Все вопросы

Как происходит транскрипция в биологии кратко. Что такое транскрипция в биологии и как она происходит

После расшифровки генетического кода встал вопрос: каким образом осуществляется перенос информации с ДНК на белок? Биохимическими исследованиями было установлено, что основная масса ДНК в клетке локализована в ядре, тогда как синтез белка идет в цитоплазме. Это территориальное разобщение ДНК и синтеза белка обусловило поиски посредника. Поскольку синтез белка шел с участием рибосом, то на роль посредника была выдвинута РНК. Была создана схема, иллюстрирующая направление потока генетической информации в клетке:

ДНК → РНК → белок

Она получила название центральной догмы молекулярной биологии. Ф. Крик постулировал, что синтез макромолекул по этой схеме осуществляется по матричному принципу. На доказательство правильности этого постулата потребовались многие годы.

Вначале предполагалось, что роль посредника выполняет рибосомальная РНК (“один ген — одна рибосома — один белок”). Однако в скором времени выяснилась несостоятельность такого предположения. Было показано, что в процессе белкового синтеза количество рибосом не изменяется, т.е. новая РНК не синтезируется и, следовательно, новая информация не поступает. Вскоре в составе рибосом была обнаружена фракция нестабильной РНК, молекулы которой непрочно удерживаются на рибосоме с помощью катионов Mg. Методом молекулярной гибридизации было показано, что молекулы этой РНК являются копиями определенных участков ДНК. Она получила название матричной , или информационной РНК . Ее также называли раньше РНК-посредник и мессенджер-РНК. Комплементарность этих молекул определенным участкам ДНК говорила о том, что они синтезируются по матричному типу на ДНК.

Постепенно был выяснен весь путь переноса информации от ДНК к белку. Он состоит из двух этапов: транскрипции и трансляции . На этапе транскрипции происходит считывание и перенос генетической информации с ДНК на иРНК. Процесс транскрипции протекает в три стадии: инициации , элонгации и терминации . Информация считывается только с одной цепи ДНК (+ цепь), так как исходя из свойств генетического кода, комплементарные участки ДНК не могут кодировать структуру одного и того же белка из-за отсутствия комплементарной вырожденности кода. Ведет транскрипцию фермент РНК-полимераза, состоящий из четырех субъединиц (ααββ") и не обладающий специфичностью в отношении источника ДНК. На начальном этапе транскрипции — инициации — к ферменту присоединяется пятая субъединица, так называемый s-фактор, который осуществляет узнавание специфического участка ДНК, промотора. Промоторы не транскрибируются. Узнаются они s-фактором по наличию в них специфической последовательности нуклеотидов. В бактериальных промоторах она называется блоком Прибнова и имеет вид ТАТААТ (с небольшими вариациями). К промотору присоединяется фермент РНК-полимераза. Рост цепи иРНК идет в одном направлении, скорость транскрипции равняется ≈ 45-50 нуклеотидов в 1 секунду. На этапе инициации синтезируется только короткая цепочка из 8 нуклеотидов, после чего s-фактор отделяется от РНК-полимеразы и начинается этап элонгации. Наращивание цепи иРНК ведет уже белок-тетрамер. Участок, с которого считывается информация, называется транскриптоном. Он заканчивается терминатором — специфической нуклеотидной последовательностью, играющей роль stop-сигнала. Дойдя до терминатора, фермент РНК-полимераза прекращает работу и с помощью белковых факторов терминации отделяется от матрицы.

В бактериальных клетках образующиеся молекулы иРНК могут сразу выполнять роль матриц для синтеза белка, т.е. транслироваться. Они соединяются с рибосомами, к которым одновременно молекулы транспортных РНК (тРНК) доставляют аминокислоты. Цепочки транспортных РНК состоят примерно из 70 нуклеотидов. Однонитиевая молекула тРНК имеет участки комплементарного спаривания, в составе которых находятся активные центры: участок узнавания тРНК ферментом тРНК-синтетазой, присоединяющим к тРНК соответствующую активированную аминокислоту; акцептор — участок, к которому присоединяется аминокислота, и антикодоновая петля.

Антикодон — это триплет, комплементарный соответствующему кодону в молекуле иРНК. Взаимодействие кодон-антикодон идет по типу комплементарного спаривания, во время которого происходит присоединение аминокислоты к растущей белковой цепи. Инициирующим кодоном в составе разных иРНК является кодон AUG, соответствующий аминокислоте метионину. Поэтому первой к матрице подходит тРНК с антикодоном UAC, соединенная с активированной аминокислотой метионином. Ферменты, активирующие аминокислоты и соединяющие их с тРНК, называются аминоацил-тРНК-синтетазы. Все этапы биосинтеза белка (инициация, элонгация, терминация) обслуживаются белковыми факторами трансляции. У прокариот их по три на каждый этап. В конце матрицы иРНК находятся нонсенс-кодоны, которые не считываются и знаменуют собой конец трансляции.

В геноме многих организмов, от бактерий до человека, обнаружены гены и соответствующие им тРНК, осуществляющие нестандартное считывание кодонов. Это явление получило название неоднозначности трансляции .

Оно позволяет избежать негативных последствий ошибок, возникающих в структуре молекул иРНК при транскрипции. Так, при появлении внутри молекулы иРНК нонсенс-кодонов, способных преждевременно прекратить процесс транскрипции, включается механизм супрессии. Он состоит в том, что в клетке появляется необычная форма тРНК с антикодоном, комплементарным нонсенс-кодону, чего в норме быть не должно. Ее появление является результатом действия гена, осуществляющего замену основания в антикодоне тРНК, близким по составу к нонсенс-кодону. В результате такой замены нонсенс-кодон считывается как обычный значащий кодон. Подобные мутации получили название супрессорных, т.к. они подавляют изначальную мутацию, которая привела к появлению нонсенс-кодона.

Экспрессия всех генов начинается с транскрипции их нуклеотидной последовательности. Транскрипция - это процесс перевода информации, записанной на языке последовательности дезоксирибонуклеотидов в смысловой цепи ДНК на язык последовательности рибонуклеотидов в мРНК. При этом определенный участок одной из двух цепей ДНК (антисмысловой) используется как матрица для синтеза РНК путем комплементарного спаривания оснований.

Ферментами, катализирующими процесс транскрипции, служат ДНК-зависимые РНК-полимеразы. Причем у прокариот, например, в клетках кишечной палочки обнаружен лишь один тип этого фермента, который синтезирует все три типа РНК (мРНК, тРНК, рРНК). В отличие от них эукариоты имеют три разные ДНК-зависимые РНК-полимеразы, каждая из которых ответственна за транскрипцию генов, кодирующих разные типы клеточных РНК. Наилучшим образом процесс транскрипции, а также его ферментативное оснащение изучены у прокариот. Бактериальные РНК-полимеразы - это сложные белки, состоящие из нескольких разных субъединиц. Наиболее изученный фермент - холофермент РНК-полимераза E. coli, который содержит пять разных полипептидных субъединиц: две a-цепи, одну b- и одну b’-цепи, s- и w-цепи. Альтернативная форма фермента, называемая кором или миниферментом , лишена s-субъединицы. Кор-фермент катализирует большинство реакций транскрипции ДНК в РНК, однако не может инициировать синтез РНК в нужном месте, поскольку не способен узнавать промоторные сайты. Точное связывание и инициация в промоторах происходят только после добавления к кор-ферменту sd-субъединицы и образования холофермента.

Как и другие матричные процессы, транскрипция включает 3 стадии: инициацию, элонгацию и терминацию.

Инициация транскрипции . Для этого процесса необходимы: холофермент, специальная последовательность нуклеотидов в ДНК (промотор) и набор нуклеозидтрифосфатов. Транскрипция инициируется при образовании стабильного комплекса между холоферментом и специфической последовательностью, называемой промотором и располагающейся в начале всех транскрипционных единиц. Промотор - это участок молекулы ДНК, состоящий примерно из 40 пар нуклеотидов и расположенный непосредственно перед участком инициации транскрипции. В нем различают две важные и достаточно консервативные по составу последовательности. Одна из них состоит из шести или семи нуклеотидов (чаще ТАТААТ) и расположена на расстоянии примерно 10 нуклеотидов от первого транскрибируемого нуклеотида (+1); этот сигнал обычно обозначают как-10-последовательность, или Прибнов-Бокс- в честь ее первооткрывателя. В данном сайте РНК-полимераза связывается с ДНК. Вторая последовательность расположена на расстоянии ~ 35 нуклеоти-дов до сайта инициации и служит участком распознавания промотора РНК-полимеразой (рис. 3.1).


Когда РНК-полимераза связывается с промотором, происходит локальное расплетение двойной спирали ДНК и образуется открытый промоторный комплекс. В нем происходит копирование последовательности нуклеотидов смысловой, или (+)-цепи ДНК, имеющей направление 5→3’. При этом синтез мРНК всегда начинается с нуклеотидов А или G. Вторая, антисмысловая цепь ДНК, служит матрицей для синтеза цепочки РНК (рис. 3.2).

Транскрипция аналогична репликации в том смысле, что порядок присоединения рибонуклеотидов определяется комплементарным спариванием оснований (рис. 3.2). После формирования первых нескольких фосфодиэфирных связей (обычно 5- 10) d-субъединица отделяется от инициирующего комплекса, и дальнейшая транскрипция осуществляется с помощью кор-фермента.

Элонгация транскрипции . Растущая цепь РНК остается связанной с ферментом и спаренной своим растущим концом с участком матричной цепи. Остальная часть образовавшейся цепи не связана ни с ферментом, ни с ДНК. По мере продолжения транскрипции движущийся вдоль цепи ДНК корфермент действует подобно застежке «молния», расплетая двойную спираль, которая замыкается позади фермента, и восстанавливается ее исходная дуплексная структура. «Раскрытая» ферментом область ДНК простирается всего на несколько пар нуклеотидов (рис. 3.3).

Наращивание РНК идет в направлении от 5’- к 3’-концу вдоль матричной (-) цепи, ориентированной в направлении 3’→5’, т. е. антипараллельно. Транскрипция непрерывно продолжается до тех пор, пока фермент не достигнет сайта терминации транскрипции.

Терминация транскрипции . Последовательности ДНК, являющиеся сигналами остановки транскрипции, называются транскрипционными терминаторами. Они содержат инвертированные повторы, благодаря чему 3’-концы РНК-транскриптов складываются с образованием шпилек разной длины (рис. 3.4).

Обнаружены два типа сигналов терминации - r-зависимый и r- независимый терминаторы. r - это олигомерный белок, прочно связывающийся с РНК и в этом состоянии гидролизующий АТР до ADP и неорганического фосфата. В одной из моделей действие r-белка объясняется тем, что он связывается с синтезируемой цепью РНК и перемещается вдоль нее в направлении 5’→3’ к месту синтеза РНК; необходимая для его перемещения энергия выделяется при гидролизе АТР. Если r-белок наталкивается на образующуюся в РНК шпильку, он останавливает полимеразу, которая могла бы продолжить транскрипцию. Механизм r-независимой терминации изучен хуже, в нем остается много неясного.

В большинстве случаев первичные транскрипты, образующиеся описанным выше способом, не являются зрелыми молекулами РНК, а требуют процесса созревания, который называется процессингом РНК. Процессинг сильно отличается для прокариотических и эукариотических РНК.

У прокариот первичные транскрипты, сформированные при транскрипции генов, кодирующих белки, функционируют в качестве мРНК без последующей модификации или процессинга. Причем трансляция мРНК часто начинается даже до завершения синтеза 3’-конца транскрипта. Совсем иная ситуация наблюдается для молекул прокариотических рРНК и тРНК. В этом случае кластеры рРНК- или тРНК-генов часто транскрибируются с образованием единой цепи РНК. Для формирования зрелых функциональных форм должны произойти специфическое надрезание первичных РНК-транскриптов и модификация. Эти молекулярные события и называют процессингом РНК или посттранскрипционной модификацией . Начальное расщепление первичных транскриптов на фрагменты, содержащие либо тРНК, либо 16S-, 23S- , или 5S-рРНК-последовательности, осуществляет эндонуклеаза РНК-аза Ш. Ее мишенями служат короткие дуплексы РНК, образующиеся при внутримолекулярном спаривании оснований в последовательностях, фланкирующих каждый из РНК-сегментов. Эти комплементарные последовательности формируют шпильки, в составе которых РНК-аза вносит разрывы, после чего лишние последовательности спейсерных областей удаляются другими РНК-азами. Молекулы тРНК вначале синтезируются в виде про-тРНК, которая на ~ 20 % длиннее, чем зрелая. Лишние последовательности, расположенные у 5’ и 3’-концов, удаляются рибонуклеазами Q и P. Кроме этого, для образования зрелой функциональной тРНК, по-видимому, должны произойти специфическая модификация оснований и присоединение одного, двух или всех трех нуклеотидов 3’-ССА-конца (акцепторная ветвь).

Созревание РНК у эукариот осуществляется гораздо сложнее. Во-первых, у эукариот существует ядро, которое отделено от цитоплазмы ядерной мембраной. В ядре осуществляется образование первичных транскриптов, которые имеют бульшую длину, чем цитоплазматическая мРНК, участвующая в трансляции. Следовательно, образованию зрелой мРНК у эукариот должно предшествовать удаление интронов из последовательности гяРНК- транскрипта (этот процесс называется сплайсингом от англ. to splice -сплетать, сращивать). После удаления последовательностей, соответствую-щих интронам, происходит соединение участков, которые транскрибированы с экзонов . Сплайсинг катализируется комплексами белков с РНК (мяРНП), которые, взаимодействуя с гяРНК, образуют сплайсому . Полагают, что каталитической активностью в сплайсоме обладает РНК-составляющая. Такие РНК называют рибозимами . Место сплайсинга определяется в сплайсомах с высокой точностью, поскольку ошибка даже в 1 нуклеотид может привести к искажению структуры белка. Для точного узнавания в составе интронов есть специфические последовательности - сигналы.

Кроме сплайсинга, мРНК у эукариот подвергается модификации: на 5’- конце синтезируется «кэп» (шапочка) - структура, представляющая собой метилированный остаток гуанозинтрифосфата, который защищает РНК от гидролиза 5’-экзонуклеазами. На 3’-конце про-мРНК синтезируется полиаденилатная последовательность длиной 150-200 нуклеотидов, которая называется «шлейф». Эти структуры принимают участие в регуляции экспрессии эукариотических генов. Процессинг рРНК и тРНК у эукариот осуществляется аналогично таковому у прокариот.

В биологии процессы транскрипции и трансляции рассматривают в рамках биосинтеза белка. Хотя в процессе транскрипции никакого синтеза белка не происходит. Но без нее невозможна трансляция (т. е. непосредственный синтез белка). Транскрипция предшествует трансляции.

Протекающие в клетках транскрипция и трансляция согласуются с так называемой догмой молекулярной биологии (выдвинутой Ф. Криком в середине XX века): поток информации в клетках идет в направлении от нуклеиновых кислот (ДНК и РНК) к белкам, но никогда наоборот (то есть от белков к нуклеиновым кислотам). Это значит, что нуклеиновая кислота может служить информационной матрицей для синтеза белка, а белок не может выступать таковой для синтеза нуклеиновой кислоты.

Транскрипция

Транскрипция представляет собой синтез молекулы РНК на молекуле ДНК . То есть ДНК служит матрицей для синтеза РНК.

Транскрипция катализируется рядом ферментов, наиболее важный РНК-полимераза. Следует помнить, что ферменты - это в основном белки (это касается и РНК-полимеразы).

РНК-полимераза движется по двойной цепи ДНК, разъединяет цепочки и на одной из них по принципу комплементарности строит молекулу РНК из плавающих в ядре нуклеотидов. Таким образом, РНК по-сути идентична участку другой цепи ДНК (на которой не происходит синтез), так как цепи молекулы ДНК также комплементарны друг другу. Только в РНК тимин заменен на урацил.

Синтез нуклеиновых кислот происходит в направлении от 5"-конца молекул к их 3"-концу. При этом комплементарные цепи всегда антипараллельны (направлены в разные стороны). Поэтому сама РНК синтезируется в направлении 5"→3", но по цепи ДНК движется в ее направлении 3"→5".

Участок ДНК, на котором происходит транскрипция (транскриптон, оперон), состоит из трех частей: промотора, гена (в случае иРНК, вообще - транскрибируемой части) и терминатора.

Для инициации (начала) транскрипции нужны различные белковые факторы, которые прикрепляются к промотору, после чего к ДНК может быть присоединена РНК-полимераза.

Терминация (окончание) транскрипции происходит после того, как РНК-полимераза встретит один из стоп-кодонов.

У клеток эукариот транскрипция происходит в ядре. После синтеза молекулы РНК здесь же подвергаются созреванию (из них вырезаются ненужные участки, молекулы принимают соответствующую им вторичную и третичную структуру). Далее различные типы РНК выходят в цитоплазму, где участвуют в следующем после транскрипции процессе – трансляции.

Трансляция

Трансляция представляет собой синтез полипептидной (белковой) цепи на молекуле информационной (она же матричная) РНК. По-другому трансляцию можно описать как перевод информации, закодированной с помощью нуклеотидов (триплетов-кодонов), в информацию, представленную в виде последовательности аминокислот. Этот процесс протекает при участии рибосом (в состав которых входит рибосомальная РНК) и транспортной РНК. Таким образом, в непосредственном синтезе белка принимают участие все три основных типа РНК .

При трансляции рибосомы насаживаются на начало цепи иРНК и далее движутся по ней в направлении к ее концу. При этом происходит синтез белка.

Внутри рибосомы есть два «места», где могут поместиться две тРНК. Транспортные РНК, заходящие в рибосому, несут одну аминокислоту. Внутри рибосомы синтезируемая полипептидная цепь присоединяется к вновь прибывшей аминокислоте, связанной с тРНК. После чего эта тРНК передвигается на другое «место», из него же удаляется «старая», уже свободная от растущей полипепдидной цепи тРНК. На освободившееся место приходит еще одна тРНК с аминокислотой. И процесс повторяется.

Активный центр рибосомы катализирует образование пептидной связи между вновь прибывшей аминокислотой и ранее синтезированным участком белка.

В рибосому помещаются два кодона (всего 6 нуклеотидов) иРНК. Антикодоны тРНК, заходящих в рибосому, должны быть комплементарны кодонам, на которых «сидит» рибосома. Разным аминокислотам соответствуют разные тРНК (различающиеся своими антикодонами).

Таким образом, каждая тРНК несет свою аминокислоту. При этом следует иметь в виду, что аминокислот, принимающих участие в биосинтезе белка, всего около 20, а смысловых (обозначающих аминокислоту) кодонов около 60-ти. Следовательно, одну аминокислоту могут переносить разные тРНК, но их антикодоны соответствуют одной и той же аминокислоте.

Транскрипция в биологии - это многоступенчатый процесс считывания информации с ДНК, который является составляющей Нуклеиновая кислота является носителем генетической информации в организме, поэтому важно правильно ее расшифровать и передать другим клеточным структурам для дальнейшей сборки пептидов.

Определение «транскрипция в биологии»

Синтез белка является основным жизненно важным процессом в любой клетке организма. Без создания молекул пептида невозможно поддержание нормальной жизнедеятельности, т. к эти органические соединения участвуют во всех процессах метаболизма, являются структурными компонентами многих тканей и органов, играют сигнальную и регулирующую и защитную роли в организме.

Процесс, с которого начинается биосинтез белка, и есть транскрипция. Биология кратко разделяет его на три этапа:

  1. Инициация.
  2. Элонгация (нарастание цепи РНК).
  3. Терминация.

Транскрипция в биологии - это целый каскад пошаговых реакций, в результате которых на матрице ДНК синтезируются молекулы РНК. Причем таким образом формируются не только информационные рибонуклеиновые кислоты, но также транспортные, рибосомальные, малые ядерные и другие.

Как и любой биохимический процесс, транскрипция зависит от множества факторов. Прежде всего, это ферменты, которые отличаются у прокариот и эукариот. Эти специализированные белки помогают инициировать и проводить реакции транскрипции безошибочно, что важно для качественного получения белка на выходе.

Транскрипция прокариот

Так как транкрипция в биологии - это синтез РНК на матрице ДНК, то в этом процессе главным ферментом является ДНК-зависимая РНК-полимераза. У бактерий существует только один вид таких полимераз для всех молекул

РНК-полимераза по принципу комплиментарности достраивает цепь РНК, используя матричную цепь ДНК. В составе этого фермента есть две β-субъединицы, одна α-субъединица и одна σ-субъединица. Первые две составляющие выполняют функцию образования тела фермента, а остальные две отвечают за удержание фермента на молекуле ДНК и узнавание промотерной части дезоксирибонуклеиновой кислоты соответственно.

Кстати, сигма-фактор служит одним из признаков, по которым распознается тот или иной ген. Например, латинская буква σ с индексом N означает то, что эта РНК-полимераза узнает гены, которые включаются при недостатке азота в окружающей среде.

Траскрипция у эукариот

В отличие от бактерий, у животных и растений транскрипция происходит несколько сложнее. Во-первых, В каждой клетке находятся не один, а целых три вида разных РНК-полимераз. Среди них:

  1. РНК-полимераза I. Она отвечает за транскрипцию генов рибосомальных РНК (исключение составляет 5S РНК субъединицв рибосомы).
  2. РНК-полимераза II. Ее задача состоит в синтезе нормальных информационных (матричных) рибонуклеиновых кислот, которые в дальнейшем участвуют в трансляции.
  3. РНК-полимераза III. Функция этого вида полимераз заключается в том, чтобы синтезировать а также 5S-рибосомальную РНК.

Во-вторых, для узнавания промотора у эукариотических клеток недостачно иметь только полимеразу. В инициации транскрипции также участвуют специальные пептиды, которые называются TF-белками. Только с их помощью РНК-полимераза может сесть на ДНК и начать синтез молекулы рибонуклеиновой кислоты.

Значение транскрипции

Молекула РНК, которая образуется на матрице ДНК, впоследствии присоединяется к рибосомам, где с нее считывается информация и синтезируется белок. Процесс образования пептида очень важен для клетки, т.к. без этих органических соединений невозможна нормальная жизнедеятельность: они в первую очередь являются основой для важнейших ферментов всех биохимических реакций.

Транскрипция в биологии - это еще и источник рРНК, которые а также тРНК, которые участвуют в переносе аминокислот во время трансляции к этим немембранным структурам. Также могут синтезироваться мяРНК (малые ядерные), функция которых заключается в сплайсинге всех молекул РНК.

Заключение

Трансляция и транскрипция в биологии играют исключительно важную роль в синтезе белковых молекул. Эти процессы являются основной составляющей центральной догмы молекулярной биологии, которая гласит о том, что на матрице ДНК синтезируется РНК, а РНК, в свою очередь, является основой для начала формирования молекул белка.

Без транскрипции невозможно было бы считать информацию, которая закодирована в триплетах дезоксирибонуклеиновой кислоты. Это еще раз доказывает важность процесса на биологическом уровне. Любая клетка, будь она прокариотическая или эукариотическая, должна постоянно синтезировать новые и новые молекулы белка, которые нужны в данный момент для поддержания жизнедеятельности. Поэтому транскрипция в биологии - это основной этап в работе каждой отдельной клетки организма.

С понятием транскрипции мы встречаемся, изучая иностранный язык. Она помогает нам правильно переписывать и произносить неизвестные слова. Что понимают под этим термином в естествознании? Транскрипция в биологии - это ключевой процесс в системе реакций биосинтеза белка. Именно он позволяет клетке обеспечивать себя пептидами, которые будут выполнять в ней строительную, защитную, сигнальную, транспортную и другие функции. Только переписывание информации с локуса ДНК на молекулу информационной рибонуклеиновой кислоты запускает белоксинтезирующий аппарат клетки, обеспечивающий биохимические реакции трансляции.

В данной статье мы рассмотрим этапы транскрипции и синтеза белка, протекающие у различных организмов, а также определим значение этих процессов в молекулярной биологии. Кроме этого, мы дадим определение, что такое транскрипция. В биологии знания по интересующим нас процессам можно получить из таких ее разделов, как цитология, молекулярная биология, биохимия.

Особенности реакций матричного синтеза

Для тех, кто знаком с основными типами химических реакций, изучаемые в курсе общей химии, процессы матричного синтеза окажутся совершенно новыми. Причина здесь следующая: такие реакции, протекающие в живых организмах, обеспечивают копирование материнских молекул с использованием специального кода. Его открыли не сразу, лучше сказать, что сама идея существования двух разных языков для хранения наследственной информации, пробивала себе путь на протяжении двух столетий: с конца 19 и до середины 20. Чтобы лучше представить, что такое транскрипция и трансляция в биологии и почему они относятся к реакциям матричного синтеза, обратимся для аналогии к технической лексике.

Все как в типографии

Представьте, что нам нужно напечатать, например, сто тысяч экземпляров популярной газеты. Весь материал, который войдет в нее, собирают на материнский носитель. Этот первый образец называется матрицей. Затем на типографских станках его тиражируют - снимают копии. Аналогичные процессы протекают и в живой клетке, только матрицами в ней поочередно служат молекулы ДНК и и-РНК, а копиями - информационная РНК и молекулы белков. Давайте рассмотрим их подробнее и выясним, что транскрипцией в биологии называется реакция матричного синтеза, протекающая в клеточном ядре.

Генетический код - ключ к тайне биосинтеза белка

В современной молекулярной биологии уже никто не спорит о том, какое вещество является носителем наследственных свойств и хранит данные обо всех без исключения белках организма. Конечно же, это дезоксирибонуклеиновая кислота. Однако она построена из нуклеотидов, а белки, информация о составе которых в ней хранится, представлены молекулами аминокислот, не имеющими никакого химического сродства с мономерами ДНК. Иными словами, мы имеем дело с двумя разными языками. В одном из них слова - это нуклеотиды, в другом - аминокислоты. Что же выступит в роли переводчика, который осуществит перекодировку информации, полученной в результате транскрипции? Молекулярная биология считает, что эту роль выполняет генетический код.

Уникальные свойства клеточного кода

Вот что представляет собой код, таблица которого представлена ниже. Над его созданием трудились цитологи, генетики, биохимики. Кроме того, в разработке кода использовали знания из криптографии. Учитывая его правила, можно установить первичную структуру синтезированного белка, ведь трансляция в биологии - это процесс перевода информации о структуре пептида с языка нуклеотидов и-РНК на язык аминокислот белковой молекулы.

Идея кодирования в живых организмах впервые была озвучена Г. А. Гамовым. Дальнейшие научные разработки привели к формулировке основных его правил. Сначала установили, что строение 20 аминокислот зашифровано в 61 триплете информационной РНК, что привело к понятию вырожденности кода. Далее выяснили состав нонснес-кодонов, выполняющих роль старта и остановки процесса биосинтеза белка. Затем появились положения о его коллинеарности и универсальности, завершившие стройную теорию генетического кода.

Где происходит транскрипция и трансляция?

В биологии несколько ее разделов, изучающих строение и биохимические процессы в клетке (цитология и молекулярная биология), определили локализацию реакций матричного синтеза. Так, транскрипция происходит в ядре с участием фермента РНК-полимеразы. В его кариоплазме из свободных нуклеотидов по принципу комплементарности синтезируется молекула и-РНК, списывающая информацию о строении пептида с одного структурного гена.

Затем она через поры в ядерной оболочке выходит из клеточного ядра и оказывается в цитоплазме клетки. Здесь и-РНК должна соединиться с несколькими рибосомами, чтобы сформировать полисому - структуру, готовую встретить молекулы транспортных рибонуклеиновых кислот. Их задача - принести аминокислоты к месту еще одной реакции матричного синтеза - трансляции. Рассмотрим механизмы обеих реакций подробно.

Особенности образования молекул и-РНК

Транскрипция в биологии - это переписывание информации о строении пептида со структурного гена ДНК на молекулу рибонуклеиновой кислоты, которая называется информационной. Как мы уже говорили ранее, она происходит в ядре клетки. Вначале фермент ДНК-рестриктаза разрывает водородные связи, соединяющие цепи дезоксирибонуклеиновой кислоты, и ее спираль расплетается. К свободным полинуклеотидным участкам присоединяется фермент РНК-полимераза. Он активирует сборку копии - молекулы и-РНК, которая кроме информативных участков - экзонов - содержит еще и пустые последовательности нуклеотидов - интроны. Они являются балластом и требуют удаления. Этот процесс в молекулярной биологии называют процессингом или созреванием. На нем завершается транскрипция. Биология кратко объясняет это следующим образом: только потеряв ненужные мономеры, нуклеиновая кислота сможет покинуть ядро и будет готовой к дальнейшим этапам биосинтеза белка.

Обратная транскрипция у вирусов

Неклеточные формы жизни разительно отличаются от прокариотических и эукариотических клеток не только своим внешним и внутренним строением, но и реакциями матричного синтеза. В семидесятых годах прошлого столетия наука доказала существование ретровирусов - организмов, геном которых состоит из двух цепей РНК. Под действием фермента - ревертазы - такие вирусные частицы копируют с участков рибонуклеиновой кислоты молекулы ДНК, которые затем внедряются в кариотип клетки-хозяина. Как видим, списывание наследственной информации в этом случае идет в обратном направлении: от РНК к ДНК. Такая форма кодирования и считывания характерна, например, для патогенных агентов, вызывающих различные виды онкологических заболеваний.

Рибосомы и их роль в клеточном метаболизме

Реакции пластического обмена, к которым относится и биосинтез пептидов, протекают в цитоплазме клетки. Чтобы получить готовую молекулу протеина, недостаточно скопировать последовательность нуклеотидов со структурного гена и перенести ее в цитоплазму. Необходимы также структуры, которые займутся считыванием информации и обеспечат соединение аминокислот в единую цепь посредством пептидных связей. Это рибосомы, строению и функциям которых большое внимание уделяет молекулярная биология. Где происходит транскрипция, мы уже выяснили - это кариоплазма ядра. Место процессов трансляции - клеточная цитоплазма. Именно в ней расположены каналы эндоплазматической сети, на которой группами сидят белоксинтезирующие органеллы - рибосомы. Однако и их наличие еще не обеспечивает начало пластических реакций. Нужны структуры, которые доставят к полисоме молекулы-мономеры белков - аминокислоты. Их называют транспортными рибонуклеиновыми кислотами. Что они собой представляют и какова их роль в трансляции?

Переносчики аминокислот

Небольшие молекулы транспортных РНК в своей пространственной конфигурации имеют участок, состоящий из последовательности нуклеотидов - антикодон. Для осуществления трансляционных процессов нужно, чтобы возник инициативный комплекс. Он должен включать триплет матрицы, рибосомы и комплементарный участок транспортной молекулы. Как только такой комплекс организовался - это сигнал к началу сборки белкового полимера. Как трансляция, так и транскрипция в биологии - это процессы ассимиляции, всегда происходящие с поглощением энергии. Для их осуществления клетка готовится заранее, аккумулируя большое количество молекул аденозинтрифосфорной кислоты.

Синтез этого энергетического вещества происходит в митохондриях - важнейших органеллах всех без исключения эукариотических клеток. Он предшествует началу реакций матричного синтеза, занимая место в пресинтетической стадии жизненного цикла клетки и после реакций репликации. Расщепление молекул АТФ сопровождает транскрипционные процессы и реакции трансляции, высвободившаяся при этом энергия используется клеткой на всех этапах биосинтеза органических веществ.

Стадии трансляции

В начале реакций, приводящих к образованию полипептида, 20 видов мономеров белка связываются с определенными молекулами транспортных кислот. Параллельно в клетке происходит образование полисомы: рибосомы присоединяются к матрице в месте расположения старт-кодона. Запуск биосинтеза начинается, и рибосомы передвигаются по триплетам и-РНК. К ним подходят молекулы, транспортирующие аминокислоты. Если кодон в полисоме комплементарен антикодону транспортных кислот, то аминокислота остается в рибосоме, и образующаяся полипептидная связь соединяет ее с уже находящимися там аминокислотами. Как только белоксинтезирующая органелла доходит до стоп-триплета (обычно это УАГ, УАА или УГА), трансляция прекращается. В итоге рибосома вместе с белковой частицей отделяется от и-РНК.

Как пептид приобретает свою нативную форму

Последним этапом трансляции является процесс перехода первичной структуры белка в третичную форму, имеющую вид глобулы. Ферменты удаляют в ней ненужные аминокислотные остатки, присоединяют моносахариды или липидны, а также дополнительно синтезируют карбоксильные и фосфатные группы. Все это происходит в полостях эндоплазматического ретикулума, куда пептид поступает после завершения биосинтеза. Далее нативная белковая молекула переходит в каналы. Они пронизывают цитоплазму и способствуют тому, чтобы пептид попал в определенный участок цитоплазмы и далее использовался для потребностей клетки.

В данной статье мы выяснили, что трансляция и транскрипция в биологии - это основные реакции матричного синтеза, лежащие в основе сохранения и передачи наследственных задатков организма.