Инф. технологии

Титан (Titanium) - это. Общая характеристика

Титан — металл фей. По крайней мере, элемент назван в честь царицы этих мифических существ. Титания, как и все ее сородичи, отличилась воздушностью.

Летать феям позволяют не только крылья, но и малый вес. Титан тоже легок. Плотность у элемента самая малая среди металлов. На этом сходство с феями заканчивается и начинается чистая наука.

Химические и физические свойства титана

Титан – элемент серебристо-белого цвета, с выраженным блеском. В бликах металла можно разглядеть и розовый, и синий, и красный. Переливаться всеми цветами радуги – характерная особенность 22-го элемента .

Его лучение всегда ярко, ведь титан устойчив к коррозии. От нее материал защищен оксидной пленкой. Она формируется на поверхности при стандартных температура.

В итоге, коррозия металлу не страшна ни на воздухе, ни в воде, ни в большинстве агрессивных сред, к примеру, . Так химики прозвали смесь концентрированных и кислот.

Плавится 22-ый элемент при 1 660-ти градусов Цельсия. Получается, титан – цветной металл тугоплавкой группы. Гореть материал начинает раньше, чем размягчаться.

Белое пламя появляется при 1 200-от градусов. Закипает вещество при 3 260-ти по шкале Цельсия. Плавление элемента делает его вязким. Приходится использовать специальные реагенты, препятствующие налипанию.

Если жидкая масса металла тягучая и клейкая, то в состоянии порошка титан взрывоопасен. Для срабатывания «бомбы» достаточно нагрева до 400-от градусов Цельсия. Принимая тепловую энергию, элемент плохо ее передает.

В качестве электропроводника титан тоже не используют. Зато, материал ценят за прочность. В сочетании с малой плотностью и весом, она пригождается во многих отраслях промышленности.

Химически титан довольно активен. Так, или иначе, металл взаимодействует с большинством элементов. Исключения: — инертные газы, , натрий, калий, , кальций и .

Столь малое количество безразличных титану веществ затрудняет процесс получения чистого элемента. Нелегко произвести и сплавы металлов титана . Однако, промышленники научились это делать. Слишком уж высока практическая польза смесей на основе 22-го вещества.

Применение титана

Сборка самолетов и ракет, — вот где в первую очередь пригождается титан . Металл купить необходимо, чтобы повысить жаростойкость и жаропрочность корпусных . Жаростойкость – сопротивление высоким температурам.

Они, к примеру, при разгоне ракеты в атмосфере неизбежны. Жаропрочность – сохранение в «огненных» обстоятельствах еще и большинства механических свойств сплава. То есть, с титаном эксплуатационные характеристики деталей не меняются в зависимости от условий внешней среды.

Пригождается и устойчивость 22-го металла к коррозии. Это свойство важно уже не только в деле производства машин. Элемент идет на колбы и прочую посуду для химических лабораторий, становится сырьем для ювелирных .

Сырье не из дешевых. Но, во всех отраслях затраты окупаются сроком службы титановых изделий, их способностью сохранять первозданный вид.

Так, серия посуды питерской фирмы «Нева» «Металл Титан ПК» позволяет использовать при жарке металлические ложки. Тефлон бы они уничтожили, поцарапали. Титановому же покрытию нипочем нападки стали, алюминия.

Это, кстати, касается и украшений. Кольцо из или золота просто поцарапать. Модели из титана остаются гладкими десятилетия. Поэтому 22-ый элемент начали рассматривать, как сырье для обручальных перстней.

Сковорода «Титан Металл» легка, как и посуда с тефлоном. 22-ый элемент лишь немногим тяжелее алюминия. Это вдохновило не только представителей легкой промышленности, но и специалистов автомобилестроения. Не секрет, что в машинах много алюминиевых деталей.

Они нужны для снижения массы транспорта. Но, титан прочнее. Касаемо представительских машин автомобилестроение уже почти полностью перешло на использование 22-го металла.

Детали из титана и его сплавов снижают массу двигателя внутреннего сгорания на 30%. Облегчается и корпус, правда, растет цена. Алюминий, все же, дешевле.

Фирма «Нева Металл Титан», отзывы о которой оставляют, как правило, со знаком плюс, производит посуду. Автомобильные бренды используют титан для машин. придают элементу форму колец, сережек и браслетов. В этой череде перечислений не хватает медицинских компаний.

22-ый металл – сырье для протезов и хирургических инструментов. Продукция почти не имеет пор, поэтому легко стерилизуется. К тому же, титан, будучи легким, выдерживает колоссальные нагрузки. Что еще нужно, ели, к примеру, вместо коленных связок ставится чужеродная деталь?

Отсутствие в материале пор ценится успешными рестораторами. Чистота скальпелей хирурга важна. Но, важна и чистота рабочих поверхностей поваров. Чтобы пища была безопасной, ее разделывают и пропаривают на титановых столах.

Они не царапаются, легко моются. Заведения среднего уровня, как правило, пользуются стальной утварью, но, она уступают в качестве. Поэтому, в ресторанах с Мишленовскими звездами оборудование титановое.

Добыча титана

Элемент входит в 20-ку наиболее распространенных на Земле, находясь ровно посередине рейтинга. По массе коры планеты содержание титана равно 0,57%. На литр морской воды 24-го металла приходится 0,001 миллиграмма. В сланцах и глинах элемента содержится 4,5 килограмма на тонну.

В кислых породах, то есть богатых кремнеземом, на титан приходятся 2,3 килограмма с каждой тысячи. В основных залежах, образовавшихся из магмы, 22-го металла около 9-ти кило на тонну. Меньше всего титана скрывается в ультраосновных породах с 30-процентным содержанием кремнезема – 300 граммов на 1 000 килограммов сырья.

Не смотря на распространенность в природе, чистый титан в ней не встречается. Материалом для получения 100-процентного металла стал его йодит. Термическое разложение вещества провели Аркель и Де Бур. Это голландские химики. Эксперимент удался в 1925-ом году. К 1950-ым запустили массовое производство.

Современники, как правило, добывают титан из его диоксида. Это минерал, называемый рутилом. В нем наименьшее количество сторонних примесей. Походят, так же титанит и .

При переработке ильменитовых руд остается шлак. Он-то и служит материалом для получения 22-го элемента. На выходе он порист. Приходится вести вторичную переплавку в вакуумных печах с добавлением .

Если ведется работа с диоксидом титана, к нему примешивают магний и хлор. Смесь нагревают в вакуумных печах. Температуру поднимают до тех пор, пока все лишние элементы не испарятся. На дне емкостей остается чистый титан . Метод назван магниетермическим.

Отработан и гидридно-кальциевый метод. Он основан на электролизе. Ток высокой силы позволяет разделить гидрид металла на титан и водород. Продолжает применяться и йодитный способ добычи элемента, отработанный в 1925-ом году. Однако, в 21-ом веке он наиболее трудоемкий и дорогой, поэтому начинает забываться.

Цена титана

На металл титан цена устанавливается за килограмм. В начале 2016-го, это около 18-ти долларов США. Мировой рынок 22-го элемента за последний год достиг 7 000 000 тонн. Крупнейшие поставщики – Россия и Китай.

Это связано с разведанными в них и пригодными для разработки запасами. Во втором полугодии 2015-го спрос на титановые и листы начал снижаться.

Реализуют металл и в виде проволоки, различных деталей, к примеру, труб. Они гораздо дешевле биржевых расценок. Но, нужно учитывать, что в слитках идет чистый титан , а в изделиях использованы сплавы на его основе.

Титан занимает 4-е место по распространению в производстве, но эффективная технология его извлечения была разработана только в 40-х гг прошлого века. Это металл серебристого цвета, характеризующийся небольшой удельной массой и уникальными характеристиками. Для анализа степени распространения в промышленности и других сферах необходимо озвучить свойства титана и области применения его сплавов.

Основные характеристики

Металл обладает малой удельной массой – всего 4.5 г/см³. Антикоррозийные качества обусловлены устойчивой оксидной пленкой, образующейся на поверхности. Благодаря этому качеству титан не изменяет своих свойств при длительном нахождении в воде, соляной кислоте. Не возникают поврежденные участки из-за воздействия напряжения, что является основной проблемой стали.

В чистом виде титан обладает следующими качествами и характеристиками:

  • номинальная температура плавления — 1 660°С;
  • при термическом воздействии +3 227°С закипает;
  • предел прочности при растяжении – до 450 МПа;
  • характеризуется небольшим показателем упругости – до 110,25 ГПа;
  • по шкале НВ твердость составляет 103;
  • предел текучести один из самых оптимальных среди металлов – до 380 Мпа;
  • теплопроводность чистого титана без добавок – 16,791 Вт/м*С;
  • минимальный коэффициент термического расширения;
  • этот элемент является парамагнитом.

Для сравнения, прочность этого материала в 2 раза больше, чем у чистого железа и в 4 раза такого же показателя алюминия. Также титан имеет две полиморфные фазы – низкотемпературную и высокотемпературную.

Для производственных нужд чистый титан не применяется из-за его дороговизны и требуемых эксплуатационных качеств. Для повышения жесткости в состав добавляют оксиды, гибриды и нитриды. Реже изменяют характеристики материала для улучшения стойкости к коррозии. Основные виды добавок для получения сплавов: сталь, никель, алюминий. В некоторых случаях он выполняет функции дополнительного компонента.

Области применения

Благодаря небольшой удельной массе и прочностным параметрам титан широко используется в авиационной и космической промышленности. Его применяют в качестве основного конструкционного материала в чистом виде. В особых случаях за счет уменьшения жаропрочности делают более дешевые сплавы. При этом его сопротивление коррозии и механическая прочность остаются неизменными.

Кроме этого, материал с добавками титана нашел применение в следующих областях:

  • Химическая промышленность. Его стойкость практически ко всем агрессивным средам, кроме органических кислот, позволяет изготавливать сложное оборудование с хорошими показателями безремонтного срока службы.
  • Производство транспортных средств. Причина – небольшая удельная масса и механическая прочность. Из него делают каркасы или несущие элементы конструкций.
  • Медицина. Для особых целей применяется специальный сплав нитинол (титан и никель). Его отличительное свойство – память формы. Для уменьшения нагрузки пациентов и минимизации вероятности негативного воздействия на организм многие медицинские шины и подобные им устройства делают из титана.
  • В промышленности металл применяется для изготовления корпусов и отдельных элементов оборудования.
  • Ювелирные украшения из титана обладают уникальным внешним видом и качествами.

В большинстве случаев материал обрабатывается в заводских условиях. Но есть ряд исключений – зная свойства этого материала, часть работ по изменению внешнего вида изделия и его характеристик можно выполнять в домашней мастерской.

Особенности обработки

Для придания изделию нужной формы необходимо использовать специальное оборудование – токарный и фрезерный станок. Ручное резание или фрезеровка титана невозможна из-за его твердости. Помимо выбора мощности и других характеристик оборудования необходимо правильно подобрать режущие инструменты: фрезы, резцы, развертки, сверла и т.д.

При этом учитываются такие нюансы:

  • Титановая стружка легко воспламеняется. Необходимо принудительное охлаждение поверхности детали и работа на минимальных скоростях.
  • Гибка изделия выполняется только после предварительного разогрева поверхности. В противном случае велика вероятность появления трещин.
  • Сварка. Обязательно соблюдение особых условий.

Титан – уникальный материал с хорошими эксплуатационными и техническими качествами. Но для его обработки следует знать специфику технологии, а главное – технику безопасности.

Титан


Большой интерес, проявляемый к титану и титановым сплавам, основан на его ценных свойствах - малом удельном весе, высокой удельной прочности и хорошей сопротивляемости коррозии.
В последние годы в связи с разработкой более совершенных методов получения ковкого и деформируемого титана применение его в различных отраслях промышленности расширилось.
Титан существует в двух полиморфных модификациях; α-Ti, имеющий гексагональную плотноупакованную решетку и существующую при температурах ниже 885°, и β-Ti с кубической объемноцентрированной решеткой - при более высоких температурах. При α→β-превращении изменения объема составляют 5,5%.
Титан слабо реагирует с азотной и разбавленной соляной кислотой. но растворяется в концентрированных соляной и серной кислотах и в аарской водке. В щелочах, во многих солях даже при кипячении и в органических кислотах титан весьма устойчив. Энергично реагирует титан с кислородом, азотом, водородом, углеродом и со многими окислами металлов, что чрезвычайно затрудняет получение чистого титана и вызывает большие трудности при производстве из него полуфабрикатов.
Кислород в большинстве случаев отрицательно влияет на физико-химические и технологические свойства титана. Растворимость кислорода в титане составляет около 30% (атомн.), что отвечает составу ТiO0,42. При нагреве до 600° кислород практически еще не взаимодействует с титаном. При температурах выше 650° кислород воздуха начинает энергично диффундировать в титан, в результате чего образуется весьма твердый поверхностный слой. Скорость окисления титана при температурах от 650 до 800° показана на рис. 7.


Диаграмма состояния системы титан - кислород при содержании кислорода до 30% приведена на рис. 8. По характеру эта диаграмма перитектической системы. В твердом состоянии кислород образует ограниченные области растворов α и β.
В приведенном участке системы имеются две перитектики.
Максимальная растворимость кислорода в β-титане равна 1,8% при 1740°, в α-титане - 14,5% в интервале температур 800-1700°.

Наивысшей температурой плавления 1900° обладает сплав типа твердого раствора а, содержащий 10% кислорода.
Кислород, проникший в кристаллическую решетку титана, сильно искажает ее, поэтому значительно изменяются физические свойства и механическая прочность титана.
Влияние кислорода в пределах 0-1% (атомн.) на предел прочности, удлинение, твердость и удельное электрическое сопротивление йодидного титана приведено на рис. 9.
Титан при содержании 0,25% (атомн.) кислорода может быть прокатан на холоду без появления трещин до 95% обжатия. При большем содержании кислорода трещины появляются уже при 60-70% обжатия.
При ковке и волочении титана необходимо избегать образования трещин, так как они очень трудно затягиваются вследствие быстрого окисления поверхности.

Сплавы, содержащие 0,5-2,0% (атомн.) кислорода, сравнительно легко обрабатываются три сверлении и нарезке, а содержащие 2,5-3,0% (атомн.) кислорода удовлетворительно обрабатываются резанием, но тверды для сверления.
Сплавы с содержанием 3,5-5,0% (атомн.) кислорода чрезвычайно трудно поддаются обработке.
Азот сильно влияет на свойства титана уже при содержании сотых долей процента. Система титан - азот (рис. 10) характеризуется наличием двух перитектических реакций.

Азот значительно увеличивает твердость и прочность титана и резко снижает его пластичность. Сплавы азота с титаном очень трудно обрабатывать в холодном состоянии: при содержании азота свыше 0,5% (вес.) сплав становится хрупким и не поддается обработке.
Уже в небольших количествах азот приводит к образованию игольчатой структуры. Влияние азота на механические свойства и электрическое сопротивление титана приведено на рис. 11.
Изменение физических и прочностных свойств титана от примесей азота связано, по-видимому, с тем, что азот оказывает значительное влияние на параметры кристаллической решетки, главным образом на параметр с, что хорошо видно на рис. 12.
Азот, как и кислород, значительно повышает температуру начала и конца β⇔α-превращепия титана.

Водород в отличие от кислорода, азота и углерода оказывает незначительное влияние на механические свойства титана, но все же является весьма вредной примесью, так как под его влиянием разрушаются изделия из титана и его сплавав при прокатке, ковке или нагреве.
Из диаграммы состояния титан - водород (рис. 13) следует, что по мере увеличения содержания водорода температура фазового превращения снижается, а температурная область существования двухфазной структуры α+β расширяется.
Водород весьма энергично диффундирует в титан и образует растворы внедрения, подобно кислороду, азоту и углероду. При растворении водорода в титане выделяется тепло, при нагреве из сплавов выделяется водород.
При 20° α-титан, содержащий несколько десятитысячных долей процента избыточного водорода, будет иметь в структуре свободные гидриды, которые под микроскопом видны в виде тонких пластинок. Повышение хрупкости сплавов является следствием появления в их структуре увеличивающегося количества гидридов.
Водород в пределах 0,3-0,5% (атомн.), обычно содержащийся в техническом титане, существенно понижает поглощение энергии при ударе без изменения предела прочности на растяжение. На рис. 14 приведены кривые, иллюстрирующие влияние водорода на предел прочности при растяжении, удлинение, твердость и электрическое сопротивление титана.
Углерод сильно влияет на свойства титана. Система титан - углерод (рис. 15) по своему характеру относится к перитектическим системам с химическими соединениями. В этой системе наблюдается перитектический распад β-фазы при ограниченной растворимости углерода в β- и α-титане.

Углерод является α-стабилизатором, он повышает температуру аллотропического превращения титана с 882 до 920°.
При 0,48% углерода и 920° происходит перитектоидное превращение

При высоких температурах углерод энергично соединяется с титаном я образует тугоплавкий карбид титана TiC, который обладает высокой твердостью и высокой температурой плавления (свыше 3000°).
Карбид титана нашел широкое применение для многих целей: для изготовления жаростойких и жаропрочных материалов, как компонент твердых сплавов и как абразивный материал.
Расстворимость углерода в титане значительно уменьшается с понижением температуры. В результате незначительной растворимости углерода в α- и β-титане уже десятые доли процента углерода в сплавах титана с углеродом вызывают хрупкость, так как выделяется карбид титана.
Влияние углерода на механические свойства титана представлено на рис. 16. Как видно, прочность сплавов увеличивается линейно до 0,25% углерода, пластичность сплавов изменяется в обратном направлении.
Основными легирующими добавками в титановых сплавах в настоящее время служат марганец, хром, железо, ванадий, молибден, алюминий, олово. С большинством этих добавок титан образует эвтектоид.
Увеличение прочности титана в зависимости от легирующих добавок характеризуется кривыми, приведенными на рис. 17.

Сплавы титана могут состоять либо из α-фазы, либо из β-фазы или α+β-фазы. Однако широко применяются в промышленности только α+β-сплавы, α-сплавы имеют ограниченное применение, а β-сплавы вовсе не применяются.
Алюминий расширяет область α-фазы и вводится в жаропрочные сплавы. Ванадий не образует эвтектоида с титаном и незначительно повышает прочность сплавов титана. По некоторым данным сплавы титан-ванадий склонны к водородной хрупкости. Марганец сильно замедляет эвтектоидный распад, упрочняет β-фазу и способствует термообработке. Двойные сплавы типа Tl+8% Mn склонны к водородной хрупкости.
Молибден повышает твердость титановых сплавов, а вместе с алюминием придает сплавам жаропрочность. Олово также расширяет область α-фазы и хотя придает титану несколько меньшую жаропрочность, чем алюминий, но в меньшей мере снижает пластичность.
Хром в большинстве случаев вводится в титан в виде феррохрома. Хром замедляет эвтектоидный распад. Детали из сплавов титана с хромом мало пригодны для работы под напряжением и при повышенных температурах. Действие железа подобно хрому. Титан с железом дает сплавы, в которых эвтектоидный распад протекает относительно медленно; железо способствует повышению твердости и снижает прочность при высоких температурах.
Для упрочнения α-титана используются также цирконий и кремний, для упрочнения β-титана - ниобий и вольфрам.
По последним данным, медь, никель и кремний дают с титаном сплавы, в которых эвтектоидный распад протекает очень быстро. Этим сплавам можно придавать желаемые свойства, охлаждая их с различной скоростью.
Одновременная присадка в титан марганца, алюминия или кремния, бериллия и бора, дающих химические соединения, позволяет упрочнять сплавы термической обработкой.
Механические свойства титана в значительной степени зависят от чистоты его и способа получения.
В табл. 21 приведены механические свойства титана, полученного различными методами.

При нагревании прочность титана падает, но даже при 500° предел прочности еще остается около 28 кг/мм2 (рис. 18).
В России, согласно временным техническим условиям, выпускается губчатый титан пяти марок, химический состав и механические свойства которого приведены в табл. 22.

Титановые сплавы


Применяемые в промышленности стандартные титановые сплавы еще недостаточно разработаны, что следует объяснить сравнительной новизной технологии производства самого титана. Однако в настоящее время уже имеется довольно много сплавов на титановой основе с различными физико-механическими свойствами.

В табл. 23 приведены химический состав и механические свойства некоторых титановых сплавов.
Имя:*
E-Mail:
Комментарий:

Добавить

27.03.2019

В-первую очередь надо определиться сколько вы готовы потратить на покупку. Специалисты рекомендуют начинающим инвесторам сумму от 30 тысяч рублей до 100. Стоит...

27.03.2019

Металлопрокат в наше время активно используется в самых разных ситуациях. Действительно, на многих производствах просто не обойтись без него, так как металлопрокат...

27.03.2019

Стальные прокладки овального сечения предназначены для герметизации фланцевых соединений арматуры и трубопроводов, которые транспортируют агрессивные среды....

26.03.2019

Многие из нас слышали о такой должности как системный администратор, но далеко не каждый представляет себе, что конкретно имеется в виду под этой фразой....

26.03.2019

Каждый человек, который делает ремонт в своем помещении, должен задумываться о том, какие конструкции необходимо установить в межкомнатное пространство. На рынке...

26.03.2019

26.03.2019

На сегодняшний день газоанализаторы активно применяют в нефтяной и в газовой отраслях, в коммунальной сфере, в ходе осуществления анализов в лабораторных комплексах, для...

Титан и сплавы на его основе широко используются в самых разных сферах. Прежде всего, титановые сплавы нашли широкое применение в строительстве различной техники благодаря своей высокой коррозийной стойкости, механической прочности, небольшой плотности, жаропрочности и множеству других характеристик. Рассматривая свойства и применение титана, нельзя не отметить его довольно высокую стоимость. Однако она в полной мере компенсируется характеристиками и долговечностью материала.

Титан имеет высокую прочность и температуру плавления, отличается от других металлов долговечностью.

Основные свойства титана

Титан находится в IV группе четвертого периода периодической системы химических элементов. В самых устойчивых и наиболее важных соединениях элемент является четырехвалентным. Внешне титан напоминает сталь. Является переходным элементом. Температура плавления достигает почти 1700°, а кипения — 3300°. Что касается такого свойства, как скрытая теплота плавления и испарения, то у титана она практически в 2 раза превышает аналогичный показатель для железа.

Имеет 2 аллотропические модификации:

  1. Низкотемпературную, которая способна существовать до температуры в 882,5°.
  2. Высокотемпературную, устойчивую от температуры в 882,5° до температуры плавления.

Такие свойства, как удельная теплоемкость и плотность, располагают титан между двумя материалами с наиболее широким конструкционным использованием: железом и алюминием. Механическая прочность титана почти в 2 раза превышает эту характеристику у чистого железа и практически в 6 раз у алюминия. Однако свойства титана таковы, что он способен поглощать в больших количествах водород, кислород и азот, что негативно отражается на пластических характеристиках материала.

Материал характеризуется очень низкой теплопроводностью. Для сравнения, у железа она выше в 4 раза, а у алюминия в 12. Что касается такого свойства, как коэффициент термического расширения, то при комнатной температуре он имеет относительно низкое значение и возрастает с увеличением температуры.

Титан имеет малые модули упругости. При повышении температуры до 350° они начинают уменьшаться практически по линейному закону. Именно этот момент является существенным недостатком материала.

Титан характеризуется довольно большим значением удельного электросопротивления. Оно может колебаться в достаточно широких пределах и зависит от содержания примесей.

Титан является парамагнитным материалом. Для таких веществ характерно снижение магнитной восприимчивости в процессе нагревания. Однако титан является исключением — при повышении температуры его магнитная восприимчивость значительно возрастает.

Сферы применения титана

Медицинские инструменты из титанового сплава отличаются высокой коррозионной прочностью, биологической стойкостью и пластичностью.

Свойства материала обеспечивают довольно широкий спектр сфер его применения. Так, в больших объемах сплавы титана используются в строении судов и различной техники. Налажено применение материала в качестве легирующей добавки к сталям высокого качества и в качестве раскислителя. Сплавы с никелем нашли применение в технике и медицине. Такие соединения имеют уникальные свойства, в частности, они обладают памятью формы.

Налажено применение компактного титана в производстве деталей электровакуумных приборов, использующихся в условиях высоких температур. Свойства технического титана позволяют использовать его в производстве клапанов, трубопроводов, насосов, арматуры и других изделий, создаваемых для эксплуатации в агрессивных условиях.

Сплавы характеризуются недостаточной теплопрочностью, однако имеют высокую коррозийную стойкость. Это позволяет использовать различные сплавы на основе титана в химической сфере. К примеру, материал применяется в изготовлении насосов для прокачки серной и соляной кислоты. На сегодняшний день только сплавы на основе этого материала можно использовать в производстве разного рода оборудования для хлорной промышленности.

Использование титана в транспортной промышленности

Сплавы на основе этого материала используются при изготовлении бронетанковой части. А замена разнообразных конструкционных элементов, которые используются в транспортной промышленности, позволяет снижать расход топлива, увеличивать полезную грузоподъемность, повышать предел усталости изделий и улучшать множество других характеристик.

При производстве оборудования для химической промышленности из титана самое важное свойство — коррозионная стойкость металла.

Материал хорошо подходит для использования в строительстве железнодорожного транспорта. Одна из главных задач, которую нужно решить на железных дорогах, связана со снижением мертвого груза. Использование прутков и листов из титана позволяет существенно снизить общую массу состава, уменьшить размеры букс и шеек, сэкономить в тяге.

Вес имеет довольно существенное значение и для прицепного транспорта. Использование титана вместо стали при производстве колес и осей тоже позволяет существенно повысить полезную грузоподъемность.

Свойства материала делают возможным его использование в автомобилестроении. Материал характеризуется оптимальным сочетанием прочностных и весовых свойств для систем отведения отработанных газов и витых пружин. Применение титана и его сплавов позволяет существенно снизить объем отработанных газов, уменьшить затраты топлива и расширить применение лома и производственных отходов путем их переплава. Материал и содержащие его сплавы имеет множество преимуществ по сравнению с прочими используемыми решениями.

Главной задачей разработки новых деталей и конструкций является уменьшение их массы, от которой в той или иной степени зависит движение самого транспортного средства. Снижение веса движущихся узлов и частей делает потенциально возможным сокращение затрат топлива. Детали из титана неоднократно доказывали свою надежность. Они довольно широко применяются в авиакосмической промышленности и конструкциях гоночных автомобилей.

Использование этого материала позволяет не только уменьшить вес деталей, но и решить вопрос снижения объема отработанных газов.

Использование титана и его сплавов в сфере строительства

В строительстве широко используется сплав титана с цинком. Этот сплав характеризуется высокими механическими показателями и устойчивостью к коррозии, отличается высокой жесткостью и пластичностью. В составе сплава содержится до 0,2% легирующих добавок, выполняющих функции модификаторов структуры. Благодаря алюминию и меди обеспечивается требуемая пластичность. Кроме того, использование меди позволяет повысить предельную прочность материала на растяжение, а сочетание химических элементов способствует снижению коэффициента расширения. Сплав применяется и для производства длинных лент и листов с хорошими эстетическими характеристиками.

Титан часто используется в космических технологиях благодаря его легкости, прочности и тугоплавкости.

Среди главных качеств сплава титана с цинком, важных конкретно для строительства, можно отметить такие химические и физические свойства, как высокая устойчивость к коррозии, хороший внешний вид и безопасность для человеческого здоровья и окружающей среды.

Материал отличается хорошей пластичностью, без проблем поддается глубокой вытяжке, что позволяет использовать его в кровельных работах. У сплава нет никаких проблем с пайкой. Именно поэтому различные объемные конструкции и нестандартные архитектурные элементы вроде куполов и шпилей изготавливаются из цинк-титана, а не меди или оцинкованной стали. В решении подобных задач данный сплав является незаменимым.

Сфера использования сплава очень широка. Его применяют в фасадных и кровельных работах, из него изготавливаются изделия различной конфигурации и практически любой сложности, он широко применяется в производстве разнообразных декоративных изделий типа водостоков, отливов, кровельных коньков и т.д.

Этот сплав отличается очень продолжительным сроком службы. Более столетия он не будет требовать покраски и частых текущих ремонтных работ. Также среди существенных преимуществ материала следует выделить его способность восстанавливаться. Несущественные повреждения в виде царапин от веток, птиц и т.п. через какое-то время устраняются сами по себе.

Требования к строительным материалам становятся все более серьезными и строгими. Исследовательские компании ряда стран изучали почву вокруг зданий, построенных с использованием сплава цинка и титана. Результаты исследований подтвердили, что материал является полностью безопасным. Он не имеет канцерогенных свойств и не вредит человеческому здоровью. Цинк-титан является негорючим стройматериалом, что дополнительно повышает безопасность.

С учетом всех перечисленных положительных характеристик такой строительный материал в эксплуатации приблизительно в 2 раза дешевле, чем кровельная медь.

У сплава две степени окисления. С течением времени он меняет цвет и теряет металлический блеск. Сначала цинк-титан становится светло-серым, а еще через некоторое время приобретает благородный темно-серый оттенок. В настоящее время материал намеренно подвергается химическому старению.

Использование титана и его сплавов в медицине

Титан отлично совместим с человеческой тканью, поэтому активно применяется в области эндопротезирования.

Титан нашел широкое применение и в медицинской сфере. Среди преимуществ, которые позволили ему стать таким популярным, нужно отметить высокую прочность и устойчивость к коррозии. Кроме того, ни у одного из пациентов не было выявлено аллергии на титан.

В медицине применяются коммерчески чистый титан и сплав Ti6-4Eli. С его использованием изготавливаются хирургические инструменты, разнообразные внешние и внутренние протезы, вплоть до сердечных клапанов. Из титана производятся инвалидные коляски, костыли и прочие приспособления.

Ряд исследований и экспериментов подтверждает отличную биологическую совместимость материала и его сплавов с живой человеческой тканью. Мягкие и костные ткани срастаются с этими материалами без проблем. А низкий модуль упругости и высокий показатель удельной прочности делают титан очень хорошим материалом для эндопротезирования. Он заметно легче, чем жесть, сталь и сплавы на основе кобальта.

Таким образом, свойства титана позволяют активно использовать его в самых разнообразных сферах — от изготовления труб и кровли до медицинского протезирования и построения космических аппаратов.


Свойства титана

В периодической системе элементов Менделеева титан имеет порядковый номер 22. Его нейтральный атом состоит из ядра, заряд которого равен 22 ед. положительного электричества, и находиться вне ядра 22 электронов.

Итак, ядро нейтрального атома титана содержит 22 протона. Количество же нейтронов, т. е. нейтральных незаряженных частиц, различно: чаще 26, но может колебаться от 24 до 28. Поэтому и число изотопов титана различно. Устойчивых природных изотопов титана всего пять: 46 Ti, 47 Ti, 48 Ti, 49 Ti, 50 Ti. Это установил в 1936 г. немецкий физик Ф. В. Астон. До его исследований считалось, что титан изотопов вообще не имеет. Природные устойчивые изотопы титана распределяются следующим образом (в отн. %): 46 Ti - 7,99; 47 Ti - 7,32; 48 Ti - 73,97; 49 Ti - 5,46; 50 Ti - 5,25.

Кроме естественных, титан может иметь и целый ряд искусственных изотопов, получаемых с помощью его радиоактивного облучения. Так, если бомбардировать титан нейтронами или α-частицами, можно получить радиоактивный изотоп титана 52 Ti с периодом полураспада - 41,9 мин, который дает β- и γ-излучения. Искусственно получены и другие изотопы титана (42 Ti, 43 Ti, 44 Ti, 45 Ti, 51 Ti, 52 Ti, 53 Ti, 54 Ti), некоторые из них сильнорадиоактивные, с различными сроками полураспада. Так, у изотопа 44 Ti период полураспада всего 0,58 с, а у изотопа 45 Ti - 47 лет.

Радиус ядра титана равен 5 фм. Вокруг положительно заряженного ядра титана на четырех орбитах К, L, М, N располагаются электроны: на К - два электрона, на L - восемь, на M - 10, на N - два. С орбит N и М атом титана может свободно отдавать по два электрона. Таким образом, наиболее устойчивый ион титана - четырехвалентный. Пятым электрон с орбиты М "вырвать" невозможно, поэтому титан никогда не бывает больше чем четырехвалентным ионом. В то же время с орбит N и М атом титана может отдавать не четыре, а три, два или один электрон. В этих случаях он становится трех-, двух- или одновалентным ионом

Титан различной валентности имеет неодинаковые ионные радиусы. Так, радиус иона Ti 4+ равен 64 пм, иона Ti 3+ - 69, Ti 2+ - 78, Ti 1+ - 95 пм.

Долгое время не могли точно определить атомную массу титана (атомный вес). В 1813 г. Й. Я. Берцелиус получил неправдоподобно завышенную величину - 288,16. В 1823 г. немецкий химик Генрих Розе установил, что атомный вес титана ранен 61,6. В 1829 г. ученый несколько раз уточнял величину: 50,63; 48,27 и 48,13. Ближе к истинным оказались измерения английского химика Т. Э. Торна - 48,09. Однако это значение продержалось до 1928 г., когда исследования химиков Бакстера и Бутлера дали окончательную величину атомного веса - 47,9. Атомная масса природного титана, вычисленная по результатам исследования его изотопов, составляет 47,926. Эта величина практически идентична значению интернациональных таблиц.

В периодической системе элементов Менделеева титан расположен в группе IVB, в которую, кроме него, входит цирконий, гафний, курчатовий. Элементы данной группы в отличие от элементов группы углерода (IVА) обладают металлическими свойствами. У соединений даже самого титана кислотообразующая способность выражена слабее, чем у любого элемента группы углерода. Хотя титан занимает самое верхнее место в своей подгруппе, он является наименее активным металлическим элементом. Так, двуокись титана амфотерна, а двуокиси циркония и гафния обладают слабо выраженными основными свойствами. Титан больше, чем другие элементы подгруппы IVB, близок к элементам подгруппы IVA - кремнию, германию, олову. Четырехвалентный титан отличается от кремния и германия большей склонностью к образованию комплексных соединений различных типов, чем особенно сходен с оловом.

Титан и другие элементы подгруппы IVB очень близки по свойствам к элементам подгруппы IIIB (группы скандия), хотя и отличаются от последних способностью проявлять большую валентность. Титан к скандию даже ближе, чем к элементам подгруппы IVA. Сходство титана со скандием, иттрием, а также с элементами подгруппы VВ - ванадием и ниобием выражается и в том, что в природных минералах титан часто встречается вместо с этими элементами, изоморфно замещая друг друга.

Из кристаллохимии кислородных соединений известно, что характерное координационное число для титана равно 6, а единственным координационным полиэдром, соответствующим этому числу, является октаэдр. Причем ни в одном из кислородных соединений атомы титана не имеют координационного числа больше 6. В такой координации среднее расстояние между титаном и кислородом равно 2 Å. В структурах, для которых характерно статистическое распределение атомов Ti 4+ и Nb 5+ в октаэдрах, соответствующее среднее расстояние между титаном и ниобием также составляет 2 Å. Из этого следует вывод о близости ионных радиусов титана и ниобия.

Близость ионных радиусов элементов - непременное условие возможности изоморфизма между ними. Для титана наиболее полно этому условию удовлетворяют ниобий, тантал, трехвалентное железо и цирконий.

А теперь рассмотрим, какие же химические соединении с другими элементами может образовывать титан. С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди-, три- и тетрасоединения, с серой и элементами её группы (селеном, теллуром) - моно- и дисульфиды, с кислородом - оксиды, диоксиды и триоксиды. Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами - интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами.

Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных - золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии? А дело в том, что реакции титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически не вступает в реакции. Связано это с тем, что на свежей поверхности чистого титана, как только она образуется, очень быстро появляется инертная, хорошо срастающаяся с металлом тончайшая (в несколько ангстрем) пленка диоксида титана, предохраняющая его от дальнейшего окисления. Если даже эту шлепку снять, то в любой среде, содержащей кислород или другие сильные окислители (например, в азотной или хромовой кислоте), эта пленка появляется вновь, и металл, как говорят, ею "пассивируется", т. е. защищает сам себя от дальнейшего разрушения.

Известно, что коррозионная стойкость любого металла определяется величиной его электродного потенциала, т. е. разностью электрических потенциалов между металлом и раствором электролита. Отрицательные значения электродного потенциала свидетельствуют об убыли ионов металла с его поверхности и о переходе их в раствор, т. е. о растворимости и коррозии металла. Положительное значение указывает на то, что металл обладает стойкостью в данном растворе, не отдает своих ионов и не корродируется. Так вот, для свежеочищенной поверхности титана измеренные значения электродного потенциала в воде, в водных растворах, во многих кислотах и щелочах колеблются от -0,27 до -0,355 В, т. е. металл, казалось бы, должен быстро растворяться. Однако в большинство водных растворов электродный потенциал титана очень быстро поднимается от отрицательных до положительных значений, примерно до +0,5 В, и коррозия практически моментально прекращается: титан пассивируется и становится в высшей степени коррозионно-стойким.

Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах. Об исключительной его стойкости в атмосфере, в пресной и океанической воде даже при нагревании мы уже говорили. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на металл. В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе меди и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности к прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана по многих агрессивных средах, в таких, как азотная, соляная, серная, "царская водка" и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.

В азотной кислоте, являющейся сильным окислителем, в котором быстро растворяются очень многие металлы, титан исключительно стоек. При любой концентрации азотной кислоты (от 10 до 99%-ной), при любых температурах скорость коррозии титана в азотной кислоте не превышает 0,1-0,2 мм/год. Опасна только красная дымящая азотная кислота, пересыщенная (20% и более) свободными диоксидами азота: в ней чистый титан бурно, со взрывом, реагирует. Однако стоит добавить в такую кислоту хотя бы немного воды (1- 2% и более), как реакция заканчивается, и коррозия титана прекращается.

В соляной кислоте титан стоек лишь в разбавленных ее растворах. Например, в 0,5%-ной соляной кислоте даже при нагревании до 100° С скорость коррозии титана не превышает 0,01 мм/год, в 10%-ной при комнатной температуре скорость коррозии достигает 0,1 мм/год, а в 20%-ной при 20° С - 0,58 мм/год. При нагревании скорость коррозии титана в соляной кислоте резко повышается. Так, даже в 1,5%-ной соляной кислоте при 100° С скорость коррозии титана составляет 4,4 мм/год, а в 20%-ной при нагревании до 60° С - уже 29,8 мм/год. Это объясняется тем, что соляная кислота, особенно при нагревании, растворяет пассивирующую пленку диоксида титана и начинается растворение металла. Однако скорость коррозии титана в соляной кислоте при всех условиях остается ниже, чем у нержавеющих сталей.

В серной кислоте слабой концентрации (до 0,5-1%) титан стоек даже при температуре раствора до 50 - 95° С. Стоек он и в более концентрированных растворах (10- 20%-ных) при комнатной температуре, в этих условиях скорость коррозии титана не превышает 0,005-0,01 мм/год. Но с повышением температуры раствора титан в серной кислоте даже сравнительно слабой концентрации (10-20%-ной) начинает растворяться, причем скорость коррозия достигает 9-10 мм/год. Серная кислота, так же как и соляная, разрушает защитную пленку диоксида титана и повышает его растворимость. Её можно резко понизить, если в растворы этих кислот добавлять определенное количество азотной, хромовой, марганцевой кислот, соединений хлора или других окислителей, которые быстро пассивируют поверхность титана защитной пленкой и прекращают его дальнейшее растворение. Вот почему титан практически единственный металл, не растворяющийся в "царской водке": в ней при обычных температурах (10-20° С) коррозия титана не превышает 0,005 мм/год. Слабо корродирует титан и в кипящей "царской водке", а ведь в ней, как известно, многие металлы, и даже такие, как золото, растворяются почти мгновенно.

Очень слабо корродирует титан в большинство органических кислот (уксусной, молочной, винной), и разбавленных щелочах, и растворах многих хлористых солей, в физиологическом растворе. А вот с расплавами хлоридов при температуре выше 375° С титан взаимодействует очень бурно.

В расплаве многих металлов чистый титан обнаруживает удивительную стойкость. В жидких горячих магнии, олове, галлии, ртути, литии, натрии, калии, в расплавленной сере титан практически не корродирует, и лишь при очень высоких температурах расплавов (выше 300-400° С) скорость его коррозии в них может достигать 1 мм/год. Однако есть немало агрессивных растворов и расплавов, в которых титан растворяется очень интенсивно. Главный "враг" титана - плавиковая кислота (HF). Даже в 1%-ном ее растворе скорость коррозии титана очень высока, а в более концентрированных растворах титан "тает", как лед в горячей воде. Фтор - этот "разрушающий всё" (греч.) элемент - бурно реагирует практически со всеми металлами и сжигает их.

Не может противостоять титан кремнефтористоводородной и фосфорной кислотам даже слабой концентрации, перекиси водорода, сухим хлору и брому, спиртам, в том числе спиртовой настойке йода, расплавленному цинку. Однако стойкость титана можно увеличить, если добавить различные окислители - так называемые ингибиторы, например, в растворы соляной и серной кислот - азотную и хромовую. Ингибиторами могут быть и ионы различных металлов в растворе: железо, медь и др.

В титан можно вводить некоторые металлы, повышающие его стойкость в десятки и сотни раз, например до 10% циркония, гафния, тантала, вольфрама. Введение в титан 20-30% молибдена делает этот сплав настолько устойчивым к любым концентрациям соляной, серной и других кислот, что он может заменить даже золото в работе с этими кислотами. Наибольший эффект достигается благодаря добавкам в титан четырех металлов платиновой группы: платины, палладия, родия и рутения. Достаточно всего 0,2% этих металлов, чтобы снизить скорость коррозии титана в кипящих концентрированных соляной и серной кислотах в десятки раз. Следует отметить, что благородные платиноиды влияют лишь на стойкость титана, а если добавлять их, скажем, в железо, алюминий, магний, разрушение и коррозия этих конструкционных металлов не уменьшаются.

Каковы же физические свойства титана, сделавшие его лучшим из всех, известных конструкционных металлов?

Титан весьма тугоплавкий металл. Долгое время, считалось, что он плавится при 1800° С, однако в середине 50-х гг. английские ученые Диардорф и Xeйc установили температуру плавления для чистого элементарного титана. Она составила 1668±3°C. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, ренин, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте:

Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства: низкая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан - легкий металл, его плотность при 0° С составляет всего 4,517 г/см 3 , а при 100° С - 4,506 г/см 3 . Титан относится к группе металлов с удельной массой менее 5 г/см 3 . Сюда входят все щелочные металлы (натрий, калий, литий, рубидий, цезий) с удельной массой 0,9-1,5 г/см 3 , магний (1,7 г/см 3), алюминий (2,7 г/см 3) и др. Титан более чем в 1,5 раза тяжелее алюминия, и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см 3). Однако, занимая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механическим свойствам во много раз превосходит и алюминий и железо.

Каковы же эти свойства, которые позволяют широко использовать титан как конструкционный материал? Прежде всего, прочность металла, т. е. его способность сопротивляться разрушению, а также необратимому изменению формы (пластические деформации). В зависимости от вида напряженного состояния - растяжения, сжатия, изгиба и других условий испытания (температура, время) для характеристики прочности металла используются различные показатели: предел текучести, временное сопротивление, предел усталости и др. По всем этим показателям титан значительно превосходит алюминий, железо и даже многие лучшие марки стали.

Удельная прочность сплавов титана может быть повышена в 1,5-2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Другие же металлы либо просто не выдерживают таких температур, либо сильно разупрочняются.

Чистый титан - высокопластичный металл, что обусловлено благоприятным соотношением осей "с" и "а" в его гексагональной решетке и наличием в ней множества систем плоскостей скольжения и двойникования. Хотя и считается, что металлы с гексагональной кристаллической решеткой очень пластичны, титан в силу указанных особенностей его кристаллов стоит в одном ряду с высокопластичными металлами, имеющими иной тип кристаллической решетки. В результате чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо, вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.

Интересно отметить, что титан долгие годы, вплоть до получения чистого металла, рассматривали как очень хрупкий материал. Связано это было с наличием в титане примесей, особенно азота, кислорода, углерода и др. Даже их небольшое количество влияет, и весьма существенно, на свойства титана, в том числе на его пластичность. То же самое можно сказать и о твердости титана. Она тем выше, чем больше в металле примесей. Так, твердость титана, содержащего тысячные доли процента кислорода, азота, углерода, железа, составляет 400-600 МПа, а при содержания тех же примесей в сотые доли процента твердость его повышается до 900-1000 МПа.

Почему это происходит? Кислород и азот хорошо растворимы в титане, особенно в его низкотемпературной α-модификации. С их внедрением в октаэдрические пустоты кристаллов титана начинается деформация его кристаллической решетки, повышается жесткость межатомных связей и, как следствие, увеличивается твердость, прочность, предел текучести, снижается пластичность металла. Самой вредной примесью является водород: даже незначительные количества его резко снижают пластичность металла и особенно его ударную вязкость. Углерод растворяется в титане в гораздо меньшей степени и мало влияет на понижение пластичности металла. Железо ухудшает механические свойства титана, только если его содержится 0,5% и выше. Другие металлы почти не воздействуют на эти свойства.

Итак, чистый читан - это твердый, прочный, пластичный, достаточно вязкий и упругий металл. Твердость его по шкале Бринеля составляет около 1000 мн/м 2 . Для сравнения укажем, что железо имеет всего 350-450 мн/м 2 , медь - 350, магний литой - 294, магний деформированный - 353, а алюминий - всего 170 мн/м 2 . Модуль нормальной упругости титана 108 тыс. мн/м 2 , по упругости он лишь немного уступает меди и стали, но является более упругим, чем алюминий и магний.

Титан имеет высокий предел текучести - примерно 250 мн/м 2 . Это выше в 2,5 раза, чем у железа, в 3 раза, чем у меди, и почти в 20 раз, чем у алюминия. Следовательно, титан лучше этих металлов сопротивляется сминающим ударим и другим нагрузкам, способным деформировать титановые детали.

Высота и вязкость титана. Он отлично противостоит воздействию сколовых и сдвиговых ударов и нагрузок. Этой выносливостью объясняется еще одно замечательное свойство титана - исключительная стойкость его в условиях кавитации, т. е. при усиленной "бомбардировке" металла в жидкой среде пузырьками воздуха, которые образуются при быстром движении или вращении металлической детали в жидкой среде. Эти пузырьки воздуха, лопаясь на поверхности металла, вызывают очень сильные микроудары жидкости о поверхность движущегося тела. Они быстро разрушают многие материалы, и металлы в том числе, а вот титан прекрасно противостоит кавитации.

Испытания в морской воде быстровращающихся дисков из титана и других металлов показали, что при вращении в течение двух месяцев титановый диск практически не потерял в массе. Внешние края его, где скорость вращения, а, следовательно, и кавитация максимальны, не изменились. Другие диски не выдержали испытания: у всех внешние края оказались поврежденными, а многие из них вовсе разрушились.

Титан обладает еще одним удивительным свойством - "памятью". В сплаве с некоторыми металлами (например, с никелем) он "запоминает" форму изделия, которую из него сделали при определенной температуре. Если такое изделие потом деформировать, например, свернуть в пружину, изогнуть, то оно останется в таком положении на долгое время. После нагревания до той температуры, при которой это изделие было сделано, оно принимает первоначальную форму. Это свойство титана широко используется в космической технике (на корабле разворачиваются вынесенные в космическое пространство большие антенны, до этого компактно сложенные). Недавно это свойство титана стали использовать медики для бескровных операции на сосудах: в больной, суженный сосуд вводится проволочка из титанового сплава, а потом она, разогреваясь до температуры тела, скручивается в первоначальную пружинку и расширяет сосуд.

Заслуживают внимания температурные, электрические и магнитные свойства титана. Он обладает сравнительно низкой теплопроводностью, всего 22,07 Вт/(м К), что приблизительно в 3 раза ниже теплопроводности железа, в 7 раз - магния, в 17-20 раз - алюминия и меда. Соответственно и коэффициент линейного термического расширения у титана ниже, чем у других конструкционных металлов: при комнатной температуре (20° С) у титана он равен 8,5 10 -6 /°С, у железа - 11,7 10 -6 /°С, у меди- 17 10 -6 /°С, у алюминия - 23,9/°С. Сравнительно невелика и электропроводность титана. Объясняется, это свойство довольно высоким электрическим сопротивлением титана: при комнатной температуре оно составляет 42,1 10 -6 Ом см. С повышением температуры электросопротивление титана еще больше увеличивается, а с понижением ее резко надает, вблизи абсолютного нуля титан становится сверхпроводимым.

Титан - типичный парамагнетик, его магнитная восприимчивость при 20° С всего 3,2±0,4 10 -6 ед. Как известно, парамагнитными являются алюминий и магний, а вот медь диамагнитна, железо - ферромагнетик.

Мы рассмотрели химические и физические свойства титана, которые в целом благоприятствуют широкому использованию этого металла. Однако у титана есть немало и отрицательных качеств. Например, он может самовозгораться, а в некоторых случаях даже и взрываться.

Уже говорилось, что в концентрированной азотной кислоте титан исключительно стоек, а вот в красной дымящей, пересыщенной окислами азота, защитная пленка диоксида титана на поверхности металла моментально разрушается и чистый титан начинает реагировать с кислотой со взрывом. Такая реакция была причиной взрыва титановых топливных баков одной из американских космических ракет. Со взрывом реагирует титан и с сухим хлором. Есть способ предотвратить эти взрывные реакции. Стоит добавить в дымящую красную азотную кислоту всего 1-2% воды, а в сухой хлор и того меньше - 0,5-1%, и на поверхности металла тут же появится защитная пленка. Дальнейшее окисление титана предотвратится и взрыва не произойдет.

В виде тонкой стружки, опилок или порошка титан может самовозгораться даже без подвода тепла извне. Такие случаи наблюдались при его испытаниях на разрыв в атмосфере кислорода в момент разрыва. Это объясняется опять-таки высокой активностью свежей, неокисленной поверхности титана и сильной экзотермичностью реакции его взаимодействии с кислородом.

Титан может гореть не только в атмосфере кислорода, но даже в атмосфере азота, являющегося также сильным окислителем титана. Поэтому гасить горящий титан азотом, как и водой, углекислым газом, нельзя: они разлагаются, выделяя кислород, который затем взаимодействует с раскаленным титаном и дает взрыв.

Еще одним недостатком титана является его способность сохранять высокие физико-механические свойства лишь до температуры 400-450° С, а с добавками некоторых легирующих металлов - до 600° С, и здесь у него есть серьезные конкуренты - жаропрочные спецстали. Однако в минусовом диапазоне температур титану равных нет. Железо становится хрупким уже при температуре -40° С, специальные низкотемпературные стали - ниже -100° С. А вот титан и его сплавы не разрушаются при температурах до -253° С (в жидком водороде) и даже до -260° С (в жидком гелии). Это очень важное свойство титана открывает ему большие перспективы для использования в криогенной технике и для работы в космическом пространстве.

Титан реагирует со многими металлами. При трении с деталями из более мягкого металла титан может срывать с них металлические частицы и прилеплять к себе металл, а из более твердого, наоборот, частицы титана будут срываться с титановой детали и покрывать другую деталь. Причем никакая жировая или масляная смазка не помогает исключить взаимоналипание частиц. В течение небольшого времени это явление можно ослабить, лишь применив в качестве смазки чешуйчатые молибденит или графит. А вот сваривается титан с другими металлами очень плохо. Практически полностью эта проблема пока не решена, хотя сварка титановых изделий проходит отлично.

Титан - твердый металл, как мы уже знаем, тверже железа, алюминия, меди. Но все же не тверже специальных, особотвёрдых инструментальных сталей, из которых делают острые инструменты, ножи, скальпели. Здесь титан неприменим.

Титан - плохой проводник электричества и тепла. Проводов из него не сделаешь, а вот то, что он один из очень немногих металлов является при низких температурах сверхпроводником электричества, открывает ему большие перспективы в электрической технике передачи энергии на большие расстояния.

Титан - парамагнитный металл: он не намагничивается, как железо, в магнитном поле, но и не выталкивается из него, как медь. Его магнитная восприимчивость очень слаба, это свойства можно использовать при строительстве, например, немагнитных кораблей, приборов, аппаратов.

Итак, титан имеет больше достоинств, чем недостатков, и то, что он по иным характеристикам уступает некоторым специальным сталям и сплавам, компенсируется одним важнейшим обстоятельством. Легкость, прочность, пластичность, твердость, стойкость и многие другие качества соединены в одном металле так органично, что это сулит титану большое будущее.

Прежде чем рассказать, как используются титан, его сплавы и соединения сегодня и какие перспективы открываются перед этим металлом в недалеком завтра, рассмотрим подробно, как распространен этот удивительный металл в нашей Вселенной, на планете Земля, в каком виде встречается в породах земной коры, какие месторождения образует, как добываются, обогащаются руды, перерабатываются концентраты. Проследим долгий и нелегкий путь получения чистого титана, его обработки и использования человеком.