановление

В прошлом химики использовали термин «окисление», чтобы описать взаимодействие кислорода с другими элементами. Название реакций произошло от латинского наименования кислорода - Oxygenium. Позже выяснилось, что другие элементы тоже окисляют. В этом случае они восстанавливаются — присоединяют электроны. Каждый атом при образовании молекулы изменяет строение своей валентной электронной оболочки. В этом случае появляется формальный заряд, величина которого зависит от количества условно отданных или принятых электронов. Для характеристики этой величины ранее применяли английский химический термин "oxidation number", который в переводе означает «окислительное число». При его использовании исходят из допущения, что связывающие электроны в молекулах или ионах принадлежат атому, обладающему более высоким значением электроотрицательности (ЭО). Способность удерживать свои электроны и притягивать их от других атомов хорошо выражена у сильных неметаллов (галогенов, кислорода). Противоположными свойствами обладают сильные металлы (натрий, калий, литий, кальций, другие щелочные и щелочноземельные элементы).

Определение степени окисления

Степенью окисления называют заряд, который атом приобрел бы в том случае, если бы принимающие участие в образовании связи электроны полностью сместились к более электроотрицательному элементу. Есть вещества, не имеющие молекулярного строения (галогениды щелочных металлов и другие соединения). В этих случаях степень окисления совпадает с зарядом иона. Условный или реальный заряд показывает, какой процесс произошел до того, как атомы приобрели свое нынешнее состояние. Положительное значение степени окисления — это общее количество электронов, которые были удалены из атомов. Отрицательное значение степени окисления равно числу приобретенных электронов. По изменению состояния окисления химического элемента судят о том, что происходит с его атомами в ходе реакции (и наоборот). По цвету вещества определяют, какие произошли перемены в состоянии окисления. Соединения хрома, железа и ряда других элементов, в которых они проявляют разную валентность, окрашены неодинаково.

Отрицательное, нулевое и положительное значения степени окисления

Простые вещества образованы химическими элементами с одинаковым значением ЭО. В этом случае связывающие электроны принадлежат всем структурным частицам в равной степени. Следовательно, в простых веществах элементам несвойственно состояние окисления (Н 0 2 , О 0 2 , С 0). Когда атомы принимают электроны или общее облако смещается в их сторону, заряды принято писать со знаком "минус". Например, F -1 ,О -2 , С -4 . Отдавая электроны, атомы приобретают реальный или формальный положительный заряд. В оксиде OF 2 атом кислорода отдает по одному электрону двум атомам фтора и находится в состоянии окисления О +2 . Считают, что в молекуле или многоатомном ионе более электроотрицательные атомы получают все связывающие электроны.

Сера — элемент, проявляющий разные валентность и степени окисления

Химические элементы главных подгрупп зачастую проявляют низшую валентность равную VIII. Например, валентность серы в сероводороде и сульфидах металлов — II. Для элемента характерны промежуточные и высшая валентность в возбужденном состоянии, когда атом отдает один, два, четыре или все шесть электронов и проявляет соответственно валентности I, II, IV, VI. Такие же значения, только со знаком "минус" или "плюс", имеют степени окисления серы:

  • в сульфиде фтора отдает один электрон: -1;
  • в сероводороде низшее значение: -2;
  • в диоксиде промежуточное состояние: +4;
  • в триоксиде, серной кислоте и сульфатах: +6.

В своем высшем состоянии окисления сера только принимает электроны, в низшей степени — проявляет сильные восстановительные свойства. Атомы S +4 могут проявлять в соединениях функции восстановителей или окислителей в зависимости от условий.

Переход электронов в химических реакциях

При образовании кристалла поваренной соли натрий отдает электроны более электроотрицательному хлору. Степени окисления элементов совпадают с зарядами ионов: Na +1 Cl -1 . Для молекул, созданных путем обобществления и смещения электронных пар к более электроотрицательному атому, применимы только представления о формальном заряде. Но можно предположить, что все соединения состоят из ионов. Тогда атомы, притягивая электроны, приобретают условный отрицательный заряд, а отдавая, — положительный. В реакциях указывают, какое число электронов смещается. Например, в молекуле диоксида углерода С +4 О - 2 2 указанный в верхнем правом углу индекс при химическом символе углерода отображает количество электронов, удаленных из атома. Для кислорода в этом веществе характерно состояние окисления -2. Соответствующий индекс при химическом знаке О — количество добавленных электронов в атоме.

Как подсчитать степени окисления

Подсчет количества отданных и присоединенных атомами электронов может отнять много времени. Облегчают эту задачу следующие правила:

  1. В простых веществах степени окисления равны нулю.
  2. Сумма окисления всех атомов или ионов в нейтральном веществе равна нулю.
  3. В сложном ионе сумма степеней окисления всех элементов должна соответствовать заряду всей частицы.
  4. Более электроотрицательный атом приобретает отрицательное состояние окисления, которое записывают со знаком "минус".
  5. Менее электроотрицательные элементы получают положительные степени окисления, их записывают со знаком "плюс".
  6. Кислород в основном проявляет степень окисления, равную -2.
  7. Для водорода характерное значение: +1, в гидридах металлов встречается: Н-1.
  8. Фтор — наиболее электроотрицательный из всех элементов, его состояние окисления всегда равно -4.
  9. Для большинства металлов окислительные числа и валентности совпадают.

Степень окисления и валентность

Большинство соединений образуются в результате окислительно-восстановительных процессов. Переход или смещение электронов от одних элементов к другим приводит к изменению их состояния окисления и валентности. Зачастую эти величины совпадают. В качестве синонима к термину «степень окисления» можно использовать словосочетание «электрохимическая валентность». Но есть исключения, например, в ионе аммония азот четырехвалентен. Одновременно атом этого элемента находится в состоянии окисления -3. В органических веществах углерод всегда четырехвалентен, но состояния окисления атома С в метане СН 4 , муравьином спирте СН 3 ОН и кислоте НСООН имеют другие значения: -4, -2 и +2.

Окислительно-восстановительные реакции

К окислительно-восстановительным относятся многие важнейшие процессы в промышленности, технике, живой и неживой природе: горение, коррозия, брожение, внутриклеточное дыхание, фотосинтез и другие явления.

При составлении уравнений ОВР подбирают коэффициенты, используя метод электронного баланса, в котором оперируют следующими категориями:

  • степени окисления;
  • восстановитель отдает электроны и окисляется;
  • окислитель принимает электроны и восстанавливается;
  • число отданных электронов должно быть равно числу присоединенных.

Приобретение электронов атомом приводит к понижению его степени окисления (восстановлению). Утрата атомом одного или нескольких электронов сопровождается повышением окислительного числа элемента в результате реакций. Для ОВР, протекающих между ионами сильных электролитов в водных растворах, чаще используют не электронный баланс, а метод полуреакций.

В настоящее время описание химии любого элемента начинают с электронной формулы, выделения особых валентных электронов и сведений о степенях окисления, проявляемых элементов в соединениях.

Количество валентных электронов и тип орбиталей, на которых они находятся, определяет степени окисления, проявляемых элементом при образовании соединений .

Степень окисления металла определяется количеством электронов, участвующих в образовании связи с более электроотрицательными элементами (например, с кислородом, галогенами, серой и др.). Будем обозначать степень окисления элемента Х Э . Предельно возможная (максимальная) степень окисления определяется общим числом валентных электронов. При образовании соединения металл может использовать не все свои валентные электроны, в этом случае металл оказывается в некоторой промежуточной степени окисления. При этом для металлов р- и d-блоков, как правило, характерно несколько степеней окисления. Для каждого металла среди промежуточных степеней окисления можно выделить наиболее характерные, т.е. степени окисления, проявляемые металлом в своих распространенных и относительно устойчивых соединениях.

  • Степени окисления, проявляемые s- и р-металлами

    У всех s-элементов есть только одна степень окисления, совпадающая с общим числом валентных электронов, т.е. все s-элементы 1 группы имеют степень окисления +1, а элементы второй группы +2.

    У р-элементов из-за различий в энергии s- и p-орбиталей последнего слоя дифференцируются две степени окисления. Одна степень окисления определяется числом электронов на внешних р-орбиталях, а другая - общим количеством валентных электронов. Только у р-элементов 13 группы устойчивой является одна степень окисления +3, кроме Tl с более устойчивой степенью окисления +1.

    У р-элементов 14 группы есть две степени окисления +2 и +4 .

    У Bi есть две степени окисления +3 и +5 .

    Особая «чувствительность» s-электронов к ядру, приводящая к тому, что при большом заряде ядра s- электроны сильнее им удерживаются, объясняет, почему у р-элементов 6 периода становится устойчивой степень окисления, связанная с потерей только р-электронов. У р-элементов шестого периода устойчивы степени окисления: +1 у Tl, +2 - у Pb и + 3- у Bi.
    В таблице приведены степени окисления, проявляемые металлами s- и р-блоков.

    Степени окисления, проявляемые металлами s- и р-блоков

    периоды ряды Группы
    1 2 13 14 15
    В. e- ns 1 ns 2 ns 2 np 1 ns 2 np 2 ns 2 np 3
    II Li
    +1
    Be
    +2
    III 3 Na
    +1
    Mg
    +2
    Al
    (1), 3
    IV 4 K
    +1
    Ca
    +2
    Ga
    (1), 3
    V 5 Rb
    +1
    Sr
    +2
    In
    (1), 3
    Sn
    2 , 4
    VI 6 Cs
    +1
    Ba
    +2
    Tl
    1 , 3
    Pb
    2 , 4
    Bi
    3 , 5
  • Степени окисления d-металлов

    Только d-элементы 3 и 12 групп имеют по одной степени окисления. У элементов 13 группы она равна общему числу электронов, т.е. +3. У элементов 12 группы d-орбитали полностью заполнены электронами и в образовании химических связей участвуют только два электрона с внешней s-орбитали, поэтому элементы 12 группы имеют одну степень окисления +2.

    Максимальную степень окисления, обусловленную общим количеством электронов, проявляют только d-элементы 3 ¸ 7 групп. А также и Os и Ru, проявляющие степень окисления +8. При движении к концу переходных рядов с ростом числа электронов на d-орбиталях и повышением эффективного заряда ядра самая большая степень окисления становится меньше общего числа валентных электронов.

  • Существуют большие различия между d-элементами четвертого и элементами 5 и 6 периодов .

    Из-за различий в энергии s-электронов 4 слоя и d-электронов 3 слоя все элементы 4 периода, кроме Sc, проявляют степень окисления +2, связанную с потерей двух электронов с внешней ns-орбитали. У многих элементов степень окисления +2 является устойчивой и ее устойчивость увеличивается к концу ряда.

    У d-элементов 4 периода наиболее устойчивыми являются низкие степени окисления +2, +3, +4 .

    При большом заряде ядра s-электроны сильнее удерживаются, различие в энергиях ns- и (n-1)d-орбиталей уменьшается, и это приводит к тому, что у d-элементов 5 и 6 периодов высшие степени окисления в 3 ¸ 7 группах становятся самыми устойчивыми. Вообще, у d-элементов 5 и 6 периодов устойчивы высокие степени окисления больше 4 . Исключение составляют d-элементы 3,11 и 12 групп.

    В приведенных ниже таблицах указаны характерные степени окисления d-металлов, красным цветом выделены наиболее устойчивые. В таблицу не включены степени окисления, проявляемые металлами в редких и неустойчивых соединениях.
    При описании химии любого элемента обязательно указывают характерные для него степени окисления.

  • Валентные электроны и наиболее характерные степени окисления для d-элементов 4 периода

    группа 3 4 5 6 7 8 9 10 11 I2
    Металлы 4 периода 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn

    В
    e-

    3d 1
    4s 2

    3d 2
    4s 2

    3d 3
    4s 2

    3d 5
    4s 1

    3d 5
    4s 2

    3d 6
    4s 2

    3d 7
    4s 2

    3d 8
    4s 2

    3d 10
    4s 1

    3d 10
    4s 2
    Х max 3 4 5 6 7 6 3 (4) 3 (4) 2 (3) 2
    Наиболее
    характерные Х
    3 2, 3,4 2, 3, 4,5 2,3,6 2, 3, 4 6, 7 2, 3, 6 2, 3 2, 3 1, 2 2
    Наиболее
    устойчивые Х
    3 4 4, 5 3 2, 4 2, 3 2 2 2 2
    Х в природных соединениях 3 4 4, 5 3, 6 4, 2, 3 3, 2 2 2 2, 1 2
  • Наиболее характерные степени окисления для d-элементов 5 и 6 периодов

    группа 3 4 5 6 7 8 9 10 11 I2
    Металлы 5 периода 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd
    В e-
    4d 1 5s 2 4d 2 5s 2 4d 4 5s 1 4d 5 5s 1 4d 6 5s 1 4d 7 5s 1 4d 8 5s 1 4d 10 5s 0 4d 10 5 s 1 4d 10 5s 2
    Х max
    3 4 5 6 7 8 6 4 3 2
    Наиболее
    характерные Х
    3 4 5 4, 6 4, 7 4 , 6,7,8 3, 4,5,6 2, 4 1, 2,3 2
    Наиболее
    устойчивые Х
    3 4 5 6 7 4 3 2 1 2
    Х в природных соединениях 3 4 5 4, 6 нет в природе 0 0 0 0, 1 2
    Металлы 6 периода 57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg
    В e-
    5d 1 6s 2 5d 2 6s 2 5d 3 6s 2 5d 4 6s 2 5d 5 6s 2 5d 6 6s 2 5d 7 6s 2 5d 9 6s 1 5d 10 6s 1 5d 10 6s 2
    Х max 3 4 5 6 7 8 6 4 (6) 3 2
    Наиболее
    характерные Х
    3 4 4, 5 4, 5, 6 4 ,5 6,7 4 , 6,7,8 3,4 ,5,6 2 ,4 , 6 1 , 3 2
    Более
    устойчивые Х
    3 4 5 6 7, 4 4 4 4 1 2
    Х в природных соединениях 3 4 5 6 4 0 0 0 0 2

  • Все соединения металлов в положительных степенях окисления способны проявлять окислительные свойства и восстанавливаться. Металлы и получают, восстанавливая соединения металла либо природные, либо предварительно полученные из природных минералов.

    Соединения, содержащие элемент в любой степени окисления, меньшей, чем максимальная, способны окисляться, терять электроны и проявлять восстановительные свойства.

    У соединений, содержащих металл в низкой и неустойчивой степени окисления, выражены восстановительные свойства. Так, например, соединения Ti(+2), V(+2), Cr(+2) восстанавливают воду.

    2VO + 2H 2 O = 2VOOH + H 2

    Вещества, содержащие элемент в высоких и неустойчивых степенях окисления, обычно проявляют сильные окислительные свойства, как например, соединения Mn и Cr в степенях окисления 6 и 7. Сильные окислительные свойства проявляет оксид PbO 2 и соли Bi(+5). У этих элементов высшие степени окисления неустойчивы.

  • все s-элементы 1 группы имеют степень окисления +1,
  • s-элементы второй группы +2.
  • Для р-элементов характерны две степени окисления, исключение составляют элементы 3 группы. Одна степень окисления определяется числом электронов на внешних р-орбиталях, а другая - общим количеством валентных электронов.
    • У р-элементов 13 группы устойчивой является одна степень окисления +3, кроме Tl с более устойчивой степенью окисления +1.
    • У р-элементов 14 группы есть две степени окисления +2 и +4.
    • У Bi есть две степени окисления +3 и +5.
  • Металлы d-блока из-за большого числа валентных электронов проявляют многообразие степеней окисления.
    • Существуют большие различия между d-элементами четвертого и элементами 5 и 6 периодов.
    • Все элементы 4 периода, кроме Sc, проявляют степень окисления +2, связанную с потерей двух электронов с внешней ns-орбитали. У многих элементов степень окисления +2 является устойчивой и ее устойчивость увеличивается к концу ряда.
    • У d-элементов 4 периода более устойчивыми являются низкие степени окисления +2, +3, +4.
    • У d-элементов 5 и 6 периодов устойчивы высокие степени окисления ³ 4. Исключение составляют d-элементы 3,11 и 12 групп.
    • Максимальную степень окисления, обусловленную общим количеством электронов, проявляют только d-элементы 3 ¸ 7 групп, а также Os и Ru, проявляющие степень окисления +8.
    • Характерные степени окисления металлов указаны в таблицах.
    • Степень окисления - это важный стехиометрический параметр, позволяющий записывать химические формулы соединений
    • На степени окисления основывается окислительно-восстановительная классификация соединений. Cтепень окисления оказывается самой важной характеристикой металла при прогнозировании окислительно-восстановительных свойств его соединений.
    • При кислотно-основной классификации оксидов и гидроксидов также опираются на степень окисления металла. Высокие степени окисления > +5 обуславливают кислотные свойства, а степени окисления £ +4, обеспечивают основные свойства.
    • Роль степеней окисления велика в структурировании описания химии элемента, как правило, соединения группируют по степеням окисления.
  • Цель: Продолжить изучение валентности. Дать понятие степени окисления. Рассмотреть виды степеней окисления: положительная, отрицательная, нулевой значение. Научиться правильно, определять степени окисления атома в соединении. Научить приемам сравнения и обобщения изучаемых понятий; отработать умения и навыки в определении степени окисления по химическим формулам; продолжить развитие навыков самостоятельной работы; способствовать развитию логического мышления. Формировать чувство толерантности (терпимости и уважения к чужому мнению) взаимопомощи; осуществлять эстетическое воспитание (через оформление доски и тетрадей, при применении презентаций).

    Ход урока

    I . Организационный момент

    Проверка учащихся к уроку.

    II . Подготовка к уроку.

    К уроку понадобятся: Периодическая система Д.И.Менделеева, учебник, рабочие тетради, ручки, карандаши.

    III . Проверка домашнего задания .

    Фронтальный опрос, некоторые будут работать у доски по карточкам, проведение теста, и подведением данного этапа будет интеллектуальная игра.

    1. Работа с карточками.

    1 карточка

    Определить массовые доли (%) углерода и кислорода в углекислом газе (СО 2 ) .

    2 карточка

    Определить тип связи в молекуле Н 2 S. Написать структурную и электронную формулы молекулы.

    2. Фронтальный опрос

    1. Что называется химической связью?
    2. Какие виды химических связей вы знаете?
    3. Какая связь называется ковалентной связью?
    4. Какие ковалентные связи выделяют?
    5. Что такое валентность?
    6. Как мы определяем валентность?
    7. Какие элементы (металлы и неметаллы) имеют изменчивую валентность?

    3. Тестирование

    1. В каких молекулах существует неполярная ковалентная связь?

    2 . У какой молекулы при образовании ковалентно-неполярной связи образуется тройная связь?

    3 . Как называется положительно заряженные ионы?

    А) катионы

    Б) молекулы

    В) анионы

    Г) кристаллы

    4. В каком ряду располагаются вещества ионного соединения?

    А) СН 4 , NН 3 , Мg

    Б) СI 2 , МgО, NаСI

    В) МgF 2 , NаСI, СаСI 2

    Г) Н 2 S, НСI, Н 2 О

    5 . Валентность определяются по:

    А) по номеру группы

    Б) по числу неспаренных электронов

    В) по типу химической связи

    Г) по номеру периода.

    4. Интеллектуальная игра «Крестики-нолики »

    Найдите вещества с ковалентно-полярной связь.

    IV . Изучение нового материала

    Степень окисления является важной характеристикой состояния атома в молекуле. Валентность, определяется по числу неспаренных электронов в атоме, орбиталями с неподеленными электронными парами, только в процессе возбуждения атома. Высшая валентность элемента, как правило, равна номеру группы. Степень окисления в соединениях с разными химическими связями образуется неодинаково.

    Как образуется степень окисления у молекул с разными химическими связями?

    1) В соединениях с ионной связью степени окисления элементов равно зарядам ионов.

    2) В соединениях с ковалентной неполярной связью (в молекулах простых веществ) степень окисления элементов равно 0.

    Н 2 0 , С I 2 0 , F 2 0 , S 0 , AI 0

    3) У молекул с ковалентно-полярной связью степень окисления определяется подобно молекулам с ионной химической связью.

    Степень окисления элемента – это условный заряд его атома, в молекуле, если считать, что молекула состоит из ионов.

    Степень окисления атома в отличие от валентности имеет знак. Она может быть положительной, отрицательной и нулевой.

    Валентность обозначатся римскими цифрами сверху символа элемента:

    II

    I

    IV

    Fe

    Cu

    S ,

    а степень окисления обозначается арабскими цифрами с зарядом над символам элемента (М g +2 , Са +2 , N а +1 , CI ˉ¹).

    Положительная степень окисления – равна числу электронов, отданных данным атомам. Атом может отдать все валентные электроны (для главных групп это электроны внешнего уровня) соответствующее номеру группы, в котором находится элемент, проявляя при этом высшую степень окисления (исключение ОF 2).Например: высшая степень окисления главной подгруппы II группы равна +2 (Zn +2) Положительную степень проявляют как металлы и неметаллы, кроме F, He, Ne.Например: С+4 , Na +1 , Al +3

    Отрицательная степень окисления равна числу электронов, принятых данным атомом, ее проявляют только неметаллы. Атомы неметаллов присоединяют столько электронов, сколько их не хватает до завершения внешнего уровня, проявляя при этом отрицательную степень.

    У элементов главных подгрупп IV-VII групп минимальная степень окисления численно равна

    Например:

    Значение степени окисления между высшим и низшим степенями окислений называется промежуточными:

    Высшая

    Промежуточные

    Низшая

    С +3 , С +2 ,С 0 ,С -2

    В соединениях с ковалентной неполярной связью (в молекулах простых веществ) степень окисления элементов равно 0: Н 2 0 , С I 2 0 , F 2 0 , S 0 , AI 0

    Для определения степени окисления атома в соединении следует учитывать ряд положений:

    1. Степень окисления F во всех соединениях равна « -1». Na +1 F -1 , H +1 F -1

    2. Степень окисления кислорода в большинстве соединений равна (-2) исключение: О F 2 , где степень окисления О +2 F -1

    3. Водород в большинстве соединений имеет степень окисления +1, кроме соединения с активными металлами, где степень окисления (-1) : Na +1 H -1

    4.Степень окисления металлов главных подгрупп I , II , III групп во всех соединениях равна +1,+2,+3.

    Элементы с постоянной степенью окисления это:

    А) щелочные металлы (Li, Na, K, Pb, Si, Fr) - степень окисления +1

    Б) элементы II главной подгруппы группы кроме (Hg): Be, Mg, Ca, Sr, Ra, Zn, Cd - степень окисления +2

    В) элемент III группы: Al - степень окисления +3

    Алгоритм составления формулы в соединениях:

    1 способ

    1 . На первом месте пишется элемент с меньшей электроотрицательностью, на втором с большей электроотрицательностью.

    2 . Элемент, написанный на первом месте имеет положительный заряд «+», а на втором с отрицательным зарядом «-».

    3 . Указать для каждого элемента степень окисления.

    4 . Найти общее кратное значение степеней окисления.

    5. Разделить наименьшее общее кратное на значение степеней окисления и полученные индексы приписать внизу справа после символа соответствующего элемента.

    6. Если степень окисления четное – нечетное, то они становятся рядом с символом справа внизу крест – накрест без знака «+» и «-»:

    7. Если степень окисления имеет четное значение, то их сначала нужно сократить на наименьшее значение степени окисления и поставить крест – накрест без знака «+» и «-»: С +4 О -2

    2 способ

    1 . Обозначим степень окисления N через Х, указать степень окисления О: N 2 x O 3 -2

    2 . Определить сумму отрицательных зарядов, для этого степень окисления кислорода умножаем на индекс кислорода: 3· (-2)= -6

    3 .Чтобы молекула была электронейтральной нужно определить сумму положительных зарядов: Х2 = 2Х

    4 .Составить алгебраическое уравнение:

    N 2 + 3 O 3 –2

    V . Закрепление

    1) Проведение закрепления темы игрой, которое называется «Змейка».

    Правила игры: учитель раздает карточки. На каждой карточке написан один вопрос и один ответ на другой вопрос.

    Учитель начинает игру. Зачитает вопрос, ученик, у которого на карточке есть, ответ на мой вопрос поднимает руку и говорит ответ. Если ответ правильный, то он читает свой вопрос и у того ученика у которого есть ответ на этот вопрос поднимает руку и отвечает и т.д. Образуется змейка правильных ответов.

    1. Как и где обозначается степень окисления у атома химического элемента?
      Ответ : арабской цифрой над символом элемента с зарядом «+» и «-».
    2. Какие виды степеней окисления выделяют у атомов химических элементов?
      Ответ : промежуточная
    3. Какую степень проявляет металлы?
      Ответ : положительная, отрицательная, нулевая.
    4. Какую степень проявляют простые вещества или молекулы с неполярной ковалентной связью.
      Ответ : положительная
    5. Какой заряд имеют катионы и анионы?
      Ответ : нулевое.
    6. Как называется степень окисления, которая стоит между положительным и отрицательным степенями окисления.
      Ответ : положительный,отрицательный

    2) Написать формулы веществ состоящих из следующих элементов

    1. N и H
    2. Р и О
    3. Zn и Cl

    3) Найти и зачеркнуть вещества, не имеющие переменчивую степень окисления.

    Na, Cr, Fe, K, N, Hg, S, Al, C

    VI . Итог урока.

    Выставление оценок с комментариями

    VII . Домашнее задание

    §23, стр.67-72, задание после §23-стр 72 №1-4 выполнить.