Государство

Урок "область определения и область значений функции". Основные свойства функций

Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

При этом d(x 3) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f "(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f "(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

Определение. Пусть функция \(y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \(x_0 \). Дадим аргументу приращение \(\Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \(\Delta y \) (при переходе от точки \(x_0 \) к точке \(x_0 + \Delta x \)) и составим отношение \(\frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \(\Delta x \rightarrow 0 \), то указанный предел называют производной функции \(y=f(x) \) в точке \(x_0 \) и обозначают \(f"(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x_0) $$

Для обозначения производной часто используют символ y". Отметим, что y" = f(x) - это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x) .

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\(k = f"(a) \)

Поскольку \(k = tg(a) \), то верно равенство \(f"(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \(y = f(x) \) имеет производную в конкретной точке \(x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f"(x) $$
Это означает, что около точки х выполняется приближенное равенство \(\frac{\Delta y}{\Delta x} \approx f"(x) \), т.е. \(\Delta y \approx f"(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \(y = x^2 \) справедливо приближенное равенство \(\Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \(x \), найти \(f(x) \)
2. Дать аргументу \(x \) приращение \(\Delta x \), перейти в новую точку \(x+ \Delta x \), найти \(f(x+ \Delta x) \)
3. Найти приращение функции: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \(\frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f"(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \(\Delta y \approx f"(x) \cdot \Delta x \). Если в этом равенстве \(\Delta x \) устремить к нулю, то и \(\Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке .

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \(y=\sqrt{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \(f"(0) \)

Итак, мы познакомились с новым свойством функции - дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием . При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C - постоянное число и f=f(x), g=g(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования :

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ (Cf)"=Cf" $$ $$ \left(\frac{f}{g} \right) " = \frac{f"g-fg"}{g^2} $$ $$ \left(\frac{C}{g} \right) " = -\frac{Cg"}{g^2} $$ Производная сложной функции:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблица производных некоторых функций

$$ \left(\frac{1}{x} \right) " = -\frac{1}{x^2} $$ $$ (\sqrt{x}) " = \frac{1}{2\sqrt{x}} $$ $$ \left(x^a \right) " = a x^{a-1} $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac{1}{x} $$ $$ (\log_a x)" = \frac{1}{x\ln a} $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text{tg} x)" = \frac{1}{\cos^2 x} $$ $$ (\text{ctg} x)" = -\frac{1}{\sin^2 x} $$ $$ (\arcsin x)" = \frac{1}{\sqrt{1-x^2}} $$ $$ (\arccos x)" = \frac{-1}{\sqrt{1-x^2}} $$ $$ (\text{arctg} x)" = \frac{1}{1+x^2} $$ $$ (\text{arcctg} x)" = \frac{-1}{1+x^2} $$

Функция $f(x)=|x|$

$|x|$ - модуль. Он определяется следующим образом: Если действительное число будет неотрицательным, то значение модуля совпадает с самим числом. Если же отрицательно, то значение модуля совпадает с абсолютным значением данного числа.

Математически это можно записать следующим образом:

Пример 1

Функция $f(x)=[x]$

Функция $f\left(x\right)=[x]$ - функция целой части числа. Она находится округлением числа (если оно само не целое) «в меньшую сторону».

Пример: $=2.$

Пример 2

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. Очевидно, что эта функция принимает только целые значения, то есть $\ E\left(f\right)=Z$
  3. $f\left(-x\right)=[-x]$. Следовательно, эта функция будет общего вида.
  4. $(0,0)$ -- единственная точка пересечения с осями координат.
  5. $f"\left(x\right)=0$
  6. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$.

Рисунок 2.

Функция $f\left(x\right)=\{x\}$

Функция $f\left(x\right)=\{x\}$ -- функция дробной части числа. Она находится «отбрасыванием» целой части этого числа.

Пример 3

Исследуем и построим график функции

Функция $f(x)=sign(x)$

Функция $f\left(x\right)=sign(x)$ -- сигнум-функция. Эта функция показывает, какой знак имеет действительное число. Если число отрицательно, то функция имеет значение $-1$. Если число положительно, то функция равняется единице. При нулевом значении числа, значение функции также будет принимать нулевое значение.

Инструкция

Если вы хотите найти значение функции, используя формулу, подставьте в эту формулу вместо аргумента (х), его допустимые значения, то есть значения, входящие в ее область определения. Для этого допустимых значений данной функции.

Чтобы найти область определения функции, определите, вид она имеет. Если представлена вида у = а/в, то ее областью определения будут являться все значения в, за исключением нуля. Число а является любым . Для нахождения области определения функции подкоренного выражения при условии четного показателя, данное выражение должно быть нуля или равно ему. Находя область определения функции того же выражения, но с нечетным показателем, учитывайте, что х – может быть любым числом в том случае, если подкоренное выражение не дробное. Находя область определения логарифмической функции, руководствуйтесь правилом о том, что выражение, которое стоит под знаком логарифма, должно быть положительной величиной.

Отыскав область определения функции, переходите к ее решению. Например, чтобы функцию : у = 2,5 х – 10 при х = 100, подставьте в данную формулу вместо х число 100. Данная операция будет выглядеть следующим образом: у = 2,5 × 100 – 10; у = 240. Это число и будет искомым значением функции.

Чтобы найти значение функции, используя , отложите в координат на оси ОХ значение аргумента (отметьте точку, соответствующую аргументу). Затем из данной точки проведите перпендикуляр до пересечения его с графиком функции. Из полученной точки пересечения перпендикуляра с графиком функции опустите перпендикуляр на ось ОУ. Основание построенного перпендикуляра будет соответствовать искомому значению функции.

Видео по теме

Связанная статья

Источники:

  • как найти функцию от аргумента по таблице

Еще в школьные годы подробно изучаются функции и строятся их графики. Но, к сожалению, читать график функции и находить ее тип по представленному чертежу практически не учат. В действительности это довольно просто, если помнить основные виды функций.

Инструкция

Если представленным графиком является , которая через начало координат и с осью ОX угол α (который является углом наклона прямой к положительной полуоси), то функция, описывающая такую прямую, будет представлена как y = kx. При этом коэффициент пропорциональности k равен тангенсу угла α.

Если заданная прямая проходит через вторую и четвертую координатные четверти, то k равен 0, и функция возрастает. Пусть представленный график является прямой линией, располагающейся любым образом относительно осей координат. Тогда функцией такого графика будет линейная, которая представлена видом y = kx + b, где переменные y и х стоят в первой , а b и k могут принимать как отрицательные, так и положительные значения или .

Если прямая параллельна прямой с графиком y = kx и отсекает на оси ординат b единиц, тогда уравнение имеет вид x = const, если график параллелен оси абсцисс, то k = 0.

Кривая линия, которая состоит из двух ветвей, симметричных относительно начала координат и располагающихся в разных четвертях, гиперболой. Такой график показывает обратную зависимость переменной y от переменной x и описывается уравнением вида y = k/x, где k не должен быть равен нулю, так как является коэффициентом обратной пропорциональности. При этом, если значение k больше нуля, функция убывает; если же k меньше нуля – возрастает.

Если предложенным графиком является парабола, проходящая через начало координат, ее функция при выполнении условия, что b = с = 0, будет иметь вид y = ax2. Это самый простой случай квадратичной функции. График функции вида y = ax2 + bx + с будет иметь такой же вид, что и простейший случай, однако вершина (точка, где график пересекается с осью ординат) будет находиться не в начале координат. В квадратичной функции, представленной видом y = ax2 + bx + с, значения величин a, b и c – постоянные, при этом a не равно нулю.

Параболой также может являться график степенной функции, выраженной уравнением вида y = xⁿ, только если n является любым четным числом. Если же значение n - нечетное число, такой график степенной функции будет представлен кубической параболой. В случае, если переменная n является любым отрицательным числом, уравнение функции приобретает вид .

Видео по теме

Логарифмической называется функция, которая обратна показательной. Такая функция имеет вид: y = logax, в которой значение a – положительное число (не равное нулю). Внешний вид графика логарифмической функции зависит от значения a.

Вам понадобится

  • - математический справочник;
  • - линейка;
  • - простой карандаш;
  • - тетрадь;
  • - ручка.

Инструкция

Прежде чем приступить к построению графика логарифмической функции обратите внимание на то, что областью определения данной функции есть множество положительных : эта величина R+. Вместе с тем, у логарифмической функции есть область значения, которая представлена действительными .

Внимательно изучите условия . Если а>1, то на графике изображают возрастающую логарифмическую функцию. Доказать такую особенность логарифмической функции несложно. Для примера, возьмите два произвольных положительных значения x1 и x2, причем, x2>x1. Докажите, что loga x2>loga x1 (сделать это можно методом от ).

Предположите, что loga x2≤loga x1. Учитывая то, что показательная функция вида у=ах при а>1 возрастает, неравенство примет следующий вид: aloga x2≤aloga x1. По общеизвестному определению aloga x2=x2, в то как aloga x1=x1. Ввиду этого, неравенство приобретает вид: x2≤x1, а это напрямую противоречит первоначальным допущениям, в согласии с x2>x1. Таким образом, вы пришли к тому, что и требовалось доказать: при а>1 возрастает.

Изобразите график логарифмической функции. График функции y = logax будет проходить через точку (1;0). Если a>1, функция будет возрастающей. Следовательно, если 0

Обратите внимание

Если в задании логарифм будет обозначен lg x, не думайте, что авторы математического пособия допустили ошибку, пропустив букву «о»: перед вами десятичный логарифм.

Полезный совет

Для точности построения графика логарифмической функции рассчитайте, чем будет равен y при разных значениях x (0,5; 2; 4, 8). На основании этих данных поставьте точки и по ним постройте график.

Источники:

  • Определение и основные свойства логарифмической функции
  • график логарифмической функции

Термин решения функции как таковой в математике не используется. Под данной формулировкой следует понимать выполнение некоторых действий над заданной функцией с целью нахождения какой-то определенной характеристики, а также выяснение необходимых данных для построения графика функции.

Инструкция

Можно рассмотреть примерную схему, по которой целесообразно поведение функции и строить ее график.
Найдите область определения функции. Определите, является ли функция четной и нечетной. В случае нахождения нужного ответа, продолжите только на требуемой полуоси. Определите, является ли функция периодической. В случае положительного ответа продолжите исследование только на одном периоде. Найдите точки и определите ее поведение в окрестности этих точек.

Найдите точки пересечения графика функции с осями координат. Найдите , если они есть. Исследуйте с помощью первой производной функцию на экстремумы и интервалы монотонности. Также проведите исследование с помощью второй производной на выпуклость, вогнутость и точки перегиба. Выберите точки для уточнения функции и вычислите в них значения функции. Постройте график функции, учитывая полученные результаты по всем проведенным исследованиям.

На оси 0Х следует выделить характерные точки: точки разрыва, х=0 , нули функции, точки экстремума, точки перегиба. В этих х вычислите значения функции (если они существуют) и на плоскости 0xy отметьте соответствующие точки графика, а также точки, выбранные для уточнения. Линия, проведенная через все построенные точки с учетом интервалов монотонности, направлений выпуклости и , и даст эскиз графика функции.

Так, на конкретном примере функции y=((x^2)+1)/(x-1) проведите исследование с помощью первой производной. Перепишите функцию в виде y=x+1+2/(x-1). Первая производная будет y’=1-2/((x-1)^2).
Найдите критические точки первого рода: y’=0, (x-1)^2=2, в результате получатся две точки: x1=1-sqrt2, x2=1+sqrt2. Отметьте полученные значения на области определения функции (рис. 1).
Определите знак производной на каждом из интервалов. На основе от «+» к «-» и от «-» к «+», получите, что точка максимума функции x1=1-sqrt2, а точка минимума x2=1+sqrt2. Этот же вывод можно сделать и по знаку второй производной.

Совет 5: Как решить дифференциальное уравнение первого порядка

Дифференциальное уравнение первого порядка относится к простейшим дифференциальным уравнениям. Они наиболее легко поддаются исследованию и решению, а в конечном итоге их всегда можно проинтегрировать.

Инструкция

Решение дифференциального первого порядка рассмотрим на примере xy"=y. Вы видите, что оно содержит: х - независимую ; у - зависимую переменную, функцию; y" - первую производную функции.

Не пугайтесь, если в некоторых случаях первого порядка не будет «х» или (и) «у». Главное, чтобы в дифференциальном уравнении обязательно была y" (первая производная), и отсутствовали y"", y"""( высших порядков).

Теперь разделите переменные. Например, в левой части оставьте только переменные содержащие y, а в правой - переменные содержащие x. У вас должно получиться следующее: dyy=dxx.

Описание видеоурока

Функцией называется зависимость переменной игрек от переменной икс, при которой каждому значению переменной икс соответствует единственное значение переменной игрек.

Икс называется независимой переменной или аргументом. Игрек называется зависимой переменной, значением функции или просто функцией.

Если зависимость переменной игрек от переменной икс является функцией, то коротко записывают так: игрек равно эф от икс. Этим символом обозначают также значение функции, соответствующее значению аргумента икс.

Пусть функция задана формулой игрек равно три икс квадрат минус пять. Тогда можно записать, что эф от икс равно три икс квадрат минус пять. Найдем значения функции эф для значений икс, равных двум и минус пяти. Они будут равны семи и семидесяти.

Заметим, что в записи игрек равно эф от икс вместо эф можно употреблять и другие буквы: же, фи и так далее.

Все значения икс образуют область определения функции. Все значения, которые принимает игрек, образуют область значений функции.

Функция считается заданной, если указана её область определения и правило, согласно которому каждому значению икс поставлено в соответствие единственное значение игрек.

Если функция игрек равно эф от икс задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений переменной икс, при которых выражение эф от икс имеет смысл…

Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.

На рисунке изображен график функции игрек равно эф от икс, областью определения которой является отрезок от единицы до пяти. С помощью графика можно найти, например, что функция от числа один равна минус трем, функция от двух равна двум, функция от числа четыре равна минус двум, функция от числа пять равна минус четырем. Наименьшее значение функции равно минус четырем, а наибольшее - двум. При этом любое число от минус четырех до двух, включая эти числа, является значением данной функции. Таким образом, областью значений функции игрек равно эф от икс является отрезок от минус четырех до двух.

Ранее нами уже были изучены некоторые виды функций:

  • Линейная функция, задаваемая формулой игрек равно ка икс плюс бэ, где ка и бэ - некоторые числа;
  • Прямая пропорциональность - частный случай линейной функции, она задается формулой игрек равно ка икс, где ка не равно нулю;
  • Обратная пропорциональность - функция игрек равно ка деленное на икс, где ка не равно нулю.

Графиком функции игрек равно ка икс плюс бэ является прямая. Область определения этой функции - множество всех чисел. Областью значений этой функции при ка не равном нулю является множество всех чисел, а при ка равном нулю ее область значений состоит из одного числа бэ.

График функции игрек равно ка деленное на икс называется гиперболой.

На рисунке изображен график функции игрек равно ка деленное на икс, для ка большего нуля. Областью определения этой функции является множество всех чисел, кроме нуля. Это множество является и областью ее значений…

Функциями описываются многие реальные процессы и закономерности. Например, прямой пропорциональностью является зависимость массы тела от его объема при постоянной плотности; зависимость длины окружности от ее радиуса. Обратной пропорциональностью является зависимость силы тока на участке цепи от сопротивления проводника при постоянном напряжении; зависимость времени, которое затрачивает равномерно движущееся тело на прохождение заданного пути, от скорости движения.

Изучались также функции, заданные формулами игрек равно икс квадрат, игрек равно икс куб, игрек равно корень квадратный из икс.

Рассмотрим функцию, заданную формулой игрек равно модуль икс.

Так как выражение модуль икс имеет смысл при любом икс, то областью определения этой функции является множество всех чисел. По определению модуль икс равен икс, если икс больше либо равен нулю, и минус икс, если икс меньше нуля. Поэтому функцию игрек равно модуль икс можно задать следующей системой.

График рассматриваемой функции в промежутке от нуля до плюс бесконечности, включая ноль, совпадает с графиком функции игрек равно икс, а в промежутке от минус бесконечности до нуля - с графиком функции игрек равно минус икс. График функции игрек равно модуль икс состоит из двух лучей, которые исходят из начала координат и являются биссектрисами первого и второго координатных углов.