Инф. технологии

Астрономия кратко. История и основные этапы развития астрономии

Астрономия является одной из древнейших наук. Первые записи астрономических

наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако

известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что

разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после

того, как перед восходом Солнца на востоке появлялась самая яркая из звезд,

Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих

наблюдений египетские жрецы довольно точно определили продолжительность

тропического года.

В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были

настолько хорошо изучены, что китайские астрономы могли предсказывать

наступление солнечных и лунных затмений.

Астрономия, как и все другие науки, возникла из практических потребностей

человека. Кочевым племенам первобытного общества нужно было ориентироваться при

своих странствиях, и они научились это делать по Солнцу, Луне и звездам.

Первобытный земледелец должен был при полевых работах учитывать наступление

различных сезонов года, и он заметил, что смена времен года связана с полуденной

высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее

развитие человеческого общества вызвало потребность в измерении времени и в

летосчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые

велись в начале без всяких инструментов, были не очень точными, но вполне

удовлетворяли практические нужды того времени. Из таких наблюдений и возникла

паука о небесных телах - астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и

новые задачи, для решения которых нужны были более совершенные способы

наблюдений и более точные методы расчетов. Постепенно стали создаваться

простейшие астрономические инструменты и разрабатываться математические методы

обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для

объяснения видимых движений планет греческие астрономы, крупнейший из них

Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла

в основу геоцентрической системы мира Птолемея (II в. н.э.). Будучи

принципиально неверной, система Птолемея тем не менее позволяла предвычислять

приближенные положения планет на небе и потому удовлетворяла, до известной

степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии.

Развитие феодализма и распространение христианской религии повлекли за собой

значительный упадок естественных наук, и развитие астрономии в Европе

затормозилось на многие столетия. В эпоху мрачного средневековья астрономы

занимались лишь наблюдениями видимых движений планет и согласованием этих

наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов

Средней Азии и Кавказа, в трудах выдающихся астрономов того времени -

Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др.

В период возникновения и становления капитализма в Европе, который пришел на

смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно

быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.).

Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых

земель и снаряжал многочисленные экспедиции для их открытия. Но далекие

путешествия через океан требовали более точных и более простых методов

ориентировки и исчисления времени, чем те, которые могла обеспечить система

Птолемея. Развитие торговли и мореплавания настоятельно требовало

совершенствования астрономических знаний и, в частности, теории движения планет.

Развитие производительных сил и требования практики, с одной стороны, и

накопленный наблюдательный материал, - с другой, подготовили почву для революции

в астрономии, которую и произвел великий польский ученый Николай Коперник

(1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в

год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в

1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон

Новая астрономия получила возможность изучать не только видимые, но и

действительные движения небесных тел. Ее многочисленные и блестящие успехи в

этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше

время - расчетом орбит искусственных небесных тел.

Следующий, очень важный этап в развитии астрономии начался сравнительно

недавно, с середины XIX в., когда возник спектральный анализ и стала применяться

фотография в астрономии. Эти методы дали возможность астрономам начать изучение

физической природы небесных тел и значительно расширить границы исследуемого

пространства. Возникла астрофизика, получившая особенно большое развитие в XX в.

и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться

радиоастрономия, а в 1957 г. было положено начало качественно новым методам

исследований, основанным на использовании искусственных небесных тел, что в

дальнейшем привело к возникновению фактически нового раздела астрофизики -

рентгеновской астрономии (см. ; 160).

Значение этих достижений астрономии трудно переоценить. Запуск искусственных

спутников Земли. (1957 г., СССР), космических станций (1959 г., СССР), первые

полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г.,

США), - эпохальные события для всего человечества. За ними последовали доставка

на Землю лунного грунта, посадка спускаемых аппаратов на поверхности Венеры и

Марса, посылка автоматических межпланетных станций к более далеким планетам

Солнечной системы.

Об отдельных, наиболее важных достижениях современной астрономии рассказано в

соответствующих главах учебника.

Белорусский Государственный Педагогический Университет им. М. Танка

Кафедра методики преподавания физики

Методические разработки

для управляемой самостоятельной работы

по астрономии

История астрономии

Вопросы программы:

Астрономия как наука и учебный предмет.

Предмет астрономии, объекты изучения.

Разделы астрономии: астрометрия, небесная механика, астрофизика.

История возникновения и развития астрономических знаний.

Краткое содержание:

Астрономия как наука и учебный предмет.

Астрономия - это наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел и их систем.

Объекты изучения астрономии: звёзды, планеты, кометы, метеоры, туманности, галактики, материя, находящаяся в межзвёздном пространстве.

Изучение происходит в разных диапазонах электромагнитных волн, оптическом, ультрафиолетовом, рентгеновском, и т.д.

Астрономия имеет три основные задачи:

Изучение видимых и действительных положений и движения небесных тел в пространстве, определение их размеров и формы.

Изучение физического строения небесных тел, т.е. химического состава и физических условий на поверхности и в недрах небесных тел.

Исследование происхождения и развития, предсказание дальнейших судеб отдельных небесных тел и их систем.

Астрономия очень взаимосвязана с различными науками. Особенно с математикой, физикой, химией, философией, биологией.

Нынешний вид астрономия приобрела лишь в XIX-XXвеках. До этого она неразрывно включала в себя ряд других отраслей знания и была теснее связана с философией и теологией.

Множество объектов и методов астрономии приводит к многочисленности разделов и отдельных направлений в астрономии.

По характеру используемой информации выделяются три основных раздела: астрометрия, небесная механика, астрофизика.

Астрометрия - изучает положение небесных тел и вращение Земли, опираясь на теоретические и практические методы измерений углов на небе, для чего организуются позиционные наблюдения небесных светил.

Важнейшие цели астрометрии:

Установление систем небесных координат,

Получение параметров, характеризующих наиболее полно закономерности вращения Земли.

Небесная механика - изучает движение небесных тел под действием тяготения, разрабатывает методы определения их траекторий на основании наблюдаемых положений на небе, позволяет рассчитать таблицы их координат на дальнейшее время (эфемериды), изучает взаимное влияние тел на их движение, рассматривает движение и устойчивость систем небесных и искусственных тел.

Астрофизика - изучает происхождение (космогония), строение, хим. состав, физические свойства и эволюцию отдельных небесных тел и систем вплоть до всей Вселенной в целом (космология).

История возникновения и развития астрономических знаний.

Астрономия возникла очень давно. Ни одна наука на Земле, кроме, пожалуй. Математики, не обладает такой глубокой древностью.

Астрономия отлична от других наук, потому что физика, химия, биология в современном виде складывались на протяжении последних 300-т лет. Астрономия же формировалась в эпохи древние и сильно отличающиеся от нашей.

Причины возникновения и развития астрономии хорошо указаны в первых строках Библии: "И сказал Бог: да будут светила на тверди небесной, для отделения дня от ночи, и для знамений, и времён, и дней, и годов;" (Быт. 1,14)

Развитие астрономии было обязано человеческому желанию постичь закономерности окружающего мира, необходимостью измерения времени и ориентирования в пространстве. Последнее особенно важно было для мореходов. Вплоть до XIXвека на борту каждого корабля, отправлявшегося в далекий путь, находился астроном, в обязанности которого входило определение координат корабля среди открытого моря и ориентировка по звездам.

Развитие древней астрономии распадается на два этапа. Первый - примитивный сельскохозяйственный. Звёзды служили людям ориентиром для начала сельскохозяйственных работ. В Египте восход Сириуса означал начало разлива Нила. Когда Арктур восходил непосредственно перед Солнцем - нужно было собирать виноград, когда Орион и Плеяды заходили утром - нужно было начинать пахать. Эти приметы породили необходимость выделить основные созвездия и назвать ярчайшие звёзды, что бы иметь постоянные ориентиры.

Второй этап связан со сложными продолжительными наблюдениями и отысканием календарных периодов. Древнейший период существования человечества мало изучен наукой, так как не сохранились письменные памятники той поры. Более или менее определённо можно представить сегодня только духовный мир цивилизаций, начиная с египетской и вавилонской.

Наиболее древние астрономические знания ученые сегодня находят на берегах Тигра и Евфрата, у халдеев. Сколько лет народы, населявшие эти земли занимались астрономией, сказать очень трудно. Цицерон по этому поводу писал: "обратимся к авторитету самых древних и начнем с ассирийцев. Hаселяя стpану pовную и обшиpную, они могли наблюдать небо, со всех стоpон откpытое, внимательно следить за пеpедвижением и перемещением звезд. Hаблюдая все это, они заметили, что пpедзнаменуют те или иные изменения в положении небесных светил, и эти свои познания пеpедали позднейшим поколениям. Сpеди этого наpода халдеи, постоянно наблюдая за звездами, создали, как считают, целую науку, котоpая дает возможность пpедсказывать, что с кем случится и кто для какой судьбы pожден. Считают, что это искусство pазвивалось также у египтян с глубочайшей дpевности и в течение почти бесчисленных столетий." Далее он уточняет, что "...как они сами утвеpждают, четыpеста семьдесят тысяч лет сохpаняют в своих памятниках познанное ими."

Помимо Цицерона о древности наблюдений говорили и другие античные авторы. Так Гиппаpх указывал, будто халдеи наблюдали звездное небо за 270000 лет до того, когда Александp Великий вступил в Пеpсию. Плиний же говоpит о 720 000 годах.

Современные историки не соглашаются с этими цифрами, но факты свидетельствуют, что для вычисления пеpиодов солнечных затмений, халдеям понадобилось, по меньшей меpе, 5 000 лет. Жрецы вывели из наблюдений пеpиод солнечных затмений в 1805 лет или 22325 обоpотов Луны, по истечении котоpого затмения повтоpяются в пpежнем поpядке. Упоминаемое специально в надписях затмение, котоpое было выбpано исходным пунктом одного из таких циклов, относится к году, удаленному от 1900 года н.э. на 13442 года, и, как допускают, год этот соответствует совпадению солнечного затмения с восхождением Сиpиуса.

Известен был вавилонянам и более короткий период в 223 оборота Луны, т.е. в 18 лет и 11 дней - сарос, по прошествии которого затмения Луны и Солнца повторяются в прежнем порядке.

О высоком развитии науки в Месопотамии свидетельствует то, что халдейские астpономы знали точное значение продолжительности года, описали солнечные пятна, увеличение и уменьшение света планет, пpоводили наблюдения над кометами и устpаивали небесные глобусы. Скорее всего они изобpели знаки зодиака. Ибо тождественность фоpм и аналогия символов, пpоявляющиеся во всех зодиаках дpугих стpан - в зодиаках, созданных в Египте, в Индии, в Камбодже и Китае, - доказывают, что астpономические наблюдения, пpоизводившиеся халдейскими астpономами, легли в основу всех зодиаков дpевнего миpа. Кpуг зодиака был создан халдеями не менее как 4000 лет назад, в то же вpемя подобная pабота пpедполагает, что ей пpедшествовали пpодолжительные пеpиоды подготовки научной почвы. На двенадцать частей зодиак был разделен, по крайней мере, в VIвеке до н.э.

Помимо халдейской школы, древней и сильной была египетская. Все зодиакальные памятники в Египте были, главным образом, астрономические. Царские гробницы и погребальные ритуалы представляют собою множество таблиц созвездий и их влияния на все часы каждого месяца.

Самые древние астрономические записи в Египте, Вавилоне, Китае датируются примерно XXXвеком до н.э.

Древнейшее из сохранившихся сообщений о солнечном затмении в Китае датируется 2697 г. до н.э.

У истоков греческой математической теории стояли Пифагор и его школа (VIст. до н.э.). По их представлениям в основе устройства Космоса находится математический закон. Его можно определить, изучая движение светил на небе.

Пифагорейцы построили первую известную науке физическую модель Солнечной системы, предположив, что все планеты, Земля, Солнце и Луна вращаются вокруг центрального огня. Они разработали учение о шарообразности Земли, вывели наклон эклиптики и планетных орбит, правильно объясняли затмения.

Пифагор первый назвал вселенную космосом, т.е. упорядоченным строем, складом, считал, что мир состоит из планетных сфер, разделённых между собой гармоничными промежутками.

Предметом философии Пифагора был мир, как закономерное, стройное целое, подчинённое законам гармонии числа.

Поздние пифагорейцы объясняли смену дня и ночи суточным вращением Земли.

Греческий мудрец Фалес (624 - 547 гг. до н.э.) предсказал полное солнечное затмение, наблюдавшееся в 585 г. в Малой Азии. Причиной солнечных затмений считал Луну, которую рассматривал как тёмное тело, заимствующее свет от Солнца. Открыл наклон эклиптики к экватору, определил угловую величину Луны, учил о шарообразности Земли.

Анаксимандр (ок.610 - 546 гг. до н.э.) соорудил первые в Греции солнечные часы и астрономические инструменты, впервые применил гномон для определения наклона эклиптики к экватору. Положил начало теории небесных сфер.

Большое влияние на греческую астрономию имел Платон. Его идеалистические представления о Вселенной, движения объектов которой должны происходить только по идеальным окружностям, долго мешало развитию реальных представлений об устройстве мироздания. Благодаря этому греческие астрономы так никогда и не создали реальной картины строения Вселенной, а использовали свои теории лишь как средство для описания наблюдаемых движений небесных светил.

Евдокс Книдский (ок. 408 - ок. 355 до н.э.) составил древнейшую карту звёздного неба, на которой созвездия представлены фигурами различных животных. Одним из первых привёл названия зодиакальных созвездий и созвездий, расположенных вне пояса зодиака. Он первый развил теорию гомоцентрических сфер. Его модель представляла Вселенную в виде вложенных одна в одну концентрических сфер, по которым двигались светила. Эта теория требовала по 4 гомоцентрические сферы для каждой планеты и по три для Солнца и Луны.

Аристотель (384 - 322 гг. до н. э.) написал значительные труды по астрономии: «О небе» и «Метеорология». Он считал, что Земля шарообразна, находится в центре мира. Сама же Вселенная устроена по принципу луковицы, состоящей из 55 сфер, окружающих Землю. Эта модель не могла полностью описать реальное движение планет. Труды Аристотеля носили скорей философский характер и легли в основу позднейшего схоластического мировоззрения.

Гераклид (388 - 315 гг. до н.э.) учил, что Земля вращается вокруг своей оси, Меркурий и Венера вращаются вокруг Солнца, которое вращается вокруг Земли, считал, что звёзды имеют шарообразную форму.

Аристарх Самосский (ок. 310 - 230 гг. до н. э.) выдвинул гелиоцентрическую гипотезу, согласно которой в центре Вселенной находилось Солнце, но эта модель не оказала существенного влияния на его современников. Значительным вкладом в науку явилось определение Аристархом расстояния от Солнца до Земли по наблюдательным данным.

Эратосфен (ок. 276 - 194 гг. до н.э.) определил размеры Земли с помощью простого гномона, проведя измерение высоты Солнца в Сиене и в Александрии, лежащих на одном меридиане, в момент летнего солнцестояния, и, оценив расстояние между городами допустил, что длина окружности Земли равна 250 000 стадиев (1 стадий ~ 185 м.). Рассчитал расстояние от Земли до Солнца и Луны. Нашёл точный наклон эклиптики. Составил каталог 675 неподвижных звёзд.

Большой вклад в античную астрономию внёс Гиппарх (IIвек до н.э.). Он проводил многочисленные и длительные наблюдения, которые позволили ему разработать теории движения Солнца и Луны, более успешные, чем прежние. Гиппарху удалось успешно решить задачу предсказании солнечных и лунных затмений. В отличие от прежних теорий, Земля находилась не в центре круга, а некоторой другой точке, эксцентричной по отношению к геометрическому центру. Движение по эксцентру было введено для описания различных неравенств в движении Солнца и Луны.

Гиппарх составил первый каталог звёздного неба, включавший около 850 звёзд. Сравнив личные наблюдения, с наблюдениями своих предшественников Аристилла и Тимохариса, он открыл прецессию, постепенное смещение положения экватора относительно эклиптики. Вследствие этого, точка весеннего равноденствия перемещается к западу относительно звёзд. Это явление приводит также к изменению положений полюсов мира, т.е. центров, вокруг которых вращаются в суточном движении звёзды.

Клавдий Птолемей (ок. 87 - 165 гг.) явился систематизатором всей предшествующей ему астрономии. Его труд «Великое математическое построение астрономии в XIIIкнигах» явился основой для всей последующей астрономии на Востоке и Западе в течение многих последующих столетий. Он применил теорию эпициклов для описания Вселенной. Геоцентрическая модель мира, не могла дать правильного простого описания движения светил. Птолемею удалось представить видимые движения небесных тел с помощью комбинаций идеальных круговых движений по деферентам и эпициклам. В центре круга - деферента находилась Земля. Планета двигалась не по самому деференту, а по другому кругу - эпициклу, центр которого двигался по деференту.

Комбинируя количество эпициклов, Птолемею удалось построить модель, достаточно точно описывающую реальное положение светил на небе. В лучшем варианте эта модель насчитывала до 35 эпициклов и продержалась как практическое руководство вплоть до открытий Исаака Ньютона.

Птолемей разработал теории для Солнца, Луны и каждой из планет, сконструировал несколько угломерных астрономических инструментов, создал каталог положений 1022 звёзд. Труды Птолемея явились венцом греческой астрономии и равным им не было много последующих столетий.

С падением Западной Римской империи наука пришла в упадок.

Дальнейшее развитие астрономии началось примерно с VIIстолетия в исламском мире. Арабы сделали переводы основных греческих научных трудов и, хотя не изменяли основы греческой науки, внесли важный вклад в пределах общей структуры. На протяжениеIX-XIвеков были достигнуты успехи в определении размеров Земли, изучении движения Луны, Солнца и планет, составлении звёздных каталогов, улучшении календаря благодаря трудам астрономов аль-Бируни, аль-Баттани, абу-ль-Вефа, ибн-Юнуа, ас-Суфи, Омара Хайяма.

Через Испанию многие сочинения арабских учёных проникали в Европу.

В 1252 году при дворе кастильского короля Альфонсо Мудрого были составлены «Альфонсовы таблицы» - эфемериды движения планет.

Возрождение собственно европейской астрономии началось с XVвека.

В это время была издана «Новая теория планет» Г. Пурбаха, в которой впервые в Западной Европе была изложена теория эпициклов Птолемея. Ученик Г. Пурбаха Региомонтан издал «Эфемериды», где были вычислены положения Солнца, Луны и планет на 1475 - 1506 гг. Эти таблицы были последними, вычисленными по теории Птолемея.

Научная революция в астрономии началась после создания Николаем Коперником гелиоцентрической системы мира. В 1543 году был издан его основной труд «Об обращениях небесных сфер». По новой модели в центр мира ставилось Солнце, земля же с остальными планетами вращалась вокруг него. С помощью новой теории легко объяснялось попятное движение планет, считавшееся ранее загадочным. Однако, многие вопросы ещё не были решены из-за того, что Коперник не отказался от идеального движения небесных тел. В его модели светила продолжали двигаться по окружностям и равномерно. Это затрудняло правильное вычисление реального положения планет.

Теория Коперника положила начало важному переходу от инструментализма древнегреческой мысли к возможностям реального описания устройства физического мира.

Новая модель была принята не сразу. Споры о истинности теории Коперника велись ещё два столетия.

В 1551 немецкий астроном Эразм Рейнгольд издал «Прусские таблицы», где вычислил положения планет по новой модели.

С 1576 по 1597 гг. датский астроном Тихо Браге в построенной им обсерватории «Ураниборг» выполнил очень точные наблюдения положений звёзд, комет, планет, Луны и Солнца. Полученные данные свидетельствовали о несостоятельности старой птолемеево-аристотелевой модели мира. Однако, Тихо Браге не принял и систему Коперника. Он создал свою модель, согласно которой в центре мира находилась Земля; Луна и Солнце вращались вокруг Земли, а все планеты вокруг Солнца.

После смерти Тихо Браге все наблюдения достались его ученику Иоганну Кеплеру (1571 - 1630). Кеплер был пифагорейцем и сторонником системы мира Коперника. Он начал искать математические принципы гармонии, которую Бог заложил в основе мироздания. Многолетние исследования привели к открытию простых соотношений, которые описывают движения планет и были обнародованы в 1609 году. Работы Кеплера окончательно показали, что платоновские идеалы равномерного движения по окружностям природе несвойственны.

Настоящий переворот в астрономии был вызван использованием Галилео Галилеем телескопов для наблюдения небесных объектов.

В 1610 году Галилей сделал четыре фундаментальных открытия, противоречивших аристотелевским принципам мироздания.

Он увидел, что на Луне есть кратеры и горы, что Венера имеет фазы, подобно Луне, что вокруг Юпитера вращаются четыре спутника и Млечный Путь состоит из слабых звёзд.

Таким образом, астрономические открытия подготовили почву для полной смены древнего мировоззрения и принципиально новым подходам в науке. Эту работу довершил Исаак Ньютон.

Открытые им законы были проверены практически Эдмундом Галлеем, предсказавшим возвращение кометы. наблюдавшейся в 1531, 1607 и 1682 годах. Вычисленный период этой кометы составил 75 лет. Комета вернулась в 1758, подтвердив теорию тяготения И.Ньютона и была названа кометой Галлея.

Ян Гевелий(1611 - 1687) в 1641 году построил обсерваторию в Гданьске, которая была в то время крупнейшей в Европе. Составил первые точные детальные карты Луны. В 1647 году вышла его "Селенография", где ученый ввел многие названия деталей лунной поверхности, которые остались до наших дней. Открыл фазы Меркурия, четыре кометы, выполнил первое точное измерение периода вращения Солнца, составил каталог 1564 звёзд, выделил 11 новых созвездий. Некоторым дал названия, сохранившиеся до наших дней: Гончие Псы, Жираф, Ящерица, Малый Лев, Секстант, Единорог, Лисичка, Щит Яна Собесского. В 1690 году издал атлас "Описание всего звёздного неба".

В XVIIIстолетии были разработаны основные методы небесной механики, благодаря трудам семьи Бернулли, Л.Эйлера, Л.Лагранжа, П.Лапласа. В этом же столетии наметился ощутимый прогресс в наблюдательных методах астрономии. Появление крупных телескопов-рефлекторов способствовало более детальному изучению Вселенной. Наблюдения Вильяма Гершеля прояснили структуру нашей Галактики и позволили выявить множество туманностей и звездных скоплений. Особый интерес вызвали так называемые "спиральные" туманности. Некоторые астрономы считали их звездными системами, подобными Млечному Пути, другие оспаривали это мнение, и считали их частями Млечного Пути, состоящими из метеорной и пылевой материи.

Середина XIXвека была ознаменована открытием планеты Нептун "на кончике пера", т.е. методами небесной механики. Это было очень убедительное подтверждение теории И.Ньютона. Во второй половинеXIXвека было обнаружено движение перигелия орбиты Меркурия, которое не могло получить объяснения в рамках теории гравитации Ньютона. Размышления над этим явлением способствовали возникновению общей теории относительности, созданной Альбертом Эйнштейном в началеXXвека.

В 1912 году В. Слайфер начал в Ловелловской обсерватории (США) обширную программу, нацеленную на измерение скоростей туманностей, используя доплеровское смещение спектральных линий. К 1925 году он изучил около 40 туманностей. Большинство из них оказались очень удаленными от Земли. Однако, не было надежного метода для определения расстояний, так как параллактический метод, разработанный в середине XIXвека Гудрайком, Бесселем и Струве, работал только в ближайших окрестностях Солнечной системы.

Какую-то помощь мог оказать метод определения расстояний с помощью цефеид, открытый в 1908 году в Гарварде Генриэттой Левитт. Исследовательница обнаружила, что цефеиды имеют четкую зависимость, связывающую их светимость и период изменения блеска. По измеренной видимой звездной величине и периоду изменения блеска можно найти расстояние до такой звезды. Этот метод заработал на полную силу после того, как в 1923 году американский астроном Эдвин Хаббл различил в туманности Андромеды отдельные звезды и идентифицировал среди них цефеиду. Метод Левитт показал, что расстояние до звезды. А значит и до самой галактики около 900 тыс. световых лет. Это оказалось больше, чем размеры Млечного Пути. Таким образом было обнаружено, что спиральные туманности являются не объектами нашей Галактики, а такими же звездными системами, удаленными от нас на большие расстояния.

Дальнейшие исследования Хаббла позволили исследовать движение галактик и открыли расширение Вселенной.

Работы А.Фридмана, В.де Ситтера и Д.Леметра, основанные на теории относительности, легли в основу построения модели расширяющейся Вселенной.

Начало расширения было описано Георгием Гамовым, бывшим студентом Фридмана, который предположил, что Вселенная вышла из состояния с чрезвычайно высокой температурой и плотностью, в результате Большого Взрыва.

Студенты Гамова Р.Алфер и Р.Герман в 1948 году высказали мысль, что излучение, оставшееся после Большого Взрыва, должно было к настоящему моменту остыть до температуры всего на несколько градусов более высокой. Чем абсолютный ноль. В 1965 году это излучение было обнаружено А. Пензиасом и Р.Вилсоном и названо реликтовым излучением. Его температура всего около 3 К.

Вместе с развитием взглядов на строение Вселенной в целом, эволюционировало и представление о происхождении отдельных ее элементов.

Высказанная в XVIIIстолетии небулярная гипотеза, предполагала, что звезды и планеты образовались из газопылевой туманности. ВXIXстолетии Гельмгольцем и Кельвином было установлено, что энергия, освобождающаяся в результате гравитационного сжатия, может создать высокую температуру в недрах звезды, но ее хватит только на 20 млн. лет. Радиометрический метод оценки возраста Земли, разработанный Э. Резерфордом в 1905 году, показывал, что нашей планете около нескольких миллиардов лет. Ученые были озадачены таким несоответствием.

В 1925 Цецилия Пейн, анализируя спектры звезд, пришла к выводу, что водород и гелий - самые распространенные элементы в звездах. Это было подтверждено спустя четыре года Генри Расселом. Вернер Гейзенберг в 1932 году высказал мысль, что все элементы во Вселенной могли быть образованы из водорода, так как водородное ядро состоит только из одного протона, который может превратиться в нейтрон, присоединив электрон. В 1938 году Ганс Бет предложил первую удовлетворительную теорию, описывающую источник образования энергии звезд. Он показал, что тяжелые элементы синтезируются в недрах звезд в результате ядерных реакций из водорода. Эти реакции могут служить источником энергии для звезды на протяжении миллиардов лет.

Развитие телескопостроения, всеволновых приемников излучения и космической техники в XXстолетии привело к настоящей революции в астрономии.

Контрольные вопросы:

    Что такое астрономия?

    Что изучает астрономия?

    Какие основные разделы астрономии?

    В чем принципиальная и методологическая разница основных разделов астрономии?

    Когда зародилась астрономия?

    В каких странах развитие астрономии было наиболее успешным?

    Кто написал «Альмагест»?

    Кто является творцом гелиоцентрической картины мира?

    Кто впервые применил телескоп для астрономических наблюдений?

    Какой ученый построил в 15 веке самую большую обсерваторию в Европе?

    Кто открыл законы движения планет?

    Кто построил теорию движения комет и предсказал возвращение одной из комет?

    Кто составил первые точные карты Луны?

    Какие ученые внесли в 18 веке выдающийся вклад в развитие небесной механики?

    Что послужило революционному прорыву в астрономии 19 века?

    Какие труды Э.Хаббла привели к новому взгляду на строение Вселенной?

    Кто явился творцом модели Большого взрыва?

Литература:

1. Кононович Э.В., Мороз В.И. Курс общей астрономии. М., Эдиториал УРСС, 2004.

2. Лакур П., Аппель Я. Историческая физика. тт.1-2 Одесса Mathesis 1907.

3. Литров И. Тайны неба. М. 1902

4. Паннекук А. История астрономии. М. 1951

5. Фламмарион К. История неба. М. 1994 (переиздание СПб. 1875)

6. Шимбалев А.А, Галузо И.В., Голубев В.А. Хрестоматия по астрономии. Минск, Аверсэв. 2005.

Разделы астрономии

Задачи астрономии

Предмет и задачи астрономии, классификация разделов астрономии.

Астрономия - наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел и их систем.

Слово «астрономия» происходит от двух греческих: «астрон» - звезда и «номос» - закон.

Астрономия решает следующие задачи:

1. Установление систем небесных координат и систем измерения времени;

2.Изучение видимых и действительных положений небесных тел в пространстве;

3. Определение их размеров и форм;

4.Определение координат точек земной поверхности или других небесных тел;

5. Изучение физического строения небесных тел, исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел;

6. Решение проблем происхождения и развития небесных тел, их систем, а также Вселенной.

В соответствии с решаемыми задачами современная астрономия подразделяется на следующие основные разделы:

1. Астрометрия - наука об измерении пространства и времени, она подразделяется на:

а) сферическую астрономию (разрабатывает математические методы определения видимых положений и движений небесных тел с помощью различных систем координат и систем измерения времени);

б) фундаментальную астрометрию (определение координат небесных тел, составление каталогов звёздных положений и определением значений астрономических постоянных);

в) практическую астрономию (рассматривает методы определения географических координат, азимутов направлений, точного времени и теорию применяемых инструментов).

2. Теоретическая астрономия (разрабатывает методы определения орбит);

3. Небесная механика (изучает законы движения небесных тел);

4. Астрофизика -изучает строение, физические свойства и химический состава небесных тел;

5. Звёздная астрономия – изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи;

6. Космогония – изучает вопросы происхождения и развития небесных тел, в том числе и Земли.

7. Космология - рассматривает общие закономерности строения и развития Вселенной.

Астрономия- древнейшая из наук. Археологами установлено, что человек владел начальными астрономическими знаниями уже 20 тыс. лет назад в эпоху каменного века.

Развитие астрономии происходило по мере накопления данных наблюдений, их систематизации.

Астрономия особенно бурно развивалась в те эпохи, когда в обществе возникала острая практическая потребность в её результатах (предсказание наступление сезонов года, времяисчисление, ориентировка на суше и море и т.п.



Доисторический этап ¾ »от 25 тыс.лет до н.э.- до 4 тыс. до н.э.(наскальные рисунки, природные обсерватории и т.д.).

¾ около 4.тыс. лет до н.э. астрономические памятники древних майя, каменная обсерватория Стоунхендж (Англия);

¾ около 3000 лет до н.э. ориентировка пирамид, первые астрономические записи в Египте (рис. 1.1), Вавилоне, Китае;

¾ около 2500лет до н.э. установление египетского солнечного календаря;

¾ около 2000 лет до н.э. создание 1-ой карты неба (Китай);

¾ около 1100 лет до н.э. определение наклона эклиптики к экватору;

Античный этап ¾ идеи о шарообразности Земли (Пифагор, 535 г. до н.э.);

¾ предсказание Фалесом Милетским солнечного затмения (585 г. до н.э.).

¾ установление 19-летнего цикла лунных фаз (цикл Метона, 433 г. до н.э);

¾ идеи о вращении Земли вокруг оси (Гераклит Понтийский, 4 век до н.э);

¾ идея концентрических кругов (Евдокс), трактат «О Небе» Аристотель (доказательство шарообразности Земли и планет) составление первого каталога звёзд 800 звёзд, Китай (4 век до н.э.);

¾ начало систематических определений положений звёзд греческими астрономами, развитие теории системы мира (3 век до н.э.) (рис.1.2);

¾ идея о движении Земли вокруг Солнца и определение размеров Земли (Аристарх Самосский, Эратосфен 3-2 в. до н.э.);

¾ открытие прецессии, первые таблицы движения Солнца и Луны, звездный каталог 850 звезд (Гиппарах, (2 Век до н.э);

¾ введение в римской империи Юлианского календаря (46 г. до н.э);

¾ Клавдий Птолемей – «Синтаксис»(Альмогест)-энциклопедия античной астрономии, теория движения, планетные таблицы (140 г. н.э).

Арабский период. После падения античных государств в Европе античные научные традиции (в том числе и астрономии) продолжили развитие в арабском халифате, а также в Индии и Китае:

¾ 813г. Основание в Багдаде астрономической школы (дом мудрости);

¾ 827г. определение размеров земного шара по градусным измерениям между Тигром и Евфратом;

¾ 829г. основание Багдадской обсерватории;

¾Х в. открытие лунного неравенства (Абу-ль-Вафа, Багдад);

¾ каталог 1029 звёзд, уточнение наклона эклиптики к экватору, определение длинны 1° меридиана (1031г, Ал-Бируни);

¾ многочисленные работы по астрономии до конца 15 века (календарь Омара Хайяма, «Ильханские таблицы» движения Солнца и планет(Насирэддин Тусси, Азербайджан), работы Улугбека).

Европейское возрождение. В конце 15 века начинается возрождение астрономических знания в Европе, которое привело к первой революции в астрономии. Эта революция в астрономии была вызвана требованиями практики – начиналась эпоха великих географических открытий. Дальние плавания требовали точных методов определения координат. Система Птолемея не могла обеспечить возросших потребностей. Страны, которые первыми обратили внимание на развитие астрономических исследований, добивались наибольших успехов в открытии и освоении новых земель. Так в Португалии, еще в 14 веке принц Генрих основал обсерваторию для обеспечения потребностей мореплавания, и хотя он не принимал участия в плаваниях, в истории он известен под именем Генрих- Мореплаватель, а Португалия первая из Европейских стран начала захват и эксплуатацию новых территорий.

Важнейшие достижения европейской астрономии XV ¾ XVI веков это планетные таблицы (Региомонтан из Нюрнберга, 1474г.), работы Н.Коперника, которые произвели первую революцию в Астрономии (1515-1540 гг.), а также наблюдения датского астронома Тихо Браге в обсерватории Ураниборг на острове Вэн (самые точные в дотелескопическую эпоху). В 1609- 1618 гг. Кеплер на основе этих наблюдений планеты Марс открыл три закона движения планет, а в 1687г. Ньютон опубликовал закон всемирного тяготения , объясняющий причины движения планет.

В начале 17 века (Липперсгей, Галилей, 1608 г) был создан оптический телескоп, многократно раздвинувший горизонт познания человечества о мире. Соединение достижений теории и практики позволило в свою очередь сделать ряд замечательных открытий: определяется параллакс Солнца (1671), что позволило с высокой точностью определить астрономическую единицу и определить скорость света, открываются тонкие движения оси Земли, собственные движения звёзд, законы движения Луны, создаётся небесная механика, определяются массы планет.

В начале ХIХ века (1.01.1801г.) Пиацци открывает первую малую планету (астероид) Цереру, а затем в 1802 и в 1804 годах были открыты Паллада и Юнона.

В 1806 ¾ 1817 гг И.Фраунтгофер (Германия) создаёт основы спектрального анализа, измеряет длинны волн солнечного спектра и линий поглощения, заложив таким образом основы астрофизики.

В 1845 г. И.Физо и Ж.Фуко (Франция) получили первые фотографии Солнца. В 1845 ¾ 1850 гг лорд Росс (Ирландия) открыл спиральную структуру некоторых туманностей, а в 1846 г. И.Галле (Германия) по вычислениям У.Леверье (Франция) открыл планету Нептун, что явилось триумфом небесной механики. Развитие науки в ХIХ-ом веке (прежде всего физики и химии), появление новых технологий дал толчок к развитию астрофизики. Внедрение в астрономию фотографии позволило получить фотоснимки солнечной короны и поверхности Луны, начать исследования спектров звёзд, туманностей, планет. Прогресс в оптике и телескопостроении позволил открыть спутники Марса, описать поверхность Марса по наблюдениям его в противостоянии (Д. Скиапарелли), а повышение точности астрометрических наблюдений позволило измерить годичный параллакс звёзд (Струве, Бессель, 1838г) открыть движение земных полюсов.

Астрономия ХХ века. В начале ХХ века К.Э.Циолковский издаёт первое научное сочинение по космонавтике ¾ «Исследование мировых пространств реактивными приборами».

В 1905 г. А.Эйнштейн создаёт специальную теорию относительности , а в 1907 ¾ 1916 годах общую теорию относительности , что позволило объяснить имеющиеся противоречия между существовавшей физической теорией и практикой, дало импульс для разгадки тайны энергии звёзд, стимулировало развитие космологических теорий («нестационарная вселенная» А.А.Фридман, РСФСР). В 1923 г Э.Хаббл доказал существование других звёздных систем ¾ галактик , а в 1929 г. он же открыл закон «красного смещения» в спектрах галактик.

Дальнейшее развитие астрономии в ХХ веке шло как по пути увеличения мощности оптических телескопов (в 1918 г. установлен 2,5 – метровый рефлектор в обсерватории Маунт-Вилсон, а в 1947 г.там же вступил в строй 5-и метровый рефлектор) так и по освоению других участков спектра электромагнитных волн.

Радиоастрономия возникла в 30-х годах 20-го века вместе с появлением первых радиотелескопов. В 1933 Карл Янский из Bell Labs обнаружил радиоволны, идущие из центра галактики. Вдохновившись его работами Гроут Ребер в 1937 году сконструировал первый параболический радиотелескоп.

В 1948 г. запуски ракет в высокие слои атмосферы (США) позволили обнаружить рентгеновское излучение солнечной короны. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Астрофизика стала ведущим разделом астрономии, она получила особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни.

В 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению новых разделов астрофизики. В 1957 в СССР запущен первый искусственный спутник Земли, что ознаменовало начало космической эры для человечества. Космические аппараты позволили выводить за пределы земной атмосферы инфракрасные, рентгеновские и гамма-телескопы). Первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США), - эпохальные события для всего человечества. За ними последовали доставка на Землю лунного грунта (Луна-16, СССР, 1970 г.), посадка спускаемых аппаратов на поверхности Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.

Освоение астрономией широкого спектра электромагнитных волн позволило человечеству многократно увеличить свои знания о Вселенной. В тоже время новые возможности поставили перед наукой новые задачи - темная материя, тёмная энергия ждут рационального объяснения.

Более подробно о наиболее важных достижениях современной астрономии рассказано в соответствующих разделах курса лекций.

Согласитесь, сегодня человек, в какой бы самой отдаленной области науки или народного хозяйства он ни работал, должен иметь представления, хотя бы общее, о нашей Солнечной системе, звездах и современных достижениях астрономии.

Человечеству еще не ясны те условия, которые привели к формированию разнообразных природных комплексов, в том числе благоприятствовавших зарождению и развитию жизни на Земле. На большинство этих вопросов отвечает наука астрономия. В этом докладе речь пойдет о зарождении этой древней науки, ее практической значимости.

Я выбрал эту тему потому, что загадочный мир образования звезд и планет с давних времен притягивал к себе внимание людей. Эта тема была актуальна на протяжении тысячелетий и лишь в последние 10 лет были получены достоверные сведения о наличии планет и планетных систем и у других звезд. Познание планет и планетных систем приведет человечество и к решению другой глобальной проблемы - существование жизни на планетах, а это предстоит решить человечеству только в третьем тысячелетии.

Задачами работы являются: изучить историю возникновения астрономии, проследить этапы ее становления; познакомиться с первыми учеными-астрономами; узнать и описать первые древнейшие обсерватории, составить сравнительную таблицу длины звездного дня.

В этом году мы в школе впервые стали изучать историю нашей земли, планет и звезд. Этот предмет очень заинтересовал меня, и поэтому я обратился к этой теме.

При написании работы использован материал энциклопедий, астрономических сайтов Интернета, астрономических словарей, периодической печати.

Структура работы: в первой части рассматриваются вопросы зарождения астрономии и ее первоначальное значение; во второй части – поднимаются вопросы строительства древнейших обсерваторий.

1. Астрономия как наука, ее первоначальное значение.

Астрономия - наиболее древняя среди естественных наук, в переводе с греческого (греч. αστροννομος , от αστρον - звезда, νομος - закон) наука о расположении, строении, свойствах, происхождении, движении и развитии космических тел (звезд, планет, метеоритов и т. п.) образованных ими систем (звездные скопления, галактики и т. п.) и всей Вселенной в целом. Один из выдающихся астрономов античности - Птолемей, автор энциклопедии древней астрономии, "Альмагеста", - так объяснял причины побуждения к занятиям астрономией, которую он считал частью математики: "Только математика. доставляет своим воспитанникам прочное и надежное знание. В этом также причина, заставляющая нас заниматься со всем усердием этой превосходной наукой. в особенности той ее ветвью, которая касается знания божественных небесных светил. Поскольку одна только эта наука посвящена изучению вечно неизменного мира"

Астрономия, как и все другие науки, возникла из практических потребностей человека. О связи наблюдений небесных светил с практической жизнью и об их влиянии на общественные процессы писал и Коперник: «. необходимость вычислять периоды повышения и спада воды в Ниле создала египетскую астрономию, а вместе с тем господство касты жрецов как руководителей земледелия». Обычно называют две причины возникновения этой науки: необходимость ориентироваться на местности и регламентация сельскохозяйственных работ. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей). В древности и средние века не одно только чисто научное любопытство побуждало производить вычисления, копирование, исправления астрономических таблиц, но прежде всего тот факт, что они были необходимы для астрологии. Вкладывая большие суммы в построение обсерваторий и точных инструментов, власти ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний. Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н. э.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Астрономические познания были характерны для многих древних народов.

2. Астрономия в Древнем Египте.

Известно, что еще за 3 тысячи лет до н. э. египтяне уже изобрели египетские календари: лунно-звёздный - религиозный и схематический - гражданский.

Обитатели долины Нила, где нет настоящей зимы, делили год на три сезона, которые зависели от поведения реки. С Нила, от которого зависела вся жизнь египтян, и началась астрономия этой древней цивилизации.

К тому времени в Египте существовал лунный календарь из 12 месяцев по 29 или 30 дней - от новолуния до новолуния. Чтобы его месяцы соответствовали сезонам года, раз в два-три года приходилось добавлять тринадцатый месяц. Сириус "помогал" определять время вставки этого месяца. Такой "наблюдательный" календарь с нерегулярным добавлением месяца плохо подходил для государства, где существовали строгий учёт и порядок. Поэтому для административных и гражданских нужд был введён так называемый схематический календарь. В нём год делился на 12 месяцев по 30 дней с добавлением в конце года дополнительных пяти дней.

В Древнем Египте существовала сложная мифология с множеством богов. Астрономические представления египтян были тесно связаны с ней.

В Карнаке, около Фив, были найдены самые древние египетские водяные часы. Они изготовлены в ХIV в. до н. э. Главными солнечными часами в Египте были, конечно, обелиски, посвящённые Солнцу-Ра. Такой астрономический прибор в виде вертикального столба называется гномон. Древние египтяне, как и все народы, делили небо на созвездия. Всего их известно 45. Планеты египтянам были известны с давних времён. Казалось бы, египетская астрономия не может похвастаться особыми достижениями. Египтяне, оседлый народ, живший в неширокой речной долине, не нуждались в астрономических методах ориентирования. Сроки сельскохозяйственных работ египтянам подсказывала река, и достаточно было установить момент начала её разлива, чтобы, не глядя на небо, знать, что будет дальше. Жрецы наблюдали звёзды в основном для измерения ночного времени, а писцы ввели упрощённый календарь, который не был привязан к сезонам и как бы пренебрегал астрономией. Тем не менее, именно на египетской земле, в Александрии, работали позднее греческие учёные, заложившие основы современной астрономии. Здесь трудились Аристарх Самосский, Тимохарис, Эратосфен, именно здесь написал свой знаменитый астрономический труд Клавдий Птолемей. Схематический календарь не следовал за сезонами, однако он послужил идеальной равномерной шкалой для определения интервалов между затмениями, наблюдавшимися через много лет одно после другого. Именно этим календарём пользовался в своих расчётах Птолемей, а позже и сам Коперник

3. Астрономические познания майя.

Для майя (начало цивилизации майя датируется II тысячелетием до н. э.) астрономия была не абстрактной наукой. В условиях тропиков, где нет резко обозначенных природой времен года, и долгота дня и ночи остается почти неизменной, астрономия служила практическим целям. Благодаря своим астрономическим познаниям жрецы сумели высчитать продолжительность солнечного года: 365,2420 дня! Иными словами, календарь, которым пользовались древние майя, точнее нашего современного на 0,0001 дня! Год делился на восемнадцать месяцев; каждый соответствовал определенным сельскохозяйственным работам: подысканию нового участка, рубке леса, его выжиганию, посеву ранних и поздних сортов кукурузы, сгибанию початков, чтобы защитить их от дождя и птиц, сбору урожая и даже уборке зерен в хранилища. Летосчисление майя велось с некой мифической нулевой даты. Она соответствует, как высчитали современные ученые, 5041 738 году до нашей эры! Известна также начальная дата хронологии майя, но и ее, несомненно, также следует отнести к числу легендарных - это 3113 год до нашей эры. С годами календарь майя становился все сложнее и сложнее. Все больше и больше терял он свое первоначальное значение практического пособия по сельскому хозяйству, пока, наконец, не превратился в руках жрецов в грозный и весьма действенный инструмент мрачной и жестокой религии.

4. Развитие астрономии на Среднем Востоке (Древний Китай).

Большую роль играет происхождение древней китайской астрономии, лежащей в основе астрономических познаний всего Дальнего Востока. В Древнем Китае за 2 тысячи лет до н. э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений. В развитии древнекитайской астрономии наблюдается плавный эволюционный ход. Ход этот можно разбить на такие периоды:

1) Введение солнечного календаря во времена легендарного императора Яо, правление которого китайцы относят к XXIV в. до н. э.

2) Введение системы 28 лунных станций (домов), примерно, в начале Чжоуской династии, т. е. в XIII в. до н. э.

3) Введение гномона ту-гуй, около середины периода, охватываемого Весенними и осенними записями для наблюдения точной эпохи солнцестояния.

4) Выработка твердой календарной системы Календаря Чжуаньюй (Чжуань-юй ли) в это время; наблюдение за 5 планетами; основание теории Пяти стихий (У-син шо): дерево (му), огонь (хо), земля (ту), металл (цзинь), вода (шуй), соединение которых обуславливает все в космосе. Начало систематических наблюдений над звездами.

5) Принятие первой официальной системы - Великого первого календаря (Тай-чу ли) в 104 г. до н. э. Это была первая система, официально признанная китайским правительством.

5. Развитие астрономии в Древней Греции.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх Никейский (II в. до н. э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н. э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков. Гиппарх составил первый в Европе звёздный каталог, включивший точные значения координат около тысячи звёзд. Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др.

В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

III. Древнейшие обсерватории мира.

Стоунхендж - «висячие камни».

«Восьмое чудо света» Стоунхендж был возведен на рубеже каменного и бронзового веков, за несколько столетий до падения гомеровской Трои. Период ее постройки в настоящее время установлен радиоуглеродным методом из анализа сожженных при захоронении человеческих останков.

Астроному Джеральду Хокинсу удалось установить назначение Стоунхенджа. Стоунхендж настолько стар, что уже в эпоху античности его истинная история была забыта. Греческие и римские авторы о нем почти не упоминают. Кто же построил Стоунхендж? Стоунхендж был построен в период между 1900 и 1600 годами до н. э. , примерно на тысячу лет позже египетских пирамид и за несколько столетий до падения Трои. Он воздвигался в три этапа. Первое строительство, следы которого можно обнаружить, было начато около 1900 года до н. э. , когда на исходе каменного века люди вырыли большой кольцевой ров, выбрасывая землю двумя валами по обе его стороны. Внутри, по периметру вала, первые строители вырыли кольцо из 56 «лунок Обри». Внешний вал, теперь уже почти исчезнувший, имел форму почти правильного круга диаметром 115 метров. Прямо от внутреннего края рва поднимался самый внушительный меловой компонент раннего Стоунхенджа - внутренний вал. Эта ослепительно белая насыпь образовывала в окружность диаметром 100 метров. Сооруженный из твердого мела, он и сейчас хорошо заметен. Вход был ориентирован так, что человек, стоящий в центре круга и смотрящий через входной разрыв, утром дня летнего солнцестояния увидел бы, как солнце встает чуть левее Пяточного камня. Этот камень - возможно, самый первый большой камень, который ранние строители установили в Стоунхендже,- имеет длину 6 метров, ширину 2,4 м и толщину 2,1 метр; на 1,2 м он закопан в землю, и оценивается в 35 тонн. Около 1750 года до н. э. начался второй этап строительства Стоунхенджа. Новые строители установили первый ансамбль «больших камней». По меньшей мере 82 голубых камня были установлены двумя небольшими концентрическими кругами на расстоянии 1,8 м друг от друга и около 10,5 м от внутреннего кольца. Двойной круг голубых камней, по-видимому, должен был слагаться из радиально расходящихся лучей, включающий каждый по два камня. В 1700 году до н. э. в Британии начинается бронзовый век, а вместе с ним и третий этап строительства Стоунхенджа. Последними строителями, двойной круг, начатый во второй период, но незавершенный, был разобран. Голубые камни заменили на большие сарсеновые валуны, числом 81 или больше. В этот период был построен, по всей видимости, овал из 20 голубых камней внутри сарсеновой подковы. Может быть, тогда же был поставлен «Алтарный» камень, который был уникален по своему минералогическому составу. Кроме того, они установили кольцо из голубых камней между сарсеновой подковой и сарсеновым кольцом. И на этом постройка завершилась.

Многие люди задумывались над астрономическим значением Стоунхенджа, но не могли сказать по этому поводу ничего определенного. Например, в 1740 году Джон Вуд предположил, что Стоунхендж был «храмом друидов, посвященным Луне». В 1792 году человек, о котором известно только то, что он называл себя Уолтайр, утверждал, что Стоунхендж представлял собой «огромный теодолит для наблюдения за движением небесных тел и был воздвигнут по крайней мере 17 тысяч лет назад». В 1961 году Дж. Хокинс пришел к выводу, что «проблема Стоунхенджа заслуживает того, чтобы призвать на помощь вычислительную машину». Прежде всего, программисты Шошана Розенталь и Джули Коул взяли карту Стоунхенджа и поместили ее в автоматическую измерительную машину «Оскар». После «проверки» выяснилось, что основные и часто повторяющиеся направления Стоунхенджа указывали на Солнце и Луну. После того, как установили, что строители сориентировали Стоунхендж по Солнцу и Луне с таким искусством, последовательностью и упорством, естественно возникает вопрос: «Зачем?» Дж. Хокинс считает, что солнечно-лунные направления в Стоунхендже были установлены и отмечены по двум, а может быть, по четырем причинам:

1) они служили календарем, особенно полезным для предсказания времени начала сева;

2) они способствовали установлению и сохранения власти жрецов;

3) они служили для предсказания затмений Луны и Солнца.

Пользуясь ими для отсчета лет, жрецы Стоунхенджа могли следить за движением Луны и тем самым предсказывать «опасные» периоды, когда могли происходить наиболее эффектные затмения Луны и Солнца.

В 2004 г. во время археологических раскопок в Великобритании обнаружены останки строителей Стоунхенджа с радиоактивными зубами. Скелеты семерых мужчин, которым около 4300 лет, были найдены во время строительных работ недалеко от построек Стоунхенджа. После длительных исследований, британские археологи объявили, что именно эти люди принимали участие в строительстве знаменитого культового сооружения и были захоронены около 4300 лет назад вместе с глиняными сосудами и наконечниками стрел. Это четверо братьев и трое их детей. В то время как ученые все еще продолжают спорить, являлся ли Стоунхендж культовой постройкой или древней обсерваторией, уже найден ответ на вопрос о том, откуда взялись двадцатиметровые каменные глыбы сооружения. Самые необычные из них, так называемые "синие камни", были привезены с холмов Презели, которые находятся в 250 км от Стоунхенджа в Уэльсе - местность с наиболее высокой природной радиоактивностью. Ученые исследовали их зубную эмаль и обнаружили в ней большое количество радиоактивного стронция. Во время роста зубов в них накапливается своего рода химический отпечаток окружающей среды.

Древнейшие обсерватории Китая.

Китайские археологи обнаружили древнейшую в мире астрономическую обсерваторию, возраст которой оценивается в 4300 лет. С ее помощью можно было определить смену времен года с точностью до суток. Древнее сооружение найдено в северной провинции Шаньси на месте поселения Таосы, существовавшего между 2600 и 1600 годами до нашей эры. Раскопки на археологической площадке, ведущиеся на площади около 3 млн кв метров близ города Линьфэнь, открыли взору ученых некое подобие британского "Стоунхенджа": 13 каменных колонн 4-метровой высоты, расположенных на определенном расстоянии друг от друга вдоль полуокружности радиусом 40 метров. Как сообщил Хи Ну, исследователь из Института археологии при Академии общественных наук Китая, эта обсерватория по меньшей мере на 2000 лет старше аналогичного сооружения народа майя в Центральной Америке. По его словам, это сооружение, построенное на закате примитивного общества, "служило не только для астрономических наблюдений, но и совершения жертвенных обрядов" .

Еще одна древняя обсерватория в Китае расположена в юго-западной части моста Цзяньгомэнь города Пекин. Древняя обсерватория была построена при династии Мин (примерно в 1442 году до н. э.) и является одной из самых древних обсерваторий в мире. Древняя обсерватория также известна целостным сооружением, прекрасным прибором высокой точности, продолжительной историей и особенным местонахождением, играет важную роль в обмене восточной и западной культуры всего мира. В династии Мин древняя обсерватория Пекина названа «Гуансинтай» (площадка для наблюдения за звёздами)

На площадке установлена простая сфера, армиллярная сфера, небесный глобус и другие крупные астрологические приборы, также гномон и клепсидра.

Высота корпуса обсерватории – около 14 метров. Длина её площадки с севера на юг – 20,4 метра, а с запада на восток - 23,9 метра, там установили 8 астрологических приборов, которые были произведены при династии Цин.

До 1929 года, Древняя обсерватория служила местом для астрономических наблюдений на протяжении 500 лет, она считается самой давней обсерваторией, где сохранились непрерывные наблюдения проводимые в тот период.

Обсерватория Улугбека.

Развитие астрономии на Среднем Востоке связано со становлением Арабского Халифата в VII - VIII вв. Как и во всех других государствах астрономия использовалась сначала чисто в практических целях и использовалась для строительства многочисленных мечетей, где требовалось определения "киблы" - направления на Мекку, куда мусульмане направляли свои взоры во время молитвы. Однако бурное развитие и расширение государств требовало всё более глубоких знаний математики и астрономии, вследствие чего начали создаваться астрономические обсерватории, в которых работали квалифицированные астрономы и математики, и уже в IX-XI вв. уровень астрономических исследований на Среднем Востоке достиг больших высот. Именно здесь творили выдающиеся энциклопедисты: Мухаммед бин-Муса ал-Хорезми (Алгоритми) (780-850 гг.) в Багдадской обсерватории, Абу-Райхан ал-Бируни (973-1048 гг.), Абу-Али ибн-Сино (980-1037 гг.), ас-Суфи, Омар Хайям (1040-1123 гг.) в Исфаганской обсерватории и Насир-ад-дин Туси (1201-1274 гг.) в Мерагской обсерватории. На этом прочном фундаменте и возникла в начале XV века самаркандская астрономическая школа, идейным и научным вдохновителем которой был Улугбек. Судьба предназначала ему участь наследника престола великой империи, а природный талант, ум и целеустремлённость открыли путь к научному подвигу. Султан Мухаммед Тарагай Улугбек, сын Шахруха, родился 22 марта 1394 года в военном обозе своего знаменитого деда Амира Темура во время стоянки в городе Султании (ныне это территория Ирана). Ещё совсем ребёнком Улугбек сопровождал своего знаменитого деда Тимура в его завоевательных, опустошительных походах. Улугбек побывал в Армении, Афганистане, сопровождал Тимура в походе на Индию и Китай. Наукой Улугбек начал увлекаться ещё в молодости. Большую часть своего времени он проводил в богатейшей библиотеке, где были сосредоточены книги, собранные его дедом и отцом со всего света. Улугбек любил поэзию и историю. Учителями Улугбека были выдающиеся учёные, которыми славился двор Тимура, и среди них - математик и астроном Казы-заде Руми. Он показал девятилетнему Улугбеку руины знаменитой обсерватории в Мараге, возможно, именно это и стало причиной того, что основное внимание Улугбек уделял занятиям астрономией. Главным детищем Улугбека, а может быть и главной целью его жизни, стала обсерватория, которая была построена в 1428-29 годах (832 год хиджры) на скалистом холме у подножия возвышенности Кухак (современный Чупан-Ата) на берегу арыка Обирахмат и представляла собой трёхэтажное здание, покрытое прекрасными изразцами. Ещё до начала строительства для астрономических наблюдений были созданы астролябия с диаметром в один газ (равный 62 см) и звездный глобус. На стене своего дворца Улугбек установил солнечные часы. Круглое здание обсерватории имело в диаметре 46,4 метра, высоту не менее 30 метров и вмещало грандиозный инструмент - квадрант, на котором производились наблюдения за Солнцем, Луной и другими планетами небесного свода. В 60-х годах ХХ-го века архитектор В. А. Нильсен попытался воспроизвести внешний вид обсерватории, каким он представлялся в эпоху Улугбека. План самого здания был весьма сложным, в нём присутствовали большие залы, комнаты, коридоры. Научный труд Улугбека "Новые гураганские астрономические таблицы" явился выдающимся вкладом в сокровищницу мировой астрономической науки. Среди многочисленных астрономических таблиц Улугбека большой интерес представляет таблица географических координат 683 различных городов не только Средней Азии, но России, Армении, Ирана, Ирака и даже Испании. В основе астрономических работ Улугбека лежит геоцентризм, что является вполне закономерным явлением для средневековой эпохи. С поразительной точностью произведено вычисление длины звёздного года. По данным Улугбека, звёздный год равен 365 дням 6 часам 10 минутам 8 секундам, а истинная длина звёздного года (по современным данным) составляет 365 дней 6 часов 9 минут 9,6 секунды. Таким образом, ошибка, допущенная в то время, составляет менее одной минуты.

Звездный каталог самаркандских астрономов был вторым после каталога Гиппарха, составленного за 17 столетий до этого. Звёздные таблицы Улугбека остались последним словом средневековой астрономии и высшей ступенью, которой могла достичь астрономическая наука до изобретения телескопа. Вот сколь велико значение многолетних кропотливых научных исследований самаркандских астрономов XIII века. Результаты их научных достижений оказали огромное влияние на развитие науки на Западе и Востоке, в том числе на развитие науки в Индии и Китае.

Древняя обсерватория Европы.

Обсерватория, найденная в небольшом местечке под название Гозек недалеко от города Галле в федеральной земле Саксония-Анхальт является своего рода европейским Стоунхенджем. Это земляное сооружение представляло собой площадку диаметром 75 метров, где располагались два деревянных ограждения круглой формы. В трех местах в ограждениях были сделаны проходы - ворота к солнцу. 21 декабря, в день зимнего солнцестояния, внутри сооружения можно было наблюдать причудливую игру солнечного света. На восходе солнечный свет попадал точно в восточные ворота, а на закате солнца - непосредственно в ворота западные. Данная конструкция свидетельствует о том, что уже за 5000 лет до рождества Христова люди пытались найти на небосводе точки отсчета, чтобы определять годичные циклы. До сих пор ученые не подозревали, что доисторические земледельцы были на такое способны. Но гозекская обсерватория использовалась не только для наблюдения за звездами и определения времен года для нужд сельского хозяйства. Сооружение было и культовым местом, поскольку в те времена люди почитали созвездия как богов. Данная обсерватория положила начало созданию целой серии аналогичных сооружений в Европе в период неолита и бронзового века.

В Башкирии обнаружена древнейшая евразийская обсерватория.

Челябинские ученые пришли к выводу, что близ поселка Ахуново Учалинского района Башкирии была расположена древняя обсерватория Евразии. Мегалитический памятник Ахуново был обнаружен еще в 1996 году, но раскопки завершились только в этом году. В результате комплекса археоастрономических работ установлено, что мегалитический комплекс был сооружен в древности как астрономическая обсерватория. Наблюдения с его помощью восходов и заходов Солнца позволяют вести систематический календарь, содержащий ключевые астрономические даты: дни летнего и зимнего солнцестояния. По совокупности археологических и археоастрономических данных можно предположить, что он был построен в III тыс. до н. э. , однако эта гипотеза нуждается в дополнительной проверке. В 70 метрах от мегалитического комплекса обнаружено поселение эпохи поздней бронзы.

Рязанский Стоунхендж.

Два года назад российский археолог Илья Ахмедов сделал сенсационное открытие. В непосредственной близи от городища Старой Рязани в местечке Спасская Лука было найдено древнее сооружение, схожее по строению с английским Стоунхенджем. Его возраст оценен в 4 тысячи лет. Однако в отличие от своего британского собрата, Рязанский Стоунхендж оказался меньшим в размерах, к тому же не каменным, а деревянным. Но, по словам Ахмедова, и английская обсерватория первоначально также была из дерева

В течение последующих двух лет подобные открытия происходили почти на всей территории Евразии. Урал, Байкал, Чувашия, Башкирия, Карелия, Якутия, Адыгея, Армения, Казахстан, Таджикистан, Германия, Австрия Словакия – далеко не полная география древних обсерваторий. Причем делали открытия не исследователи-дилетанты, а ученые мужи. Естественно, каждый ученый считал своим долгом подчеркнуть, что открытая им обсерватория как минимум на тысячу лет старше знаменитых «висячих камней» в Англии. Работы археологов продолжаются.

Может быть в ближайшие годы нас ждут новые сенсации.

Заключение.

Познать историю нашей Земли, Вселенной, больше узнать о звездах, затмениях, планетах человечеству хотелось с самого его появления. Еще задолго до возникновения науки астрономии человек замечал различные природные явления, как то: затмение солнца, движение планет, он задумывался, почему наступают разливы рек.

К моменту возникновения науки астрономии древние люди накопили богатый практический опыт в познании мира. Астрономия, как и все другие науки, возникла из практических потребностей человека.

Обычно называют две причины возникновения этой науки: необходимость ориентироваться на местности и регламентация сельскохозяйственных работ. Кроме того, вкладывая большие суммы в построение обсерваторий и точных инструментов, власти ожидали отдачи не только в виде славы покровителей науки, но также в виде астрологических предсказаний.

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н. э.

Знаниями в области астрономии активно пользовались жрецы, желая распространять свою власть на верующих.

Древним культовым сооружением древности являлись обсерватории. Люди наблюдали за восходом и закатом солнца, пытались вычислить длину звездного дня и года, составляли календари, вели записи за наступлением затмений.

Все эти знания использовались ими в практических целях вплоть до наступления эпохи Средневековья, когда новые открытия, сделанные астрономами позволили изменить представление человека о положении Земли.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов.

Астрономия изучает строение, движение, происхождение и развитие небесных тел, их систем и всей Вселенной в целом. Другими словами, астрономия изучает изучает строение и эволюцию Вселенной.

Важными задачами астрономии являются объяснение и прогнозиро-
вание астрономических явлений, таких, как солнечные и лунные зат-
мения, появление периодических комет, прохождение вблизи Земли
астероидов, крупных метеорных тел или ядер комет.

2. Как возникла наука астрономия? Охарактеризуйте основные периоды её развития.

Как и другие науки, астрономия возникла из практических потребностей человека: необходимость ориентирования при кочевом образе жизни, предсказания наступления сезонов года при земледелии, потребность в измерении времени и летоисчеслении (составлении календарей).

3. Какие объекты и их системы изучает астрономия? Перечислите их в порядке увеличения размеров.

Астрономия изучает и исследует небесные объекты (галактики, звёзды, межзвёздную среду, планеты, спутники планет, карликовые палнеты и малые тела Солнечной системы), объясняет и прогнозирует астрономические явления (солнечные и лунные затмения, появление периодических комет, движение планет, астероидов и т. д.), исследует процессы, происходящие в недрах Солнца и звёзд, эволюцию небесных тел и Вселенной в целом.

4. Из каких разделов состоит астрономия? Кратко охарактеризуйте каждый из них.

  1. Практическая астрономия . Развивающиеся торговля и мореплавание нуждались в разработке методов ориентации, определении географического положения наблюдателя, точном измерении времени исходя из астрономических наблюдений.
  2. Небесная механика . Изучение движения небесных тел.
  3. Сравнительная планетология . Учёные взялись за изучение и сравнение Земли с другими планетами и спутниками с помощью оптических приборов.
  4. Астрофизика . Изучение физическиз явлений и химических процессов в небесных телах, их системах и в космическом пространстве.
  5. Звёздная астрономия . Изучение движения звёзд в нашей Галактике, исследование свойств других звёздных систем.
  6. Космология . Изучение происхождения, строения и эволюции Вселенной.
  7. Радиоастрономия . Изучение радиоизлучений Солнца и далёких космических объектов.

5. Что такое телескоп и для чего он предназначен?

Телескопы служат для собирания света исследуемых небесных тел и получения их изображения. Телескоп увеличивает угол зрения, под которым видны небесные тела, и собирает во много раз больше света, приходящего от светила, чем невооружённый глаз наблюдателя. Благодаря этому в телескоп можно рассматривать невидимые с Земли детали поверхности ближайших небесных тел, а также множество слабых звёзд.