Все вопросы

Титан (Titanium) - это. Смотреть что такое "Титан" в других словарях

Титан - элемент IV группы побочной подгруппы периодической системы, порядковый номер 22, атомный вес 47,9. Химический знак - Ti. Титан открыт в 1795году и назван в честь героя греческого эпоса Титана. Он входит в состав более чем 70 минералов и является одним из распространенных элементов - содержание его в земной коре составляет примерно 0,6 %. Это металл серебристо-белой окраски. Его температура плавления равна 1665 °С. Коэффициент линейного расширения титана в интервале 20 – 100 °С составляет 8,3×10 -6 град -1 , а теплопроводность l = 15,4 Вт/(м×К). Он существует в двух полиморфных видоизменениях: до 882 °С в виде a-модификации, обладающей гексагональной плотно-упакованной кристаллической решеткой с параметрами а = 2,95 Å и с = 4,86 Å; а выше данной температуры устойчивой является b-трансформация с объемноцентрированной кубической решеткой (а = 3,31 Å).

Металл сочетает большую прочность с малой плотностью r = 4,5 г/см 3 и высокой коррозионной стойкостью. Благодаря этому во многих случаях он обладает значительными преимуществами перед такими основными конструкционными материалами, как сталь и алюминий. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при службе на термическую усталость. Металл обладает ползучестью как при повышенных, так и при комнатной температурах. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.

Металл высокой чистоты обладает хорошими пластическими свойствами. Под влиянием примесей пластичность его резко изменяется. Кислород хорошо растворяется в титане и сильно снижает данную характеристику уже в области малых концентраций. Пластические свойства металла уменьшаются и при добавлении азота. При содержании азота более 0,2 % наступает хрупкое разрушение титана. Вместе с тем кислород и азот повышают временное сопротивление и выносливость металла. В этом отношении они являются полезными примесями.

Вредной примесью является водород. Он резко снижает ударную вязкость титана даже при очень малых концентрациях, за счет образования гидридов. На прочностные характеристики металла водород не оказывает заметного влияния в широком интервале концентраций.

Чистый титан не относится к жаропрочным материалам, так как прочность его резко уменьшается с повышением температуры.

Важной особенностью металла является его способность образовывать твердые растворы с атмосферными газами и водородом. При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твердого раствора на основе a-Ti (альфитированный), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Он имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.


Титан характеризуется значительной коррозионной стойкостью в атмосфере воздуха, естественной холодной, горячей пресной и морской воде, растворах щелочей, солей неорганических и органических кислот и соединений даже при кипячении. Он стоек по отношению к разбавленным серной, соляной (до 5 %), азотной всех концентраций (кроме дымящейся), уксусной и молочной кислотам, хлоридам и царской водке. Высокая коррозионная стойкость титана объясняется образованием на его поверхности плотной однородной защитной пленки, состав которой зависит от окружающей среды и условий ее образования. В большинстве случаев это диоксид - TiO 2 . При определенных условиях металл, взаимодействующий с соляной кислотой, может покрываться защитным слоем гидрида - TiH 2 . Титан устойчив против кавитационной коррозии и коррозии под напряжением.

Начало промышленного применения титана как конструкционного материала относится к сороковым годам прошлого столетия. В данном качестве титан наибольшее применение находит в авиации, ракетной технике, при сооружении морских судов, в приборостроении и машиностроении. Он сохраняет высокие прочностные характеристики при повышенных температурах и поэтому с успехом применяется для изготовления деталей, подвергающихся высокотемпературному нагреву.

В настоящее время титан широко применяют в металлургии, в том числе в качестве легирующего элемента в нержавеющих и жаростойких сталях. Добавки титана в сплавы алюминия, никеля и меди повышают их прочность. Он является составной частью твердых сплавов для режущих инструментов. Двуокись титана используют для обмазки сварочных электродов. Четыреххлористый титан применяют в военном деле для создания дымовых завес.

В электротехнике и радиотехнике используют порошкообразный титан в качествепоглотителя газов - при нагревании до 500 °С он энергично абсорбирует газы и тем самым обеспечивает в замкнутом объеме высокий вакуум. В связи с этим его применяют для изготовления деталей электронных ламп.

Титан в ряде случаев является незаменимым материалом в химической промышленности и в судостроении. Из него делают детали, предназначенные для перекачки агрессивных жидкостей, теплообменники, работающие в коррозионно-активных средах, подвесные приспособления, используемые при анодировании различных деталей. Титан инертен в электролитах и других жидкостях, применяемых в гальваностегии, и поэтому пригоден для производства различных деталей гальванических ванн. Его широко употребляют при изготовлении гидрометаллургической аппаратуры для никелево-кобальтовых заводов, так как он обладает высокой стойкостью против коррозии и эрозии в контакте с никелевыми и кобальтовыми шламами при больших температурах и давлениях.

Титан наиболее стоек в окислительных средах. В восстановительных средах он корродирует довольно быстро вследствие разрушения защитной окисной пленки.

Сплавы титана с различными элементами являются более перспективными материалами, чем технически-чистый металл.

Основными легирующими компонентами промышленных титановых сплавов являются ванадий, молибден, хром, марганец, медь, алюминий и олово. Практически же титан образует сплавы со всеми металлами, за исключением щелочноземельных элементов, а также с кремнием, бором, водородом, азотом и кислородом.

Наличие полиморфных превращений титана, хорошая растворимость многих элементов в нем, образование химических соединений, обладающих переменной растворимостью, позволяют получить широкую гамму титановых сплавов с разнообразными свойствами.

Они обладают тремя основными преимуществами по сравнению с другими сплавами: малым удельным весом, высокими химическими свойствами и отличной коррозионной стойкостью. Сочетание легкости с большой прочностью делают их особенно перспективными материалами как заменители специальных сталей для авиационной промышленности, а значительная коррозионная стойкость - для судостроения и химической промышленности.

Во многих случаях применение титановых сплавов оказывается экономически выгодным, несмотря на высокую стоимость титана. Например, применение литых титановых насосов с высочайшей коррозионной стойкостью на одном из предприятий России позволило снизить эксплуатационные расходы на один насос в 200 раз. Таких примеров можно привести немало.

В зависимости от характера влияния, оказываемого легирующими элементами на полиморфные превращения титана при сплавлении, все сплавы делятся на три группы:

1) с a-фазой (алюминий);

2) с b-фазой (хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт, ванадий, молибден, ниобий и тантал);

3) с a + b-фазами (олово, цирконий германий).

Сплавы титана с алюминием имеют меньшую плотность и большую удельную прочность, чем чистый или технически чистый титан. По удельной прочности они превосходят многие нержавеющие и теплостойкие стали в интервале 400 - 500 °С. Эти сплавы обладают более высокой жаропрочностью и наивысшим сопротивлением ползучести, чем многие другие на основе титана. Они также имеют повышенный модуль нормальнойупругости. Сплавы не подвергаются коррозии и слабо окисляются при высоких температурах. Они обладают хорошей свариваемостью, причем даже при значительном содержании алюминия материал шва и околошовной зоны не приобретает хрупкости. Добавка алюминия уменьшает пластичность титана. Наиболее интенсивно это влияние сказывается при содержании алюминия более 7,5 %. Добавка олова в сплавы повышает их прочностные характеристики. При концентрации в них до 5 % Sn заметного снижения пластических свойств не наблюдается. Кроме того, введение олова в сплавы повышает их сопротивляемость окислению и ползучести. Сплавы, содержащие 4 - 5 % Аl и 2 – 3 % Sn, сохраняют значительную механическую прочность до 500 °С.

Цирконий не оказывает большого влияния на механические свойства сплавов, но его присутствие способствует увеличению сопротивления ползучести и повышению длительной прочности. Цирконий является ценным компонентом титановых сплавов.

Сплавы данного типа достаточно пластичны: прокатываются, штампуются и куются в горячем состоянии, свариваются аргоно-дуговой и контактной сваркой, удовлетворительно обрабатываются резанием, обладают хорошей коррозионной стойкостью в концентрированной азотной кислоте, в атмосфере, растворах поваренной соли при цикличных нагрузках и морской воде. Они предназначаются для изготовления деталей, работающих при температурах от 350 до 500 °С при длительных нагрузках и до 900 °С при кратковременных нагрузках. Сплавы поставляются в виде листов, прутков, полос, плит, поковок, штамповок, прессованных профилей, труб и проволоки.

При комнатной температуре они сохраняют кристаллическую решетку, присущую модификации a-титана. В большинстве случаев эти сплавы применяют в отожженном состоянии.

К титановым сплавам с термодинамически устойчивой b-фазой относятся системы, содержащие в своем составе алюминий (3,0 - 4,0 %), молибден (7,0 - 8,0 %) и хром (10,0 - 15,0 %). Однако при этом теряется одно из основных преимуществ титановых сплавов - относительно малая плотность. Это является основной причиной того, что данные сплавы не получили широкого распространения. После закалки с 760 - 780 °С и старения при 450 - 480 °С они имеют временное сопротивление 130 – 150 кГ/мм 2 , это эквивалентно стали с s в = 255 кГ/мм 2 . Однако эта прочность не сохраняется при нагревании, что является основным недостатком указанных сплавов. Они поставляются в виде листов, прутков и поковок.

Наилучшее сочетание свойств достигается в сплавах, состоящих из смеси a- и b-фaз. Непременным компонентом в них является алюминий. Содержание алюминия не только расширяет область температур, при которых сохраняется стабильность a-фазы, но и повышает термическую устойчивость b-составляющей. Кроме того, этот металл уменьшает плотность сплава и тем самым компенсирует увеличение данного параметра, связанное с введением тяжелых легирующих элементов. Они обладают хорошей прочностью и пластичностью. Из них изготовляют листы, прутки, поковки и штамповки.Детали из таких сплавов можно соединять точечной, стыковой и аргоно-дуговой сваркой в защитной атмосфере. Они удовлетворительно обрабатываются резанием, обладают высокой коррозионной стойкостью во влажной атмосфере и в морской воде, обладают хорошей термической стабильностью.

Иногда, кроме алюминия и молибдена, в сплавы добавляется небольшое количество кремния. Это способствует тому, что сплавы в горячем состоянии хорошо поддаются прокатке, штамповке и ковке, а также увеличивается сопротивление ползучести.

Широкое применение находит карбид титана TiC и сплавы на его основе. Карбид титана обладает большой твердостью и очень высокой темпера­турой плавления, что и определяет основные области его применения. Его давно применяют как компонент твердых сплавов для режущих инструментов и штампов. Типичными титансодержащими твердыми сплавами для режущего инструмента являются сплавы Т5К10, Т5К7, Т14К8, Т15К6, ТЗ0К4 (первая цифра соответствует содержанию карбида титана, а вторая - концентрации цементирующего металлического кобальта в %). Карбид титана применяют также в качестве абразивного материала как в порошке, так и в цементированном виде. Его температура плавления выше 3000 °С. Он обладает большой электропроводностью, а при низких температурах - сверхпроводимостью. Ползучесть данного соединения мала вплоть до 1800 °С. При комнатной температуре он хрупок. Карбид титана стоек в холодных и горячих кислотах - соляной, серной, фосфорной, щавелевой, на холоде - в хлорной кислоте, а также в их смесях.

Большое распространение получили жаростойкие материалы на основе карбида титана, легированного молибденом, танталом, ниобием, никелем, кобальтом и другими элементами. Это позволяет получить материалы, в которых сочетаются большая прочность, сопротивляемость ползучести и окислению при высоких температурах карбида титана с пластичностью и сопротивлением тепловому удару металлов. На этом же принципе основано получение жаростойких материалов на основе других карбидов, а также боридов, силицидов, которые объединяются под общим названием керамико-металлических материалов.

Сплавы на основе карбида титана сохраняют достаточно высокую жаропрочность до 1000 – 1100 °С. Они обладают высокой износоустойчивостью и стойкостью против коррозии. Ударная вязкость сплавов мала, и это является основным препятствием для широкого их распространения.

Карбид титана и сплавы на его основе с карбидами других металлов применяют в качестве огнеупорных материалов. Тигли из карбида титана и сплава его с карбидом хрома не смачиваются и практически не взаимодействуют в течение длительного времени с расплавленным оловом, висмутом, свинцом, кадмием и цинком. Не смачивают карбид титана расплавленная медь при 1100 - 1300 °С и серебро при 980 °С в вакууме, алюминий при 700 °С в атмосфере аргона. Сплавы на основе карбида титана с карбидом вольфрама или тантала с добавкой до 15 % Со при 900 – 1000 °С в течение длительного времени почти не поддаются действию расплавленного натрия и висмута.

СВОЙСТВА И ПРИМЕНЕНИЕ ТИТАНА

Титан (Ti) открыт в 1795 г. и назван в честь героя греческого эпоса Титана. Он входит в состав более чем 70 минералов и является одним из самых распространенных элементов — содержание его в земной коре составляет примерно 0,6%. Титан существует в двух модификациях: до 882°С в виде модификации а с гексагональной плотно упакованной кристаллической решеткой, а выше 882°С устойчивостью является модификация β с объемноцентрированной кубической решеткой. Ниже приведены основные физические свойства титана:

Атомная масса

Плотность при 20°С, г/см3

Температура, °С:

плавления

Удельная теплоемкость, кал/г

Теплопроводность кал/(см·сек·град)

Скрытая теплота плавления, кал/г

Коэффициент линейного расширения, 1 /град

Удельное электросопротивление,

Временное сопротивление при растяжении титана, кГ/мм2

Модуль упругости, кГ/мм2

Твердость НВ, кГ/мм2

Титан сочетает большую прочность с малой плотностью и высокой коррозионной стойкостью. Благодаря этому во многих случаях он обладает значительными преимуществами перед такими основными конструкционными материалами, как сталь и алюминий. Ряд титановых сплавов по прочности в два раза превосходит сталь при значительно меньшей плотности и лучшей коррозионной стойкости. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при работе на термическую усталость. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.

Титан высокой чистоты обладает хорошими пластическими свойствами. Под влиянием примесей пластичность его резко изменяется. Кислород хорошо растворяется в титане и сильно снижает его пластические свойства уже в области малых концентраций.

Уменьшаются пластические свойства титана и при введении в него азота. При содержании азота в титане >0,2% наступает хрупкое его разрушение. Вместе с тем кислород и азот повышают временное сопротивление и выносливость титана и в этом отношении являются полезными примесями.

Вредной примесью в титане является водород. Он резко снижает ударную вязкость титана даже при очень малых концентрациях.

На прочностные характеристики титана водород не оказывает заметного влияния в широком интервале концентраций.

Механические свойства титана в значительно большей степени, чем у других металлов, зависят от скорости приложения нагрузки. Поэтому механические испытания титана следует проводить при более строго регламентированных и фиксированных условиях, чем испытания других конструкционных материалов.

Ударная вязкость титана существенно возрастает при отжиге в интервале 200— 300°С, заметного изменения других свойств не наблюдается. Наибольшее повышение пластичности титана достигается после закалки с температур, превышающих температуру полиморфного превращения, и последующего отпуска.

Чистый титан не относится к жаропрочным материалам, так как прочность его резко уменьшается с повышением температуры.

Важной особенностью титана является его способность образовывать твердые растворы с атмосферными газами и водородом. При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твердого раствора на основе α-Ti (альфитированный слой), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Этот слой имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.

Титан и сплавы на основе титана характеризуются высокой коррозионной стойкостью в атмосфере воздуха, в естественной холодной и горячей пресной воде, в морской воде, а также в растворах щелочей, неорганических солей, органических кислот и соединений даже при кипячении. Он не подвергается коррозии в морской воде, находясь в контакте с нержавеющей сталью и медно-никелевыми сплавами. Высокая коррозионная стойкость титана объясняется образованием на его поверхности плотной однородной пленки, которая защищает металл от дальнейшего взаимодействия с окружающей средой.

Как конструкционный материал титан наибольшее применение находит в авиации, ракетной технике, при сооружении морских судов, в приборостроении и машиностроении. Титан и его сплавы сохраняют высокие прочностные характеристики при высоких температурах и поэтому с успехом могут применяться для изготовления деталей, подвергающихся высокотемпературному нагреву.

В настоящее время основное количество титана используется для приготовления титановых белил. Титан широко применяют в металлургии, в том числе в качестве легирующего элемента в нержавеющих и жаростойких сталях. Добавки титана в сплавы алюминия, никеля и меди повышают их прочность. Он является составной частью твердых сплавов для режущих инструментов. Двуокись титана используют для обмазки сварочных электродов. Четыреххлористый титан применяют в военном деле для создания дымовых завес.

В электротехнике и радиотехнике используют порошкообразный титан в качестве поглотителя газов — при нагревании до 500°С титан энергично поглощает газы и тем самым обеспечивает в замкнутом объеме высокий вакуум.

Титан в ряде случаев является незаменимым материалом в химической промышленности и в судостроении. Из него изготовляют детали, предназначенные для перекачки агрессивных жидкостей, теплообменники, работающие в коррозионно- активных средах, подвесные приспособления, используемые при анодировании различных деталей. Титан инертен в электролитах и других жидкостях, применяемых в гальваностегии, и поэтому пригоден для изготовления различных деталей гальванических ванн. Его широко используют при изготовлении гидрометаллургической аппаратуры для никелево-кобальтовых заводов, так как он обладает высокой стойкостью против коррозии и эрозии в контакте с никелевыми и кобальтовыми шламами при высоких температурах и давлениях.

Титан наиболее стоек в окислительных средах. В восстановительных средах титан корродирует довольно быстро вследствие разрушения защитной окисной пленки.

Технический титан и его сплавы поддаются всем известным методам обработки давлением. Они могут прокатываться в холодном и горячем состояниях, штамповаться, обжиматься, поддаваться глубокой вытяжке, развальцовываться. Из титана и его сплавов получают стержни, прутки, полосы,

различные профили проката, бесшовные трубы, проволоку и фольгу.

Сопротивление деформации у титана выше, чем у конструкционных сталей или медных и алюминиевых сплавов. Титан и его сплавы обрабатываются давлением примерно так же, как и нержавеющие стали аустенитного класса. Наиболее часто титан подвергают ковке при 800—1000°С. Чтобы предохранить титан от загрязнения газами, нагрев и обработку его давлением производят в возможно короткое время. Ввиду того, что при температурах >500°С водород диффундирует в титан и его сплавы с огромными скоростями, нагрев ведут в окислительной атмосфере.

Титан и его сплавы имеют пониженную обрабатываемость резанием подобно нержавеющим сталям аустенитного класса. При всех видах резания наиболее успешные результаты достигаются при небольших скоростях и большой глубине резания, а также при использовании режущего инструмента из быстрорежущих сталей или твердых сплавов.

Из-за высокой химической активности титана при высоких температурах сварку его ведут в атмосфере инертных газов (гелия, аргона). При этом защищать от взаимодействия с атмосферой и газами необходимо не только расплавленный металл шва, но все сильно нагретые части свариваемых изделий.

Большие технологические трудности возникают при производстве из титана и его сплавов отливок.

СПЛАВЫ ТИТАНА

Многие сплавы титана с другими элементами являются более перспективными материалами, чем технический титан.

Основными легирующими элементами в промышленных титановых сплавах являются ванадий, молибден, хром, марганец, медь, алюминий и олово. Практически же титан образует сплавы со всеми металлами, за исключением щелочноземельных, а также с кремнием, бором, водородом, азотом и кислородом.

Наличие полиморфных превращений титана, хорошая растворимость многих элементов в титане и образование химических соединений, обладающих переменной растворимостью в титане, позволяют получить широкую гамму титановых сплавов с разнообразными свойствами.

В зависимости от характера влияния, оказываемого на полиморфные превращения титана, все элементы можно разбить на три группы:

стабилизирующие α-фазу (алюминий);

повышающие стабильность β-фазы (хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт, ванадий, молибден, ниобий, тантал);

легирующие, мало влияющие на стабильность α- и β-фаз (олово, цирконий, германий).

Титановые сплавы, легированные элементами, повышающими стабильность α-фазы, обычно не упрочняются термической обработкой. Сплавы, легированные элементами, повышающими стабильность β-фазы, значительно упрочняются в результате термической обработки.

Титановые сплавы можно подвергать всем основным видам термической обработки: закалке, отжигу, старению, отпуску, химико-термической обработке. Чаще всего применяют отжиг.

Сплавы титана с алюминием имеют меньшую плотность и большую удельную прочность, чем чистый или технически чистый титан. По удельной прочности сплавы титана с алюминием превосходят многие нержавеющие и теплостойкие сплавы в интервале 400—500°С. Сплавы титана с алюминием обладают более высокой жаропрочностью и более высоким сопротивлением ползучести, чем многие другие сплавы титана.

Алюминий повышает модуль нормальной упругости титана.

Сплавы титана с алюминием не подвергаются коррозии и слабо окисляются при высоких температурах. Это позволяет производить горячую обработку сплавов при более высоких нагревах, чем нелегированного титана. Они обладают хорошей свариваемостью, причем даже при значительном содержании алюминия материал шва и околошовной зоны не приобретает хрупкости. Добавка алюминия уменьшает пластичность титана. Наиболее интенсивно это влияние сказывается при содержании алюминия более 7,5%.

Добавка олова в сплавы титана с алюминием повышает прочностные характеристики сплава. При концентрации в таких сплавах олова до 5% заметного снижения пластических свойств не наблюдается. Кроме того, добавка олова в сплавы титана с алюминием повышает их сопротивляемость окислению и ползучести. Сплавы, содержащие 4—5% Аl и 2—3% Sn, сохраняют значительную механическую прочность до 500°С.

Цирконий не оказывает большого влияния на механические свойства сплавов титана с алюминием, но его присутствие способствует увеличению сопротивления ползучести и повышению длительной прочности. Цирконий является ценным компонентом титановых сплавов.

Основой для получения высокожаропрочных титановых сплавов является сплав, содержащий —36% А1. Добавки в этот сплав других легирующих элементов дают жаропрочные материалы, обладающие высокой прочностью при 1000°С и выше и хорошими технологическими свойствами.

Сплав ВТ5 прокатывается, штампуется и куется в горячем состоянии, сваривается аргоно-дуговой и контактной сваркой, удовлетворительно обрабатывается резанием, обладает хорошей коррозионной стойкостью в концентрированной азотной кислоте и морской воде. Из этого сплава изготовляют детали, работающие при температурах до 400°С. Он обладает низкими антифрикционными свойствами и непригоден для изготовления трущихся деталей. Сплав ВТ5 поставляется в виде листов, прутков, паковок, труб и проволоки.

Сплавы типа ВТ5-1 предназначаются для изготовления деталей, работающих при температурах до 500°С при длительных нагрузках и до 900°С при кратковременных нагрузках. Они достаточно пластичны при горячей обработке давлением и могут изготовляться в виде листов, полос, плит, поковок, штамповок, прессованных профилей, труб и проволоки, хорошо свариваются и обладают высокой коррозионной стойкостью в атмосфере и растворах поваренной соли при цикличных нагрузках.

Сплав ВТ4 предназначен в основном для изготовления листов, лент и полос. Для деталей простой формы допускается штамповка в холодном состоянии. При штамповке деталей более сложной формы требуется подогрев до 500°С. Сплав обладает удовлетворительной обрабатываемостью резанием и сваривается аргоно-дуговой сваркой. По коррозионной стойкости сплав ВТ4 близок к сплавам ВТ5. Из сплава ВТ4 изготовляют детали, работающие при температурах до 350°С.

Сплав ОТ4 по свойствам и областям применения аналогичен сплаву ВТ4.

Сплав ВТ 10 обладает высоким сопротивлением ползучести и высокой термической стойкостью. Он удовлетворительно сваривается всеми видами сварки и предназначен для изготовления деталей, работаю-

щих при температурах до 500°С. Из сплава ВТ10 приготовляют поковки, штамповки прутки и полосы.

Сплавы ВТ5, ВТ5-1, ВТ4, ОТ4 и ВТ10 при комнатной температуре сохраняют кристаллическую решетку, присущую модификации α-титана. В большинстве случаев эти сплавы применяют в отожженном состоянии. Температура их отжига выше температуры отжига технического титана. В качестве сплава с α-структурой можно рассматривать и технический титан (ВТ1-00, ВТ1-0, ВТ1-1, ВТ1-2).

Титановые сплавы с термодинамически устойчивой β-фазой можно получить лишь при высоких концентрациях легирующих элементов (ванадия, молибдена, ниобия, тантала и др.). Однако при этом теряется одно из основных преимуществ титановых сплавов — относительно малая плотность. Это является основной причиной того, что титановые сплавы со стабильной β-фазой не получили широкого распространения.

Титановые сплавы со структурой, представленной одной β-фазой, можно механически получить закалкой титановых сплавов, содержащих достаточно высокую концентрацию переходных элементов. К таким сплавам относится сплав ВТ 15, содержащий 3—4% А1, 7—8% Мо и 10—15% Сr. После закалки с 760—780° С и старения при 450— 480°С сплав имеет временное сопротивление 130—150 кГ/мм2, это эквивалентно стали с временным сопротивлением 255 кГ/мм2. Однако эта прочность не сохраняется при нагревании, что является основным недостатком указанных сплавов. Сплав поставляется в виде листов, прутков и поковок.

Наилучшее сочетание свойств достигается в сплавах, состоящих из смеси α- и β-фаз. Непременным компонентом почти во всех таких сплавах является алюминий. Содержание в сплавах алюминия не только расширяет область температур, при которых сохраняется стабильность α-фазы, но повышает и термическую стабильность β-фазы. Кроме того, алюминий уменьшает плотность сплава и тем самым компенсирует увеличение плотности, связанное с введением тяжелых легирующих элементов.

Из сплава ВТ6 изготовляют листы, прутки, поковки и штамповки. Они обладают хорошей прочностью и пластичностью. Температура нагрева сплава при обработке давлением обычно не превышает 1000°С. Детали из сплава ВТ6 можно соединять точечной, стыковой и аргоно-дуговой сваркой в защитной атмосфере. Для восстановления пластичности металла после сварки требуется отжиг при 700—800°С. Сплавы этого типа удовлетворительно обрабатываются резанием, обладают высокой коррозионной стойкостью во влажной атмосфере и в морской воде. Прочность сплавов повышается после закалки с последующим старением при 450—550°С. Сплавы обладают хорошей термической стабильностью.

К сплавам группы ВТ6 можно отнести и сплав BT5. Этот сплав, кроме алюминия и молибдена, легируется небольшим количеством кремния. Сплав в горячем состоянии хорошо поддается прокатке, штамповке и ковке. Ковка осуществляется при 900— 1000°С. Сплав обладает также высокой коррозионной стойкостью и термической стабильностью и сопротивлением ползучести. Он удовлетворительно обрабатывается резанием и хорошо сваривается точечной, роликовой и стыковой сваркой. Применяют сплав главным образом в термически обработанном состоянии.

Самостоятельную группу сплавов составляют сплавы ВТ3 и ВТ3-1. Эти сплавы обладают большей термохимической стабильностью по сравнению со сплавами типа ВТ6. Сплав ВТ3-1, содержащий, кроме алюминия и хрома, молибден, обладает более высокой термической стабильностью и меньшей склонностью к проявлению хрупкости при нагревании, чем сплав ВТ3, и имеет более мелкозернистую структуру.

Титановые сплавы, состоящие из смеси α- и β-фаз, применяют в отожженном или стабилизированном состоянии.

Для сплава ВТ3 рекомендуется проводить отжиг при 750±10°С и охлаждение на воздухе, для сплава ВТ3-1 гомогенизацию при 870 ±10°С, охлаждение с печью до 650°С, выдержку при этой же температуре примерно 1 ч и последующее охлаждение; для сплава ВТ6 — отжиг при 80 ±10°С и охлаждение на воздухе; для сплава ВТ8— гомогенизацию при 800±10°С в течение 1 ч, охлаждение на воздухе до 590±10°С, выдержку 1 ч, охлаждение на воздухе. Эффект от термического упрочнения сплавов ВТЗ, ВТЗ-1, ВТ6 и ВТ8 относительно невелик.

Для сплава ВТ 14 упрочняющей термической обработкой является закалка в воде с 860—880°С с последующим старением при 480—500°С. Отжиг этого сплава, обеспечивающий получение высокой пластичности и удовлетворительной прочности, проводится нагреванием до 750—850°С с последующим охлаждением на воздухе. Сплав ВТ 14 чувствителен к перегреву в процессе горячей обработки давлением и термической обработки. При нагревании выше 920—930°С резко ухудшаются его механические свойства. В связи с этим горячую деформацию сплава ВТ 14 целесообразно проводить при температурах не более 930°С.

В настоящее время разработаны титановые сплавы, обладающие в закаленном состоянии высокой пластичностью, необходимой для изготовления сложных деталей, и сильно упрочняющиеся при последующем старении или отпуске.

Практически все деформируемые титановые сплавы могут применяться в качестве литейных материалов. Наиболее часто для изготовления деталей методом литья применяется сплав ВТ6 и технический титан (ВТ1-1). Металл для фасонного литья выплавляют в вакуумных дуговых печах с графитовым тиглем, покрытым гарниссажем. Заливка металла и охлаждение форм производятся либо в атмосфере инертных газов, либо в вакууме. Формы изготовляют из графита, керамических материалов или металлов, которые не взаимодействуют с титаном и титановыми литейными сплавами.

Широкое применение находит карбид титана TiC и сплавы на основе карбида титана. Карбид титана обладает большой твердостью и очень высокой температурой плавления, что и определяет основные области его применения. Карбид титана давно применяют как компонент твердых сплавов для режущего инструмента и штампов. Особенно эффективно использование режущего инструмента, содержащего карбид титана, для вязких материалов. Типичными титансодержащими твердыми сплавами для режущего инструмента являются сплавы Т5КЮ, Т5К7, Т14К8, Т15К6, Т30К4 (первая цифра соответствует содержанию карбида титана, а вторая — содержанию цементирующего металлического кобальта в %. Карбид титана применяют также в качестве абразивного материала как в порошке, так и в цементированном виде.

Температура плавления карбида титана >3000°С. Он обладает большой электропроводностью, а при низких температурах— сверхпроводимостью. Ползучесть титана ничтожна мала вплоть до температуры 1800°С. При комнатной температуре он хрупок. Карбид титана стоек в холодных и горячих кислотах — соляной, серной, фосфорной, щавелевой, на холоде — в хлорной кислоте, а также в смесях некоторых кислот.

Многие методы получения чистого карбида титана сводятся к химическому отделению карбида из науглероженного ферросплава. Однако наибольшее практическое значение имеет метод науглероживания порошкообразного металлического титана или двуокиси титана ниже температуры плавления составляющих. Примером такого метода может служить прокаливание двуокиси титана с сажей в угольных патронах. Значительное количество карбида титана получается в виде промежуточного продукта при изготовлении четыреххлористого титана.

Большое распространение получили жаростойкие материалы на основе карбида титана, легированного молибденом, танталом, ниобием, никелем, кобальтом и другими элементами. Легирование карбида титана металлами позволяет получить материалы, в которых сочетаются большая прочность, сопротивляемость ползучести и окислению при высоких температурах карбида титана с пластичностью и сопротивлением тепловому удару металлов. На этом же принципе основано получение жаростойких материалов на основе других карбидов, а также боридов, силицидов, которые объединяются под общим названием керамико-металлических материалов.

Сплавы на основе карбида титана сохраняют достаточно высокую жаропрочность до 1000—1100°С. Эти сплавы обладают высокой износоустойчивостью и стойкостью против коррозии. Ударная вязкость сплавов на основе карбида титана мала, и это является основным препятствием для широкого их распространения.

Карбид титана и сплавы карбида титана с карбидами других металлов применяют в качестве огнеупорных материалов. Тигли из карбида титана и сплава карбида титана с карбидом хрома не смачиваются и практически не взаимодействуют в течение длительного времени с расплавленным оловом, висмутом, свинцом, кадмием и цинком. Не смачивают карбид титана расплавленная медь при 1100—1300°С и серебро при 980°С в вакууме, алюминий при 700°С в атмосфере аргона. Сплавы на основе карбида титана с карбидом вольфрама или карбидом тантала с добавкой до 15% Со при 900—1000° в течение длительного времени почти не поддаются действию расплавленного натрия и висмута.

Для приготовления сплавов на основе карбида титана составляющие их размалываются вместе до очень высокой степени дисперсности и затем смеси прессуют с применением пластификатора в заданные формы. Полученные таким образом заготовки спекают при высоких температурах. Композиции на основе карбида практически не обладают ковкостью. Слегка спеченные прессовки можно обрабатывать на токарном станке алмазным инструментом, а сложные детали — абразивными кругами. После окончательного спекания материал обрабатывается только шлифованием. Методом выдавливания из массы на основе карбида титана можно изготовить трубы, стержни, листы и изделия сложного сечения. Более плотный продукт можно получить методом горячего прессования. Основным исходным материалом для получения компактного титана и титановых полуфабрикатов является губчатый титан (титановая губка), получаемая различными методами из титанового сырья.

Титан — металл фей. По крайней мере, элемент назван в честь царицы этих мифических существ. Титания, как и все ее сородичи, отличилась воздушностью.

Летать феям позволяют не только крылья, но и малый вес. Титан тоже легок. Плотность у элемента самая малая среди металлов. На этом сходство с феями заканчивается и начинается чистая наука.

Химические и физические свойства титана

Титан – элемент серебристо-белого цвета, с выраженным блеском. В бликах металла можно разглядеть и розовый, и синий, и красный. Переливаться всеми цветами радуги – характерная особенность 22-го элемента .

Его лучение всегда ярко, ведь титан устойчив к коррозии. От нее материал защищен оксидной пленкой. Она формируется на поверхности при стандартных температура.

В итоге, коррозия металлу не страшна ни на воздухе, ни в воде, ни в большинстве агрессивных сред, к примеру, . Так химики прозвали смесь концентрированных и кислот.

Плавится 22-ый элемент при 1 660-ти градусов Цельсия. Получается, титан – цветной металл тугоплавкой группы. Гореть материал начинает раньше, чем размягчаться.

Белое пламя появляется при 1 200-от градусов. Закипает вещество при 3 260-ти по шкале Цельсия. Плавление элемента делает его вязким. Приходится использовать специальные реагенты, препятствующие налипанию.

Если жидкая масса металла тягучая и клейкая, то в состоянии порошка титан взрывоопасен. Для срабатывания «бомбы» достаточно нагрева до 400-от градусов Цельсия. Принимая тепловую энергию, элемент плохо ее передает.

В качестве электропроводника титан тоже не используют. Зато, материал ценят за прочность. В сочетании с малой плотностью и весом, она пригождается во многих отраслях промышленности.

Химически титан довольно активен. Так, или иначе, металл взаимодействует с большинством элементов. Исключения: — инертные газы, , натрий, калий, , кальций и .

Столь малое количество безразличных титану веществ затрудняет процесс получения чистого элемента. Нелегко произвести и сплавы металлов титана . Однако, промышленники научились это делать. Слишком уж высока практическая польза смесей на основе 22-го вещества.

Применение титана

Сборка самолетов и ракет, — вот где в первую очередь пригождается титан . Металл купить необходимо, чтобы повысить жаростойкость и жаропрочность корпусных . Жаростойкость – сопротивление высоким температурам.

Они, к примеру, при разгоне ракеты в атмосфере неизбежны. Жаропрочность – сохранение в «огненных» обстоятельствах еще и большинства механических свойств сплава. То есть, с титаном эксплуатационные характеристики деталей не меняются в зависимости от условий внешней среды.

Пригождается и устойчивость 22-го металла к коррозии. Это свойство важно уже не только в деле производства машин. Элемент идет на колбы и прочую посуду для химических лабораторий, становится сырьем для ювелирных .

Сырье не из дешевых. Но, во всех отраслях затраты окупаются сроком службы титановых изделий, их способностью сохранять первозданный вид.

Так, серия посуды питерской фирмы «Нева» «Металл Титан ПК» позволяет использовать при жарке металлические ложки. Тефлон бы они уничтожили, поцарапали. Титановому же покрытию нипочем нападки стали, алюминия.

Это, кстати, касается и украшений. Кольцо из или золота просто поцарапать. Модели из титана остаются гладкими десятилетия. Поэтому 22-ый элемент начали рассматривать, как сырье для обручальных перстней.

Сковорода «Титан Металл» легка, как и посуда с тефлоном. 22-ый элемент лишь немногим тяжелее алюминия. Это вдохновило не только представителей легкой промышленности, но и специалистов автомобилестроения. Не секрет, что в машинах много алюминиевых деталей.

Они нужны для снижения массы транспорта. Но, титан прочнее. Касаемо представительских машин автомобилестроение уже почти полностью перешло на использование 22-го металла.

Детали из титана и его сплавов снижают массу двигателя внутреннего сгорания на 30%. Облегчается и корпус, правда, растет цена. Алюминий, все же, дешевле.

Фирма «Нева Металл Титан», отзывы о которой оставляют, как правило, со знаком плюс, производит посуду. Автомобильные бренды используют титан для машин. придают элементу форму колец, сережек и браслетов. В этой череде перечислений не хватает медицинских компаний.

22-ый металл – сырье для протезов и хирургических инструментов. Продукция почти не имеет пор, поэтому легко стерилизуется. К тому же, титан, будучи легким, выдерживает колоссальные нагрузки. Что еще нужно, ели, к примеру, вместо коленных связок ставится чужеродная деталь?

Отсутствие в материале пор ценится успешными рестораторами. Чистота скальпелей хирурга важна. Но, важна и чистота рабочих поверхностей поваров. Чтобы пища была безопасной, ее разделывают и пропаривают на титановых столах.

Они не царапаются, легко моются. Заведения среднего уровня, как правило, пользуются стальной утварью, но, она уступают в качестве. Поэтому, в ресторанах с Мишленовскими звездами оборудование титановое.

Добыча титана

Элемент входит в 20-ку наиболее распространенных на Земле, находясь ровно посередине рейтинга. По массе коры планеты содержание титана равно 0,57%. На литр морской воды 24-го металла приходится 0,001 миллиграмма. В сланцах и глинах элемента содержится 4,5 килограмма на тонну.

В кислых породах, то есть богатых кремнеземом, на титан приходятся 2,3 килограмма с каждой тысячи. В основных залежах, образовавшихся из магмы, 22-го металла около 9-ти кило на тонну. Меньше всего титана скрывается в ультраосновных породах с 30-процентным содержанием кремнезема – 300 граммов на 1 000 килограммов сырья.

Не смотря на распространенность в природе, чистый титан в ней не встречается. Материалом для получения 100-процентного металла стал его йодит. Термическое разложение вещества провели Аркель и Де Бур. Это голландские химики. Эксперимент удался в 1925-ом году. К 1950-ым запустили массовое производство.

Современники, как правило, добывают титан из его диоксида. Это минерал, называемый рутилом. В нем наименьшее количество сторонних примесей. Походят, так же титанит и .

При переработке ильменитовых руд остается шлак. Он-то и служит материалом для получения 22-го элемента. На выходе он порист. Приходится вести вторичную переплавку в вакуумных печах с добавлением .

Если ведется работа с диоксидом титана, к нему примешивают магний и хлор. Смесь нагревают в вакуумных печах. Температуру поднимают до тех пор, пока все лишние элементы не испарятся. На дне емкостей остается чистый титан . Метод назван магниетермическим.

Отработан и гидридно-кальциевый метод. Он основан на электролизе. Ток высокой силы позволяет разделить гидрид металла на титан и водород. Продолжает применяться и йодитный способ добычи элемента, отработанный в 1925-ом году. Однако, в 21-ом веке он наиболее трудоемкий и дорогой, поэтому начинает забываться.

Цена титана

На металл титан цена устанавливается за килограмм. В начале 2016-го, это около 18-ти долларов США. Мировой рынок 22-го элемента за последний год достиг 7 000 000 тонн. Крупнейшие поставщики – Россия и Китай.

Это связано с разведанными в них и пригодными для разработки запасами. Во втором полугодии 2015-го спрос на титановые и листы начал снижаться.

Реализуют металл и в виде проволоки, различных деталей, к примеру, труб. Они гораздо дешевле биржевых расценок. Но, нужно учитывать, что в слитках идет чистый титан , а в изделиях использованы сплавы на его основе.

/моль)

История

Открытие диоксида титана (TiO 2) сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот . У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, ), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 году немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля - оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз: французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз - идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году швед Й. Я. Берцелиус . Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI 4 .

Титан не находил промышленного применения, пока люксембуржец Г. Кролл (англ.) русск. в 1940 году не запатентовал простой магниетермический метод восстановления металлического титана из тетрахлорида ; этот метод (процесс Кролла (англ.) русск. ) до настоящего времени остаётся одним из основных в промышленном получении титана.

Происхождение названия

Металл получил своё название в честь титанов , персонажей древнегреческой мифологии, детей Геи . Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном .

Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре - 0,57 % по массе, в морской воде - 0,001 мг/л . В ультраосновных породах 300 г/т , в основных - 9 кг/т , в кислых 2,3 кг/т , в глинах и сланцах 4,5 кг/т . В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al 2 O 3 . Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов . До 30 % TiO 2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO 2 , ильменит FeTiO 3 , титаномагнетит FeTiO 3 + Fe 3 O 4 , перовскит CaTiO 3 , титанит (сфен) CaTiSiO 5 . Различают коренные руды титана - ильменит-титаномагнетитовые и россыпные - рутил-ильменит-цирконовые .

Месторождения

Крупные коренные месторождения титана находятся на территории ЮАР, России, Украины, Канады, США, Китая, Норвегии, Швеции, Египта, Австралии, Индии, Южной Кореи, Казахстана; россыпные месторождения имеются в Бразилии, Индии, США, Сьерра-Леоне, Австралии . В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58,5 %) и Украина (40,2 %) . Крупнейшее месторождение в России - Ярегское .

Запасы и добыча

По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO 2 . Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603-673 млн т., а рутиловых - 49,7-52,7 млн т . Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 % .

Крупнейший в мире производитель титана - российская компания «ВСМПО-АВИСМА » .

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак , получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором , получая пары тетрахлорида титана TiCl 4:

T i O 2 + 2 C + 2 C l 2 → T i C l 4 + 2 C O {\displaystyle {\mathsf {TiO_{2}+2C+2Cl_{2}\rightarrow TiCl_{4}+2CO}}}

Образующиеся пары TiCl 4 при 850 °C восстанавливают магнием :

T i C l 4 + 2 M g → 2 M g C l 2 + T i {\displaystyle {\mathsf {TiCl_{4}+2Mg\rightarrow 2MgCl_{2}+Ti}}}

Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета , где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000-1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций :

2 C a O → 2 C a + O 2 {\displaystyle {\mathsf {2CaO\rightarrow 2Ca+O_{2}}}}

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

O 2 + C → C O 2 {\displaystyle {\mathsf {O_{2}+C\rightarrow CO_{2}}}} T i O 2 + 2 C a → T i + 2 C a O {\displaystyle {\mathsf {TiO_{2}+2Ca\rightarrow Ti+2CaO}}}

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора .

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом , выделяя Ti из TiCl 4 . Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

Физические свойства

Титан - лёгкий серебристо-белый металл . При нормальном давлении существует в двух кристаллических модификациях: низкотемпературный α -Ti с гексагональной плотноупакованной решёткой (гексагональная сингония , пространственная группа C 6mmc , параметры ячейки a = 0,2953 нм , c = 0,4729 нм , Z = 2 ) и высокотемпературный β -Ti с кубической объёмно-центрированной упаковкой (кубическая сингония , пространственная группа Im 3m , параметры ячейки a = 0,3269 нм , Z = 2 ), температура перехода α↔β 883 °C, теплота перехода ΔH =3,8 кДж/моль (87,4 кДж/кг ). Большинство металлов при растворении в титане стабилизируют β -фазу и снижают температуру перехода α↔β . При давлении выше 9 ГПа и температуре выше 900 °C титан переходит в гексагональную фазу (ω -Ti) . Плотность α -Ti и β -Ti соответственно равна 4,505 г/см³ (при 20 °C) и 4,32 г/см³ (при 900 °C) . Атомная плотность α-титана 5,67⋅10 22 ат/см³ .

Температура плавления титана при нормальном давлении равна 1670 ± 2 °C, или 1943 ± 2 К (принята в качестве одной из вторичных калибровочных точек температурной шкалы ITS-90 (англ.) русск. ) . Температура кипения 3287 °C . При достаточно низкой температуре (-80°C) , титан становится довольно хрупким. Молярная теплоёмкость при нормальных условиях C p = 25,060 кДж/(моль·K) , что соответствует удельной теплоёмкости 0,523 кДж/(кг·K) . Теплота плавления 15 кДж/моль , теплота испарения 410 кДж/моль . Характеристическая дебаевская температура 430 К . Теплопроводность 21,9 Вт/(м·К) при 20 °C . Температурный коэффициент линейного расширения 9,2·10 −6 К −1 в интервале от −120 до +860 °C . Молярная энтропия α -титана S 0 = 30,7 кДж/(моль·К) . Для титана в газовой фазе энтальпия формирования ΔH 0
f
= 473,0 кДж/моль
, энергия Гиббса ΔG 0
f
= 428,4 кДж/моль
, молярная энтропия S 0 = 180,3 кДж/(моль·К) , теплоёмкость при постоянном давлении C p = 24,4 кДж/(моль·K)

Пластичен, сваривается в инертной атмосфере. Прочностные характеристики мало зависят от температуры, однако сильно зависят от чистоты и предварительной обработки . Для технического титана твёрдость по Виккерсу составляет 790-800 МПа , модуль нормальной упругости 103 ГПа , модуль сдвига 39,2 ГПа . У высокочистого предварительно отожжённого в вакууме титана предел текучести 140-170 МПа, относительное удлинение 55-70%, твёрдость по Бринеллю 716 МПа .

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок .

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Химические свойства

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой он взаимодействует благодаря образованию комплексного аниона 2− . Титан наиболее подвержен коррозии в органических средах, так как в присутствии воды на поверхности титанового изделия образуется плотная пассивная пленка из оксидов и гидрида титана. Наиболее заметное повышение коррозионной стойкости титана заметно при повышении содержания воды в агрессивной среде с 0,5 до 8,0 %, что подтверждается электрохимическими исследованиями электродных потенциалов титана в растворах кислот и щелочей в смешанных водно-органических средах .

При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiO x . Из растворов солей титана осаждается гидроксид TiO(OH) 2 ·xH 2 O, осторожным прокаливанием которого получают оксид TiO 2 . Гидроксид TiO(OH) 2 ·xH 2 O и диоксид TiO 2 амфотерны .

При взаимодействии титана с углеродом образуется карбид титана Ti x C x (x = Ti 20 C 9 - TiC.

  • Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении.
  • Металл применяется в химической промышленности (реакторы , трубопроводы , насосы , трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.
  • Титан является физиологически инертным , благодаря чему применяется в медицине (протезы, остеопротезы, зубные имплантаты), в стоматологических и эндодонтических инструментах, украшениях для пирсинга .
  • Титановое литьё выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литьё по выплавляемым моделям. Из-за технологических трудностей в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве .
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов [каких? ] .
  • Нитинол (никель-титан) - сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что, в свою очередь, определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.
  • Титан является одним из наиболее распространённых

Титановые сплавы. Основные характеристики

Важнейшими преимуществами титановых сплавов перед другими конструкционными материалами являются их высокие удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Кроме того, титан и его сплавы хорошо свариваются, парамагнитны и обладают некоторыми другими свойствами, имеющими важное значение в ряде отраслей техники. Перечисленные качества титановых сплавов открывают большие перспективы их применения в тех областях машиностроения, где требуются высокая удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Это относится, в первую очередь, к таким отраслям техники как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

Касаясь некоторых специфических свойств титана, можно отметить, что он представляет большой интерес как конструкционный материал для космических кораблей.

Классификация

Титановые сплавы целесообразно разделить на три большие группы:

Конструкционные и высокопрочные титановые сплавы представляют собой - твердые растворы, что позволяет им обеспечивать оптимальное соотношение характеристик прочности и пластичности.

Жаропрочные титановые сплавы представляют собой - твердые растворы с большим или меньшим количеством химического соединения (или начальной стадии его образования), что обеспечивает им повышенную жаропрочность при минимальном снижении пластичности.

Титановые сплавы на основе химического соединения - представляют интерес как жаропрочный материал с низкой плотностью, способный конкурировать с жаропрочными никелиевыми сплавами в определенном температурном интервале.

В настоящее время титан - один из важнейших конструкционных металлических материалов. Для этого титану в течение 200 лет пришлось пройти путь от признания его непригодным в конструкционных целях до всеобщего поклонения как перед одним из самых перспективных и вечных металлов.

ВТ1-00 и ВТ1-0

Технический титан. Металлургическая промышленность поставляет полуфабрикаты технического титана двух марок ВТ1 - 00 и ВТ1 - 0 отличающихся содержанием примесей (кислорода, азота, углерода, железа, кремния и др.). Это материалы малой прочности, причем титан ВТ1 - 00, содержащий меньше примесей, отличается меньшей прочностью и большей пластичностью. Основное достоинство технического титана - высокая технологическая пластичность, что позволяет получать из него даже фольгу.

Прочностные свойства титана могут быть повышены нагартовкой но при этом сильно снижаются пластические свойства. Снижение характеристик пластичности выражено сильнее, чем повышение характеристик прочности, так что нагартовка не самый лучший способ улучшения комплекса свойств титана. К недостаткам титана следует отнести высокую склонность к водородной хрупкости, в связи с чем содержание водорода не должно превышать 0,008 % в титане ВТ1 - 00 и 0,01 % в ВТ1 - 0.

Сплав ВТ5 (ВТ5Л)

Сплав ВТ5 (ВТ5Л) легирован только алюминием. Алюминий относится к числу наиболее распространенных легирующих элементов в титановых сплавах. Это обусловлено следующими преимуществами алюминия перед остальными легирующими компонентами:

а) алюминий широко распространен в природе, доступен и сравнительно дешев;

б) плотность алюминия значительно меньше плотности титана, и поэтому введение алюминия повышает их удельную прочность;

в) с увеличением содержания алюминия повышается жаропрочность и сопротивление ползучести сплавов титана;

г) алюминий повышает модули упругости;

д) с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости. Сплав ВТ5 отличается от технического титана большей прочностью и жаропрочностью. Вместе с тем алюминий значительно уменьшает технологическую пластичность титана. Сплав ВТ5 деформируется в горячем состоянии: куется, прокатывается, штампуется. Из него изготовляют прутки, профили, поковки, штамповки. Тем не менее, его предпочитают применять не в деформированном состоянии, а в виде фасонного литья (в этом случае ему присваивают марку ВТ5Л). Сплав предназначен для изготовления деталей систем управления, внутреннего набора фюзеляжа, сварных деталей и узлов, длительно работающих (10 000 ч) при температурах до 400 °С.

Сплав ВТ5-1

Сплав ВТ5-1 относится к системе Ti-Al-Sn. Олово улучшает технологические свойства сплавов титана с алюминием, замедляет их окисление, повышает сопротивление ползучести. Этот сплав, по прочностным характеристикам относится к материалам средней прочности, мало чувствителен к надрезу, имеет удовлетворительный предел выносливости, сохраняет значительную жаропрочность до 450 °С. Сплав ВТ5-1 более технологичен, чем ВТ5, и из него изготавливают все виды полуфабрикатов, получаемых обработкой давлением, в том числе: листы, плиты, поковки, штамповки, профили, трубы и проволоку. Сплав сваривается всеми видами сварки, причем сварные соединения и основной металл почти равнопрочны. Сплав термически не упрочняется. При применении этого сплава для работы при криогенных температурах содержание примесей должно быть сведено к минимуму, так как они вызывают хладноломкость, состав сплава с пониженным содержанием примесей обозначают ВТ5-1кт. За рубежом сплав Ti-5A1-2,5Sn аналогично применяют в двух вариантах: для обычного назначения и для работы при криогенных температурах. Во втором случае также ограничивают содержание примесей и обозначают сплав как Ti-5AI-2,5Sn ELI.

Сплав ПТ-7М

Сплав ПТ-7М относится к малолегированным, малопрочным и высокопластичным сплавам системы Ti-Al-Zr. Он довольно легко деформируется не только при повышенных, но и комнатной температуре, что обусловлено небольшим содержанием в нем алюминия. Сплав производится в основном в форме горячепрессованных, горячекатаных и холоднодеформированных труб. Высокая пластичность сплава позволяет получать из него особо тонкостенные трубы. Сплав ПТ-7М применяют в основном для изготовления различного рода трубопроводов, работающих при комнатной и повышенных температурах в агрессивных средах.

Сплав ОТ4-0

Сплав ОТ4-0 малой прочности и высокой технологичности. Марганец повышает технологичность при горячей обработке давлением. Сплав псевдо- α -класса с небольшим количеством β-фазы. Термически не упрочняется. Основными полуфабрикатами являются: листы, ленты, полосы, прутки, поковки, штамповки. Хорошо деформируется в горячем и холодном состояниях, допускает штамповку при комнатной температуре; хорошо сваривается всеми видами сварки. Используется в деталях для изготовления которых требуется высокая технологичность при холодной штамповке.

Сплав ОТ4-1

Сплав ОТ4-1 относится к числу наиболее технологичных титановых сплавов; является малопрочным, малолегированным псевдо а-сплавом системы Ti-Al-Mn. Он хорошо деформируется в горячем и холодном состояниях и предназначен в основном для изготовления листов, лент и полос. Из них получают также плиты, поковки, прутки, трубы и профили. Листовая штамповка деталей простой формы может производиться в холодном состоянии; при штамповке деталей сложной формы необходим подогрев до 500°С. Сплав хорошо сваривается всеми видами сварки, причем прочность и пластичность сварного соединения практически одинаковы с основным металлом. Сплав ОТ4-1 предназначен для изготовления деталей, работающих до температуры 350 °С в течение не более 2000 ч и до 300 °С - не более 30 000 ч и изготавливаемых с применением сварки, штамповки и гибки. В отожженном состоянии сплав ОТ4-1 применяется для изготовления деталей типа обшивок крыла, закрылков, внутреннего набора крыла. Полный отжиг проводится при 640-690°С (листовые полуфабрикаты и детали из них) и при 740-790°С (прутки, поковки, штамповки и т.п. и детали из них); неполный отжиг - при 520-560°С. Недостатки этого сплава: сравнительно невысокая прочность; очень большая склонность к водородной хрупкости (содержание водорода не должно превышать 0,005%).

Псевдо α -сплав ОТ4

Псевдо α -сплав ОТ4 относится к той же системе Ti-A1-Мп, что и ОТ4-1, но отличается от него большим содержанием алюминия. В связи с этим он прочнее сплава ОТ4-1. Этот сплав средней прочности. Вместе с тем сплав ОТ4 менее пластичен и технологичен, чем сплав ОТ4-1. Сплав хорошо деформируется в горячем и ограниченно холодном состояниях. Его поставляют в виде листов, плит, профилей, труб, прутков. Основные операции листовой штамповки (вытяжка, гибка, отбортовка) осуществляются в холодном состоянии. При штамповке сложных по конфигурации деталей требуется подогрев. Сплав ОТ4 хорошо сваривается аргонодуговой, контактной (точечной, роликовой, стыковой) и электронно-лучевой сваркой. Сплав обладает хорошей термической стабильностью и предназначен для изготовления деталей, работающих при температурах до 350°С в течение 2000 ч и до 300°С - 30 000 ч. Сплав термически не упрочняется, единственный вид термической обработки, которому он подвергается, это полный или неполный (для снятия остаточных напряжений) отжиг. Полный отжиг проводят при 660-710°С (листовые полуфабрикаты и детали из них) и при 740-790°С (прутки, поковки, штамповки и т.п. и детали из них); неполный отжиг - при 545-585 °С.

Сплав ВТ18 (ВТ18У)

Сплав ВТ18 (ВТ18У) системы Ti-Al-Zr-Mo-Nb-Si относится к высокопрочным псевдо α -сплавам. Большое содержание алюминия и циркония обеспечивает высокое сопротивление ползучести и высокую длительную прочность до температур 550 - 600°С. Это один из наиболее жаропрочных титановых сплавов. Пластические свойства и технологичность при обработке давлением у сплава ВТ18 ниже, чем у сплавов типа ОТ4. Поэтому он предназначен в основном для производства прутков, поковок и штамповок.
Оптимальное сочетание свойств сплава обеспечивает отжиг при температурах 900 - 950 °С, выдержка 1 - 4 ч, охлаждение на воздухе. Помимо этого применяют двойной отжиг: при 900 - 980 °С 1 - 4 ч + при 550 - 680 °С 2 - 8 ч, что позволяет получить более высокое сопротивление разрыву сплава при 600 °С (770 МПа вместо 670 МПа). Сплав ВТ 18 рекомендуется для деталей, работающих длительно (до 500 ч) при 550 - 600 °С и кратковременно (детали разового действия) - до 800 °С.

Псевдо α -сплав ВТ18У

Псевдо a-сплав ВТ18У отличается от ВТ18 более низким содержанием алюминия и циркония, а также дополнительным легированием оловом. В связи с этим он несколько технологичнее ВТ18. Поэтому из него получают не только прутки, поковки и штамповки, но и листы, хотя и с большим трудом. Термическая обработка полуфабрикатов из сплава ВТ18У производится по режимам, принятым для сплава ВТ18. По жаропрочным свойствам сплав ВТ18У не уступает сплаву ВТ 18 и рекомендуется для тех же условий эксплуатации, что и сплав ВТ 18.

Псевдо α -сплав ВТ20

Псевдо α -сплав ВТ20 принадлежит к системе Ti-Al-Zr-Mo-V. Довольно высокое содержание алюминия обеспечивает значительную прочность и жаропрочность этого сплава. Его пластичность и технологичность при обработке давлением ниже, чем у сплавов типа ОТ4. Тем не менее он хорошо деформируется в горячем состоянии и поставляется в виде поковок и штамповок толщиной до 250 мм, профилей, прутков, плит и листа. В листовом варианте этот сплав по жаропрочным характеристикам уступает только сплаву ВТ18У. Из этого сплава изготовляют сварные кольца из горячекатаных и прессованных профилей, а также цельнокатаные кольца. Сплав хорошо сваривается всеми видами сварки, применяемыми для титановых сплавов. Механические свойства сварного соединения не уступают свойствам основного металла. Сплав ВТ20 может свариваться с титановыми сплавами ВТЗ-1, ОТ4, ОТ4-1, ВТ5-1, ВТ6, ВТ14, ВТ5Л, ВТ21Л. Этот сплав поставляется также в виде фасонного литья под маркой ВТ20Л.

Единственным видом термической обработки сплава ВТ20 является отжиг. Полный отжиг проводят при температурах 700-800 °С для снятия наклепа от предшествующих операций обработки давлением. Неполный отжиг листов и прутков для снятия остаточных напряжений проводят при 600-650 °С. Сварные соединения отжигают при

650-750 °С. Сплав ВТ20 применяют для изготовления обшивок крыла, деталей и сварных узлов, длительно работающих при температурах от -70 до 450 °С (6000 ч) - 500 °С (3000 ч).

Сплавы типа ВТ6

Сплавы типа ВТ6 (Ti-6A1-4V) (a + b)-класса относятся к числу наиболее распространенных за рубежом титановых сплавов. Сплав Ti-6А1-4V используется для изготовления крупногабаритных сварных и сборных конструкций летательных аппаратов, для изготовления баллонов, работающих под внутренним давлением в широком интервале температур от 196 до 450 °С, и целого ряда других конструктивных элементов. По данным зарубежной печати, около 50 % используемого в авиакосмической промышленности титана приходится на сплав Ti-6A1-4V, аналогом которого являются отечественные сплавы типа ВТ6.

Такое широкое распространение этого сплава объясняется удачным его легированием. Алюминий в сплавах системы Ti-Al-V повышает прочностные и жаропрочные свойства, а ванадий относится к числу тех немногих легирующих элементов в титане, которые повышают не только прочностные свойства, но и пластичность.

Наряду с высокой удельной прочностью сплавы этого типа обладают меньшей чувствительностью к водороду по сравнению со сплавами ОТ4 и ОТ4-1, низкой склонностью к солевой коррозии и хорошей технологичностью.

Сплавы хорошо деформируются в горячем состоянии. Из сплавов типа ВТ6 получают прутки, трубы, профили, поковки, штамповки, плиты, листы. Они свариваются всеми традиционными видами сварки, в том числе и диффузионной. При сварке ЭЛС прочность сварного шва практически равна прочности основного материала, что выгодно отличает этот сплав от ВТ22. Сплавы типа ВТ6 применяют в отожженном и термически упрочненном состояниях. Отжиг листов, тонкостенных труб, профилей и деталей из них обычно проводят при 750-800 °С с последующим охлаждением на воздухе или вместе с печью. Отжиг прутков, поковок, штамповок и других крупногабаритных полуфабрикатов и деталей из них проводят при 750-800 "С. Охлаждение вместе с печью крупных полуфабрикатов предотвращает их коробление, а для мелких деталей позволяет избежать.частичной закалки. Однако в последнее время было доказано, что целесообразно повысить температуру отжига до 900-950 °С, что приведет к повышению вязкости разрушения и ударной вязкости при сохранении высоких пластических свойств из-за формирования смешанной структуры с большой долей пластинчатой составляющей. Двойной отжиг также позволяет повысить вязкость разрушения и сопротивление коррозионному

Сплав ВТ14

Сплав ВТ14 относится к высокопрочным термически упрочняемым титановым (α + β )-сплавам мартенситного типа системы Ti-A1-Мо-V. Этот сплав хорошо деформируется в горячем состоянии и из него получают прутки, трубы, профили, листы, плиты, поковки, штамповки. Листовую штамповку сплава в отожженном или закаленном состоянии с небольшими деформациями можно проводить в холодном состоянии, но основные операции штамповки удается успешно провести лишь при повышенных температурах.

Сплав удовлетворительно сваривается всеми видами сварки, применяемыми для титана. Для восстановления пластичности сварного соединения после сварки необходимо проводить отжиг. Сплав применяют в отожженном и термически упрочненном состояниях. Отжиг листов, прутков, поковок, штамповок и деталей из них осуществляют при температурах 740-810 °С. Термическое упрочнение состоит из закалки с температуры 870-910 °С и старения при 480- 560 °С в течение 8 - 16 ч. Сплав рекомендован для изготовления штампосварных конструкций, длительно работающих при температурах до 400 °С.

Сплав ВТ16

Сплав ВТ16 относится к высокопрочным (α + β )-сплавам той же системы Ti-A1-Мо-V, что и ВТ 14, но отличается от последнего меньшим содержанием алюминия и большим содержанием Р-стабилизаторов. В связи с этим сплав ВТ 16 по сравнению со сплавом ВТ 14 содержит больше β -фазы в отожженном состоянии (10 % - в ВТ14, 25-30 % - в ВТ16). Благодаря высокому содержанию β -фазы сплав ВТ 16 отличается высокой технологичностью. Он хорошо деформируется не только в горячем, но и в холодном состоянии, что обусловлено не только (α + β )-структурой, но и невысоким содержанием алюминия. Хотя,из сплава ВТ 16 можно изготавливать почти все виды полуфабрикатов, основная часть продукций из него - проволока и прутки диаметром от 4 до 20 мм, полученные прокаткой или волочением. Это связано с тем, что сплав ВТ 16 предназначен в основном для изготовления деталей крепления: болтов, винтов, заклепок и т.д. Состав этого сплава подбирался специально к условиям работы этих деталей.

К структуре прутков, предназначенных для изготовления деталей крепления, предъявляются довольно строгие требования: она должна быть мелкозернистая и однородная. Помимо этого, предъявляются повышенные требования к геометрическим размерам прутков и качеству их поверхности. Состав сплава ВТ 16 определяет также хорошую его свариваемость и высокую пластичность сварного соединения непосредственно после сварки. Сплав ВТ16 применяют в отожженном и термически упрочненном состояниях. Листы, тонкостенные трубы, профили и детали из них отжигают при температурах 680-790 °С, а прутки, толстостенные трубы и профили при 770-790 °С. Для термического упрочнения сплав закаливают с 780-830 °С и затем подвергают старению при 560-580 °С в течение 4-10 ч. Сплав в закаленном и состаренном состоянии с временным сопротивлением разрыву, 1200 МПа мало чувствителен к концентраторам напряжений: надрезу, перекосу и т.п. Сплав ВТ 16 может применяться для изготовления деталей крепления и других элементов самолетных конструкций длительной работы при температурах до 350 °С.

Сплав ВТЗ-1

Сплав ВТЗ-1 системы Ti-Al-Mo-Cr-Fe-Si относится к высокопрочным (α + β ) - сплавам мартенситного класса. Алюминий в сплаве ВТЗ-1 упрочняет а- и b-фазы и уменьшает плотность сплава. Эвтектоидообразующие β -стабилизаторы хром, железо и кремний упрочняют α - и β -фазы и повышают прочностные и жаропрочные свойства при умеренных температурах. Молибден не только увеличивает прочностные и жаропрочные свойства сплава, но и затрудняет эвтектоидный распад b-фазы, повышая термическую стабильность.

Сплав хорошо деформируется в горячем состоянии; из него получают катаные, прессованные и кованые прутки, катаные и прессованные профили, различные поковки и штамповки, полосы, плиты, раскатные кольца, в опытном порядке - трубы. Сплав удовлетворительно сваривается всеми видами сварки, применяемыми для титана. После сварки необходимо проводить отжиг для восстановления пластичности сварного соединения.

Изделия из сплава ВТЗ-1 обычно применяют после изотермического отжига, который состоит из нагрева при температурах 870- 920 °С и изотермической выдержки при 630-680 °С в течение 2-5 ч с последующим охлаждением на воздухе. После такого отжига сплав приобретает стабильную (а + b)-структуру, которая обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. После одинарного отжига при температурах 800-850 °С сплав имеет большую прочность, чем после изотермического, но меньшие пластичность и термическую стабильность. Прочностные свойства сплава можно несколько повысить закалкой при 840-900 °С с последующим старением при 500-620 °С в течение 1-4 ч. Однако упрочняющая термическая обработка применяется редко, так как приводит к снижению термической стабильности сплава.

Сплав ВТЗ-1 используется при изготовлении деталей двигателей, работающих длительное время (до 6000 ч и более) при температурах до 400 °С; деталей типа арматуры, ушковых болтов; деталей системы управления. В последнее время наметилась тенденция к замене сплава ВТЗ-1 сплавом ВТ6, по-видимому, в основном в связи с тем, что сплав Ti-6A1-4V успешно используется многие годы в зарубежной практике для изготовления самых ответственных конструкций. Дополнительным легированием удается повысить прочностные свойства сплава Ti-6A1-4V при сохранении удовлетворительной пластичности, мо механические свойства сварных соединений при этом значительно ухудшаются, так что при свариваемости, в частности, электронно-лучевой сваркой, сплавы типа ВТ6 не имеют себе равных, кроме, может быть, сплава ВТ20.

Сплав ВТ22

Сплав ВТ22 (α + β )-класса относится к сильнолегированным высокопрочным сплавам системы Ti-Al-Mo-V-Fe-Cr. По содержанию b-стабилизирующих элементов сплав 1ГГ22 близок ко второй критической концентрации (К* ~ 1,0). Структура и свойства сплава ВТ22 сильно зависят от колебания химического состава в пределах, установленных техническими условиями. В зависимости от содержания легирующих элементов его структура после закалки из β -области может быть представлена или одной β -фазой, или β -фазой и мартенситом. Таким образом, по структуре в закаленном состоянии - это сплав переходного класса.

Сплав обладает хорошей технологической пластичностью при горячей обработке давлением. Из него получают прутки, профили, трубы, поковки, штамповки, плиты. Сплав удовлетворительно сваривается сваркой плавлением, аргонодуговой сваркой, сваркой под флюсом, роликовой и точечной сваркой. После сварки необходимо проводить отжиг для повышения комплекса механических свойств сварного соединения.

Сплав ВТ22 применяют в отожженном и термически упрочненном состояниях. Структура отожженного сплава ВТ22 представлена примерно равными количествами а- и b-фаз, и поэтому он относится к самым прочным титановым сплавам в отожженном состоянии. Его прочностные свойства в отожженном состоянии такие же, как у сплавов ВТ6, ВТЗ-1, ВТ 14 после закалки и старения. Это открывает новые возможности использования титановых сплавов в крупногабаритных изделиях, когда упрочняющая термическая обработка затруднена. Из сплава ВТ22 могут быть изготовлены поковки и штамповки массой в несколько тонн.

Для обеспечения наилучшего сочетания прочностных и пластических характеристик сплав ВТ22 подвергают отжигу по довольно сложному режиму: нагрев при 820-850 °С в течение 1-3 ч, охлаждение с печью до 740-760 °С, выдержка 1-3 ч, далее охлаждение на воздухе и последующий нагрев до 500-650 °С в течение 2-4 ч. .Дополнительное упрочнение сплава ВТ22 может быть достигнуто закалкой с температур 720-780 °С и старением при 480-600 °С в течение 4-10 ч. Временные сопротивление разрыву закаленного сплава составляет 1000-1100 МПа при удлинении 10-15 %, а состаренного - 1300-1600 МПа при удлинении 5-10 %. Сплав предназначен для получения высоконагруженных деталей и конструкций, длительно работающих до температур 350-400 °С. Из него изготавливают силовые детали фюзеляжа, крыла, штамповки, детали системы управления, крепежные детали типа ушковых болтов.

Сплав ВТ9

Сплав ВТ9 обеспечивает более высокие прочностные и жаропрочные свойства по сравнению со сплавом ВТ6 за счет высокого содержания алюминия и легированием кремния. Предназначен для работы при 400 - 500 °С. Двойной отжиг обеспечивает оптимальное сочетание механических свойств; содержание β - фазы после отжига примерно 10%. Сплав термически упрочняется путем закалки и старения. Основными вида полуфабриката являются прутки, поковки, штамповки и плиты. Удовлетворительно деформируется в горячем состоянии. Технологические свойства при обработке давлением хуже, чем у сплава ВТ6. Сварка не рекомендуется. В основном применяется в деталях ГТД (дисках, лопатках) и других деталях компрессора.

Сплав ВТ8

Сплав ВТ8 обеспечивает более высокие прочностные и жаропрочные свойства по сравнению со сплавом ВТ6 за счет высокого содержания алюминия и легированием кремния. Максимальная рабочая температура 480 0С. Сплавы ВТ8-1 и ВТ8-1М превосходят сплавы ВТ3-1 и ВТ9 по термической стабильности, пластичности, технологичности и характеристикам трещиностойкости. Двойной и изотермический отжиги обеспечивают оптимальное сочетание свойств; содержание β - фазы в отожженном сплаве примерно 10%. Сплав термически упрочняется. Основными вида полуфабриката являются прутки, поковки, штамповки и плиты. Удовлетворительно деформируется в горячем состоянии. Технологические свойства при обработке давлением хуже, чем у сплава ВТ6. Сварка не рекомендуется. В основном применяется в деталях ГТД (дисках, лопатках компрессора низкого давления, деталях крепления вентилятора).

Сплав ВТ35

Сплав ВТ35 высоколегированный псевдо - β - сплав с β - фазой, легко сохраняющейся при охлаждении; сплав ВТ35Л сохраняет b фазу в процессе естественного охлаждения. Обладает большой прокаливаемостыо. В закаленном состоянии сплав обладает высокой пластичностью и способен к холодной деформации. Старение приводит к существенному упрочнению (σ b > 1200МПа; δ = 6%) при высокой вязкости разрушения. Применяется для изготовления листов, фольги, фасонных отливок. Удовлетворительно обрабатывается давлением в горячем состоянии; после закалки способен к холодной деформации. В основном используется в сотовых