Собственный опыт

Постоянная тонкой структуры не изменилась за последние три миллиарда лет. Постоянная тонкой структуры действительно постоянная

Физики из Гарвардского университета под руководством профессора Джеральда Габриэльса (Gerald Gabrielse) осуществили чрезвычайно прецизионный эксперимент, который позволил значительно уточнить численное значение постоянной тонкой структуры . Свои результаты они опубликовала в двух статьях, одновременно появившихся в журнале Physical Review Letters (97, 030801 и 97, 030802). В первой из них представлены данные измерений, во второй - итоговые вычисления.

Постоянная тонкой структуры - ее обозначают греческой буквой «альфа» (α) - была введена немецким физиком-теоретиком Арнольдом Зоммерфельдом в 1916 году, еще до создания квантовой механики. У Зоммерфельда она появилась в расчетах, описывающих дуплетное расщепление энергетических уровней (и, соответственно, спектральных линий) водородоподобного атома модели Бора, обусловленное релятивистскими эффектами. Такое расщепление называется тонкой структурой спектра, отсюда и название константы. Позднее выяснилось, что оно вызвано взаимодействием между орбитальным и спиновым моментами электрона, которое само по себе есть релятивистский эффект.

В 1916 году понятия спина еще не существовало, и Зоммерфельд получил свои результаты, вычисляя энергию электрона с точностью до квадрата отношения его линейной скорости v (которая тогда еще определялась чисто классически) к скорости света c , (v /c ) 2 . В эти расчеты постоянная тонкой структуры вошла как отношение скорости электрона на нижней круговой орбите к скорости света. В системе единиц CGSE она записывается с помощью простой формулы:

Здесь e - заряд электрона, c - скорость света, - редуцированная постоянная Планка, или постоянная Дирака ( = h /2π , где h - постоянная Планка , связывающая величину энергии электромагнитного излучения с его частотой). α - это безразмерная величина, ее численное значение очень близко к 1/137.

Физический смысл постоянной тонкой структуры радикально изменился после создания квантовой электродинамики. В этой теории электрически заряженные частицы взаимодействуют благодаря обмену виртуальными фотонами. Постоянная тонкой структуры там возникает как безразмерный параметр, характеризующий интенсивность этого взаимодействия.

Нагляднее всего роль «альфы» проявляется при расчете различных эффектов с помощью диаграмм Фейнмана , которые служат основным методом приближенных вычислений в квантовой электродинамике. Каждая вершина фейнмановской диаграммы привносит в численное значение амплитуды вычисляемого процесса множитель, равный квадратному корню из альфы. Поскольку возникающие в расчетах внутренние линии имеют по два конца, добавление каждой такой линии дает множитель, пропорциональный альфа. Именно благодаря малости постоянной тонкой структуры в квантовой электродинамике можно производить приближенные расчеты, разлагая вычисляемые величины в ряды по ее степеням. Правда, подсчет некоторых диаграмм дает бесконечности, но в квантовой электродинамике от них можно избавляться в помощью так называемой перенормировки (впрочем, это уже детали).

В конце 60-х годов квантовая электродинамика получила обобщение в виде единой теории электрослабых взаимодействий. В этой теории «альфа» растет пропорционально логарифму характерной энергии физического процесса и потому уже не является константой. Формуле Зоммерфельда соответствует предельное значение «альфы» при минимально возможных энергиях электромагнитного взаимодействия. Поскольку самыми легкими частицами с электрическим зарядом являются электроны и позитроны, этот минимум достигается при энергии, равной массе электрона, умноженной на квадрат скорости света. Согласно некоторым гипотезам, альфа может также зависеть и от времени, однако это пока не доказано.

Квантовая электродинамика не позволяет чисто теоретически найти конкретное значение «силы» электромагнитного взаимодействия. Однако его можно установить, вычислив какую-либо физически наблюдаемую величину, зависящую от α, и затем сравнив этот результат с экспериментом. Именно это и сделали Габриэльс с соавторами. Они воспользовались расчетами внутреннего (спинового) магнитного момента электрона в четвертом порядке теории возмущений, которые в этом году опубликовали профессор Корнелловского университета Тоичиро Киношита и его коллега из Японии Макико Нио (Physical Review D , 73 , 013003, 2006). Для подсчета поправок к опубликованному в 1996 году значению магнитного момента в третьем порядке теории возмущений Киношите и Нио пришлось учесть вклады от 891 фейнмановской диаграммы, что потребовало многолетних аналитических расчетов и вычислений на суперкомпьютере.

Как известно, магнитный момент электрона пропорционален произведению его спина на магнетон Бора . Коэфициент пропорциональности принято обозначать латинской буквой g . Согласно релятивистской теории электрона, сформулированной в 1928 году Полем Дираком, g = 2. Это значение два десятилетия принимали на веру, однако в 1948 году Поликарп Куш и Генри Фоли экспериментально доказали, что g приблизительно равно 2,002. Одновременно один из творцов квантовой электродинамики Юлиус Швингер получил ту же величину теоретически. Квантовая электродинамика объясняет превышение g -фактора над дираковским значением тем, что магнитный момент увеличивается благодаря рождению виртуальных частиц и поляризации вакуума. С тех пор g -фактор не раз измерялся на опыте и подсчитывался на основе уравнений квантовой электродинамики, причем каждый раз результаты совпадали со всё более высокой точностью. В 1987 году Ганс Демелт и его коллеги измерили g -фактор с точностью до четырех триллионных, за что двумя годами позже Ганс Демелт был удостоен Нобелевской премии.

Расчеты Киношиты и Нио позволили представить g -фактор в виде конечного ряда Тейлора, обрывающегося на члене, пропорциональном четвертой степени постоянной тонкой структуры α. Для экспериментальной проверки этого значения точность результатов группы Демелта была недостаточной. Габриэльс и члены его группы заново измерили g -фактор с помощью прибора, который они назвали одноэлектронным циклотроном.

Это устройство было создано Габриэльсом и Стивеном Пейлом еще в конце прошлого десятилетия и с тех пор непрерывно совершенствовалось. Оно представляет из себя небольшую проводящую полость, в которой с помощью переменных электромагнитных полей заперт один-единственный электрон (фактически, это модификация давно известного устройства, называемого ловушкой Пеннинга). При проведении измерений включается магнитное поле, направленное вдоль оси прибора. Присутствие этого поля заставляет электрон двигаться по спирали с циклотронной частотой f c и одновременно прецессировать вокруг вектора поля с частотой f s .

Согласно теории, g -фактор превышает двойку на величину, равную (f s – f c)/f c . Числитель и знаменатель этой дроби и были определены экспериментально. Эти измерения потребовали чрезвычайно точного расчета геометрии внутренней полости ловушки и ее охлаждения до 0,1 К - всё это было необходимо, чтобы обеспечить стабильность электронных орбит, поскольку измерения проводились на протяжении многих часов. Экспериментаторам пришлось даже принять в расчет релятивистские поправки, хотя они были крайне малы из-за очень низкой энергии электрона.

В конечном счете, эксперимент дал значение g /2 = 1,00115965218085, причем возможная ошибка не превышает 0,76 триллионных (то есть точность группы Демелта улучшена шестикратно). Это значение g -фактора позволило вычислить и величину альфа, которая оказалось равной 1/137,035999710 с погрешностью порядка 0,7 миллиардных (десятикратное улучшение по сравнению с предшествующими результатами).

Столь заметное уточнение расчетной величины постоянной тонкой структуры создает возможность для выявления границ квантовой электродинамики. В ее основе лежит предположение, что электрон и позитрон представляют собой точечные частицы. Если, как утверждают некоторые гипотезы, электрон и позитрон обладают внутренней структурой, она должна повлиять на значение альфы. (Правда, постоянная тонкой структуры также включает очень небольшие добавки, обусловленные сильным и слабым взаимодействием, однако физики из группы Габриэльса полагают, что их удастся принять в расчет).

Теперь физикам предстоит вновь как можно точнее измерить постоянную тонкой структуры другими способами (это делается, например, с помощью таких твердотельных феноменов, как эффект Джозефсона и квантовый эффект Холла, а также посредством рассеивания фотонов на атомах рубидия) и сопоставить полученные результаты с оценкой группы Габриэльса. Кто знает, что из этого выйдет?

Источники:
1) B. Odom, D. Hanneke, B. D"Urso, G. Gabrielse. New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron (полный текст PDF, 256 Kb) // Physical Review Letters , 97, 030801 (2006).
2) G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom. New Determination of the Fine Structure Constant from the Electron g Value and QED (полный текст PDF, 200 Kb) // Physical Review Letters , 97, 030802 (2006).
3) Toichiro Kinoshita, Makiko Nio. Improved alpha 4 term of the electron anomalous magnetic moment // Phys. Rev. D 73, 013003 (2006).

Алексей Левин

Cтраница 3


Следует отметить, что хотя в последние годы изучение тонкой структуры сополимеров привлекает большое внимание исследователей, возможности применяемых методов еще весьма ограничены, особенно в отношении характеристики чередования звеньев.  

Интерферометр Фабри - Перо используется в спектроскопии для изучения тонкой структуры спектральных линий.  

Найденные Жиге ром константы вращения на основании изучения тонкой структуры полосы 7040 см совпали с ранее проведенными исследованиями в условиях высокой дисперсии. При варьировании азимутального утла от 0 до 180 получены следующие крайние значения моментов инерции: 1А 2 89 - 2 76; / в 32 0 - 35 1 и / с 35 0 - 32 4 - 10 40 г-смг. Можно видеть, что гармоническая средняя больших моментов почти не зависит от величины, принятой для азимутального угла. Поскольку этот момент в большей степени зависит от недостаточно точно определенного расстояния О - Н, чем от азимутального угла, определение точной величины последнего не имеет существенного значения.  

В аналитической практике ЯМР находит наибольшее применение при изучении тонкой структуры резонанса изолированного ядра; для этого используют спектрометр ЯМР высокого разрешения. Некоторые спектрометры сконструированы только для изучения ядер водорода (протонов), другие позволяют наблюдать также резонанс фтора или фосфора.  

Особое значение придается экспериментальным работам, ставящим себе целью изучение тонкой структуры турбулентных процессов.  

Особое значение придается экспериментальным работам, ставящим себе целью изучение тонкой структуры турбулентных процессов. Существуют специальные институты механики турбулентности, занимающиеся исследованиями разнообразных пространственно-временных статистических характеристик полей пульсационных скоростей и давлений.  

Хорошим материалом для оттенения является уран, особенно при изучении очень тонких структур, поскольку он обладает весьма малым размером кристаллитов; однако уран дорог и, кроме того, окисляется на воздухе, что, по-видимому, приводит к некоторому снижению рассеивающей способности по сравнению с величиной, приведенной в таблице.  

Керен и Реш , а также и Реш , занимались изучением тонкой структуры простых полиэфиров. Так, Реш нашел, что прирост длины полиэтиленгликоле-вой цепи на одну этиленоксидную группу равен - 2 А. Расчет для зигзагообразной цепи по известным величинам атомных расстояний и валентных углов дает для периода идентичности величину 3 4 А. Сокращение длины цепи на 43 % связано с образованием извитой спиральной структуры.  

Измерение эффектов второго порядка используют для получения информации о нелинейности электрохимической кинетики, изучения тонкой структуры двойного электрического слоя.  

Экспериментальные данные, позволившие открыть спин электрона, были получены главным образом при изучении тонкой структуры спектральных линий; краткое описание такой структуры дано в гл. Один из наиболее значительных экспериментов, опыт Штерна - Герлаха, был предложен в 1921 г. немецким физиком Отто Штерном (1888 - 1969) и в том же году выполнен вместе с В. Схема установки, использованной в эксперименте, показана на рис. 3.28. В процессе опыта серебро испарялось в условиях высокого вакуума из печи, расположенной на дне устройства. Узкий пучок атомов серебра, выходивший через калиброванное отверстие, попадал в сильно неоднородное магнитное поле, создаваемое полюсами магнита специальной формы. Затем пучки, отклоненные полем, попадали на фотопластинку и их следы удавалось обнаружить после проявления пластинки. Было установлено, что исходный пучок атомов серебра расщеплялся на два пучка.  

Представление о спине введено в 1925 г. (Уленбек п Гаудсмит) на основе изучения тонкой структуры спектральных линий.  

Этот вид упрочнения трубных сталей относительно точно можно определить по экспериментальным результатам, полученным при изучении тонкой структуры с помощью электронной микроскопии. Субструктурное упрочнение на поздних стадиях своего развития изменяется по параболическому закону.  

Способность растворов полициклических ароматических углеводородов к люминесценции позволяет определять с большой точностью состав смолистых веществ при записи и изучении тонкой структуры спектров низкотемпературной люминесценции в н-окта-не при - 193 С. Определяемая концентрация 3 4-бензпирена лежит в пределах ЦДК.  

Вместе с тем известно, что даже моноатомные по высоте ступени скола являются местами предпочтительного образования зародышей - на этом принципе основана методика изучения тонкой структуры поверхности посредством декорирования. Различные виды обработки поверхности - очистка, скалывание в вакууме, электронная бомбардировка и другие - приводят к заметному изменению плотности зародышей.  

Одним из наиболее важных технических вопросов при исследовании спектров испускания атомов меди и никеля в соединениях и сплавах, еще более усложнившимся при изучении тонкой структуры спектров поглощения этих же элементов, являлся вопрос о поглощении, которое испытывает рентгеновское излучение на пути от антикатода рентгеновской трубки спектрографа до рентгенопленки. В табл. 7 представлены величины, характеризующие проницаемость для медного и никелевого излучения отдельных препятствий, встречаемых рентгеновскими лучами на пути к пленке.  


Названная фундаментальная постоянная микромира: α ≈ 1/137 была введена в физику в 20-е годы Арнольдом Зоммерфельдом для описания энергетических подуровней, обнаруженных экспериментально в спектрах излучения атомов. С тех пор были выявлены и множество других проявлений того же самого постоянного отношения в разнообразных явлениях, связанных с взаимодействиями элементарных частиц. Ведущие физики того времени постепенно осознали значение этого числа, как в мире элементарных частиц, так и в целом – в устройстве нашего мироздания. С этой точки зрения достаточно сказать только, что все основные свойства и характеристики объектов микромира: размеры электронных орбит в атомах, энергии связи (как между элементарными частицами, так и атомами), и тем самым, все физические и химические свойства вещества, определяются величиной этой константы. В дальнейшем, используя названную постоянную, удалось разработать и весьма результативную формальную теорию – современную квантовую электродинамику (КЭД), с фантастической точностью описывающую квантовое электромагнитное взаимодействие.

Из вышесказанного можно судить обо всей важности задачи выяснения физического смысла и причинного механизма возникновения этой постоянной, что является открытым вопросом в физике с тех пор, как она была обнаружена. На языке теоретиков, решение данной задачи означает: назвать ту исходную концепцию возникновения названной константы, исходя из которой последовательными выкладками можно прийти к экспериментально установленному её значению. О значимости же поставленного вопроса можно судить из шуточного высказывания знаменитого физика с мировым именем, Вольфганга Паули : «Когда я умру, первым делом посчитаю спросить у дьявола, – каков смысл постоянной тонкой структуры?» Ну, а Ричард Фейнман считал сам факт существования этого загадочного числа «проклятием для всех физиков» и советовал хорошим теоретикам «зарубить его на стене и всегда думать над ним»!

Представленный вопрос приобрел такое значение, прежде всего, потому что названная постоянная непосредственно связана с проблемой понимания физической сущности элементарных частиц, поскольку она проявляется не раздельно от них, а как их глубинное свойство. Посему многие физики в течение долгих лет упорно пытались решить эту величайшую задачу, применяя разные подходы и методы. Но пока все их усилия не увенчались успехом.

Что же предложено автором? Ему удалось обнаружить, что решение «загадки XX века» на самом деле содержится в наших учебниках и в хорошо известных формулах, относящихся к волнам, если только аккуратно подсчитать! Сказанное означает, что α является классической волновой константой. Но следует предупредить, что самое простейшее объяснение загадки может вызывать недоумение, если изначально мы не склонны слушать то, что нам предлагается. Как показал опыт, представленное решение проблемы весьма трудно воспринимается многими специалистами, хотя верность результата никем и не опровергается!

В чем же заключается причина этого затруднения? К сожалению, ведущие современные теоретики, чрезмерно увлеченные формально-математическими теориями (которые первоначально рассматривались как временный компромиссный вариант), уже успели забыть о существовании в физике нерешенной фундаментальной дилеммы «частицы – волны». В результате трудно встретить физика, которого бы не удивил подход автора – представить частицу как локализовано-стоячую волну (хотя официально это вполне допустимо, в силу той же нерешенной дилеммы). И это притом, что к аналогичному заключению уже давно пришли бесспорные авторитеты физической науки: Эйнштейн , Шредингер , Гейзенберг и др. под давлением весомых аргументов.

Представленный труд и полученный результат, на взгляд автора, может являться серьёзным указанием на правоту убеждений корифеев физики. Но этот вывод в свое время был упорно проигнорирован большинством голосов коллег (поскольку не удалось получить необходимых результатов, подтверждающих верность этого умозаключения). Как следствие, исследования в этой области теоретической физики пошли в неэффективном направлении. Предложенное решение может являться ключом к выявлению физической сущности элементарных частиц и тем самым открывать понятный путь к описанию микромира, альтернативный современным формально-феноменологическим теориям. Однако решающее слово принадлежит здесь глубоко мыслящим экспертам – теоретикам, которые, как мы надеемся, непременно найдутся и дадут объективную оценку представленному труду.

Каким невообразимо странным был бы мир, если бы физические константы могли изменяться! Например, так называемая постоянная тонкой структуры примерно равна 1/137. Если бы она имела другую величину, то между веществом и энергией, возможно, не было бы никакого различия.

Есть вещи, которые никогда не меняются. Ученые называют их физическими константами, или мировыми постоянными. Считается, что скорость света $c$, гравитационная постоянная $G$, масса электрона $m_e$ и некоторые другие величины всегда и везде остаются неизменными. Они образуют основу, на которой зиждутся физические теории, и определяют структуру Вселенной.

Физики прилагают немало усилий, чтобы измерить мировые постоянные со все более высокой точностью, но никому еще не удалось хоть как-то объяснить, почему их значения именно таковы, каковы они есть. В системе СИ $c = 299792458$ м/с, $G = 6,673\cdot 10^{–11}Н\cdot$м$^2$/кг$^2$, $m_e = 9,10938188\cdot10^{–31}$ кг – совершенно не связанные между собой величины, у которых есть лишь одно общее свойство: изменись они хоть немного, и существование сложных атомных структур, в том числе живых организмов, окажется под большим вопросом. Стремление обосновать значения констант стало одним из стимулов к разработке единой теории, полностью описывающей все существующие явления. С ее помощью ученые надеялись показать, что у каждой мировой постоянной может быть только одно возможное значение, обусловленное внутренними механизмами, которые определяют обманчивую произвольность природы.

Лучшим кандидатом на звание единой теории считается М-теория (вариант теории струн), которую можно считать состоятельной в том случае, если Вселенная имеет не четыре пространственно-временных измерения, а одиннадцать. Следовательно, наблюдаемые нами постоянные фактически могут и не быть действительно фундаментальными. Истинные константы существуют в полном многомерном пространстве, а мы видим лишь их трехмерные «силуэты».

ОБЗОР: МИРОВЫЕ КОНСТАНТЫ

1. Во многих физических уравнениях встречаются величины, которые считаются неизменными всюду – в пространстве и времени.

2. В последнее время ученые сомневаются в постоянстве мировых констант. Сравнивая результаты наблюдений квазаров и лабораторных измерений, они приходят к выводу, что химические элементы в далеком прошлом поглощали свет не так, как сегодня. Различие можно объяснить изменением на несколько миллионных долей постоянной тонкой структуры.

3. Подтверждение даже столь малого изменения станет настоящим переворотом в науке. Наблюдаемые константы могут оказаться лишь «силуэтами» истинных постоянных, существующих в многомерном пространстве-времени.

Тем временем физики пришли к выводу, что величины многих постоянных могут быть результатом случайных событий и взаимодействий между элементарными частицами на ранних стадиях истории Вселенной. Теория струн допускает существование огромного количества ($10^{500}$) миров с различными самосогласованными наборами законов и констант (см. «Пейзаж теории струн», «В мире науки», №12, 2004 г. ). Пока же ученые понятия не имеют, почему была отобрана наша комбинация. Возможно, в результате дальнейших исследований количество логически возможных миров снизится до одного, но не исключено, что наша Вселенная – это лишь небольшой участок мультивселенной, в которой реализованы различные решения уравнений единой теории, а мы наблюдаем просто один из вариантов законов природы (см. «Параллельные Вселенные» , «В мире науки», №8, 2003 г. ).В таком случае для многих мировых констант нет никакого объяснения, кроме того, что они составляют редкую комбинацию, допускающую развитие сознания. Возможно, наблюдаемая нами Вселенная стала одним из многих изолированных оазисов, окруженных бесконечностью безжизненного космического пространства – сюрреалистического места, где господствуют совершенно чуждые нам силы природы, а частицы типа электронов и структуры типа атомов углерода и молекул ДНК просто невозможны. Попытка попасть туда обернулась бы неминуемой гибелью.

Теория струн была разработана в том числе и для того, чтобы объяснить кажущуюся произвольность физических постоянных, поэтому в ее основных уравнениях содержится всего несколько произвольных параметров. Но пока она не объясняет наблюдаемые значения констант.

Надежная линейка

На самом деле употребление слова «постоянная» не совсем правомерно. Наши константы могли бы изменяться во времени и в пространстве. Если бы дополнительные пространственные измерения изменялись в размере, константы в нашем трехмерном мире менялись бы вместе с ними. И если бы мы заглянули достаточно далеко в пространство, то могли бы увидеть области, где константы приняли другие значения. Начиная с 1930-х гг. ученые размышляли о том, что константы могут и не быть постоянными. Теория струн придает этой идее теоретическое правдоподобие и делает тем более важным поиск непостоянства.

Первая проблема состоит в том, что сама лабораторная установка может быть чувствительна к изменениям констант. Размеры всех атомов могли бы возрасти, но если бы линейка, которую используют для измерений, тоже стала длиннее, ничего нельзя было бы сказать об изменении размеров атомов. Экспериментаторы обычно предполагают, что эталоны величин (линейки, гири, часы) неизменны, но этого невозможно достичь при проверке констант. Исследователи должны обратить внимание на безразмерные константы – просто числа, не зависящие от системы единиц измерения, например, отношение массы протона к массе электрона.

Изменяется ли внутреннее строение мироздания?

Особый интерес представляет величина $\alpha = e^2/2\epsilon_0 h c$, объединяющая скорость света $c$, электрический заряд электрона $e$, постоянную Планка $h$ и так называемую диэлектрическую постоянную вакуума $\epsilon_0$. Ее называют постоянной тонкой структуры. Впервые она была введена в 1916 г. Арнольдом Зоммерфельдом, который одним из первых попытался применить квантовую механику к электромагнетизму: $\alpha$ связывает релятивистскую (c) и квантовую (h) характеристики электромагнитных (e) взаимодействий, в которых участвуют заряженные частицы в пустом пространстве ($\epsilon_0$). Измерения показали, что эта величина равна 1/137,03599976 (приблизительно 1/137).

Если бы $\alpha $ имела другое значение, то изменился бы весь окружающий мир. Будь она меньше, плотность твердого вещества, состоящего из атомов, уменьшилась бы (про порционально $\alpha^3 $), молекулярные связи разрывались бы при более низких температурах ($\alpha^2 $), а число устойчивых элементов в таблице Менделеева могло бы возрасти ($1/\alpha $). Окажись $\alpha $ слишком большой, малые атомные ядра не могли бы существовать, потому что связывающие их ядерные силы не смогли бы препятствовать взаимному отталкиванию протонов. При $\alpha >0.1 $ не мог бы существовать углерод.

Ядерные реакции в звездах особенно чувствительны к величине $\alpha $. Чтобы мог происходить ядерный синтез, тяготение звезды должно создавать достаточно высокую температуру, чтобы заставить ядра сближаться, несмотря на их тенденцию отталкиваться друг от друга. Если бы $\alpha $ превышала 0,1, то синтез был бы невозможен (если, конечно, другие параметры, например, отношение масс электрона и протона, остались прежними). Изменение $\alpha$ всего на 4% до такой степени повлияло бы на энергетические уровни в ядре углерода, что его возникновение в звездах просто прекратилось бы.

Внедрение ядерных методов

Вторая, более серьезная, экспериментальная проблема связана с тем, что для измерения изменений констант требуется высокоточное оборудование, которое должно быть чрезвычайно стабильным. Даже с помощью атомных часов дрейф постоянной тонкой структуры можно отслеживать на протяжении лишь нескольких лет. Если бы $\alpha $ изменялась больше чем на 4 $\cdot$ $10^{–15}$ за три года, самые точные часы позволили бы это обнаружить. Однако ничего подобного пока зарегистрировано не было. Казалось бы, чем не подтверждение постоянства? Но три года для космоса – мгновение. Медленные, но существенные изменения в течение истории Вселенной могут пройти незамеченными.

СВЕТ И ПОСТОЯННАЯ ТОНКОЙ СТРУКТУРЫ

К счастью, физики нашли другие способы проверки. В 1970-х гг. ученые французской Комиссии по ядерной энергии заметили некоторые особенности в изотопном составе руды из урановой шахты в Окло в Габоне (Западная Африка): она напоминала отходы ядерного реактора. Видимо, приблизительно 2 млрд. лет назад в Окло образовался естественный ядерный реактор (см. «Божественный реактор», «В мире науки», №1, 2004 г.).

В 1976 г. Александр Шляхтер (Alexander Shlyakhter) из Ленинградского института ядерной физики заметил, что работоспособность естественных реакторов критически зависит от точной энергии определенного состояния ядра самария, которое обеспечивает захват нейтронов. А сама энергия сильно связана с величиной $\alpha $. Так, если бы постоянная тонкой структуры была немного другой, никакая цепная реакция, возможно, не произошла бы. Но она действительно происходила, а значит, за прошедшие 2 млрд. лет постоянная не изменилась больше, чем на 1 $\cdot$ $10^{–8}$. (Физики продолжают спорить о точных количественных результатах из-за неизбежной неуверенности в условиях в естественном реакторе.)

В 1962 г. Джеймс Пиблс (P. James E. Peebles) и Роберт Дик (Robert Dicke) из Принстонского университета первыми применили подобный анализ к древним метеоритам: относительная распространенность изотопов, являющаяся результатом их радиоактивного распада, зависит от $\alpha $. Самое чувствительное ограничение связано с бета-распадом при превращении рения в осмий. Согласно недавней работе Кейта Олива (Keith Olive) из Миннесотского университета и Максима Поспелова (Maxim Pospelov) из Университета Виктории в Британской Колумбии, в то время, когда формировались метеориты, $\alpha$ отличалась от нынешнего значения на 2 $\cdot$ $10^{–6}$. Этот результат менее точен, чем данные, полученные в Окло, но он уходит дальше в глубь времен, к возникновению Солнечной системы 4,6 млрд. лет назад.

Чтобы исследовать возможные изменения на еще более длинных промежутках времени, исследователи должны обратить взор к небесам. Свет от отдаленных астрономических объектов идет к нашим телескопам миллиарды лет и несет отпечаток законов и мировых констант тех времен, когда он только начал свое путешествие и взаимодействие с веществом.

Спектральные линии

Астрономы ввязались в историю с константами вскоре после открытия квазаров в 1965 г., которые были только что обнаружены и идентифицированы как яркие источники света, расположенные на огромных расстояниях от Земли. Поскольку путь света от квазара до нас настолько велик, он неизбежно пересекает газообразные окрестности молодых галактик. Газ поглощает свет квазара на специфических частотах, отпечатывая штрих-код из узких линий на его спектре (см. врезку внизу).

ПОИСК ИЗМЕНЕНИЙ В ИЗЛУЧЕНИИ КВАЗАРА

Когда газ поглощает свет, электроны, содержащиеся в атомах, перескакивают с низких энергетических уровней на более высокие. Уровни энергии определяются тем, насколько сильно атомное ядро удерживает электроны, что зависит от силы электромагнитного взаимодействия между ними и, следовательно, от постоянной тонкой структуры. Если она была другой в тот момент времени, когда свет был поглощен, или в какой-то конкретной области Вселенной, где это происходило, то энергия, требуемая для перехода электрона на новый уровень, и длины волн переходов, наблюдаемых в спектрах, должны отличаться от наблюдаемых сегодня в лабораторных экспериментах. Характер изменения длин волн критически зависит от распределения электронов на атомных орбитах. При заданном изменении $\alpha$ одни длины волн уменьшаются, другие – увеличиваются. Сложную картину эффектов трудно спутать с ошибками калибровки данных, что делает такой эксперимент чрезвычайно полезным.

Приступив к работе семь лет назад, мы столкнулись с двумя проблемами. Во-первых, длины волн многих спектральных линий не были измерены с достаточной точностью. Как ни странно, о спектрах квазаров, удаленных на миллиарды световых лет, ученые знали гораздо больше, чем о спектрах земных образцов. Нам нужны были лабораторные измерения высокой точности, чтобы сравнить с ними спектры квазара, и мы убедили экспериментаторов провести соответствующие измерения. Они были выполнены Энн Торн (Anne Thorne) и Джульет Пикеринг (Juliet Pickering) из Имперского колледжа в Лондоне, а затем группами во главе со Свенериком Иохансоном (Sveneric Johansson) из Лундской обсерватории в Швеции, а также Ульфом Грисманном (Ulf Griesmann) и Рэйнером Клингом (Rainer Kling) из Национального института стандартов и технологии в штате Мэриленд.

Вторая проблема состояла в том, что предыдущие наблюдатели использовали так называемые щелочные дублеты – пары линий поглощения, возникающие в атомарных газах углерода или кремния. Они сравнивали интервалы между этими линиями в спектрах квазара с лабораторными измерениями. Однако такой метод не позволял использовать одно специфическое явление: вариации $\alpha $ вызывают не только изменение интервала между уровнями энергии атома относительно уровня с самой низкой энергией (основное состояние), но и изменение положения самого основного состояния. Фактически второй эффект даже более силен, чем первый. В результате точность наблюдений составила всего 1 $\cdot$ $10^{–4}$.

В 1999 г. один из авторов статьи (Веб) и Виктор Фламбаум (Victor V. Flambaum) из Университета Нового Южного Уэльса в Австралии разработали методику, позволяющую принимать во внимание оба эффекта. В результате чувствительность удалось увеличить в 10 раз. Кроме того, появилась возможность сравнивать различные виды атомов (например, магний и железо) и проводить дополнительные перекрестные проверки. Пришлось выполнить сложные расчеты, чтобы точно установить, как наблюдаемые длины волн меняются в атомах различных типов. Вооружившись современными телескопами и датчиками, мы решили проверить постоянство $\alpha $ с беспрецедентной точностью по новому методу многих мультиплетов.

Пересмотр взглядов

Приступая к экспериментам, мы просто хотели с более высокой точностью установить, что величина постоянной тонкой структуры в древние времена была такой же, как сегодня. К нашему удивлению, результаты, полученные в 1999 г., показали небольшие, но статистически существенные различия, которые впоследствии подтвердились. Используя данные по 128 линиям поглощения квазара, мы зарегистрировали увеличение $\alpha$ на 6 $\cdot$ $10^{–6}$ за прошедшие 6–12 млрд. лет.

Результаты измерений постоянной тонкой структуры не позволяют сделать окончательных выводов. Некоторые из них указывают, что когда-то она была меньше, чем сейчас, а некоторые – нет. Возможно, α менялась в далеком прошлом, но теперь стала постоянной. (Прямоугольники изображают диапазон изменения данных.)

Смелые утверждения требуют состоятельных доказательств, так что первым нашим шагом стал тщательный пересмотр методов сбора данных и их анализа. Ошибки измерения можно разделить на два типа: систематические и случайные. Со случайными неточностями все просто. В каждом отдельном измерении они принимают разные значения, которые при большом количестве измерений усредняются и стремятся к нулю. С систематическими ошибками, которые не усредняются, бороться труднее. В астрономии неопределенности такого рода встречаются на каждом шагу. В лабораторных экспериментах настройку приборов можно менять, чтобы минимизировать ошибки, но астрономы не могут «подстроить» Вселенную, и им приходится признавать, что все их методы сбора данных содержат неустранимые смещения. Например, наблюдаемое пространственное распределение галактик заметно смещено в сторону ярких галактик, потому что их легче наблюдать. Идентификация и нейтрализация таких смещений – постоянная задача для наблюдателей.

Сначала мы обратили внимание на возможное искажение масштаба длин волн, относительно которого измерялись спектральные линии квазара. Оно могло возникнуть, например, во время переработки «сырых» результатов наблюдения квазаров в калиброванный спектр. Хотя простое линейное растяжение или сжатие масштаба длины волны не могло точно имитировать изменение $\alpha$, даже приблизительного сходства было бы достаточно для объяснения полученных результатов. Постепенно мы исключили простые ошибки, связанные с искажениями, подставляя вместо результатов наблюдения квазара калибровочные данные.

Более двух лет мы разбирались с различными причинами смещения, чтобы убедиться, что их влияние пренебрежимо мало. Мы обнаружили только один потенциальный источник серьезных ошибок. Речь идет о линиях поглощения магния. Каждый из трех устойчивых его изотопов поглощает свет с разными длинами волн, которые очень близки друг к другу и в спектрах квазаров видны как одна линия. Исходя из лабораторных измерений относительной распространенности изотопов, исследователи судят о вкладе каждого из них. Их распределение в молодой Вселенной могло бы существенно отличаться от современного, если бы звезды, которые испускали магний, в среднем были более тяжелыми, чем их сегодняшние аналоги. Такие различия могли бы имитировать изменение $\alpha $.Но результаты исследования, опубликованного в этом году, указывают, что наблюдаемые факты не так легко объяснить. Йеш Феннер (Yeshe Fenner) и Брэд Гибсон (Brad K. Gibson) из Технологического университета Суинберна в Австралии и Майкл Мэрфи (Michael T. Murphy) из Кембриджского университета пришли к выводу, что распространенность изотопов, необходимая для имитации изменения $\alpha$, приводила бы также к избыточному синтезу азота в ранней Вселенной, что совершенно не соответствует наблюдениям. Таким образом, мы должны смириться с вероятностью того, что $\alpha $ действительно изменялась.

ИНОГДА МЕНЯЕТСЯ, ИНОГДА – НЕТ

Согласно гипотезе, выдвинутой авторами статьи, в одни периоды космической истории постоянная тонкой структуры оставалась неизменной, а в другие – возрастала. Экспериментальные данные (см. предыдущую врезку) согласуются с этим предположением.

Научное сообщество сразу оценило значение полученных нами результатов. Исследователи спектров квазаров всего мира тут же занялись измерениями. В 2003 г. научно-исследовательские группы Сергея Левшакова (Sergei Levshakov) из Санкт-Петербургского физикотехнического института им. Иоффе и Ральфа Кваста (Ralf Quast) из Гамбургского университета изучили три новые системы квазаров. В прошлом году Хам Чанд (Hum Chand) и Рагунатан Шринанд (Raghunathan Srianand) из Межуниверситетского центра астрономии и астрофизики в Индии, Патрик Птижан (Patrick Petitjean) из Института астрофизики и Бастьен Арасиль (Bastien Aracil) из LERMA в Париже проанализировали еще 23 случая. Ни одна из групп не обнаружила изменения $\alpha $. Чанд утверждает, что любое изменение за интервал от 6 до 10 млрд. лет назад должно быть меньше, чем одна миллионная.

Почему похожие методики, использованные для анализа различных исходных данных, привели к такому радикальному несоответствию? Ответ пока неизвестен. Результаты, полученные упомянутыми исследователями, имеют превосходное качество, но объем их выборок и возраст проанализированного излучения существенно меньше, чем у нас. К тому же Чанд использовал упрощенную версию многомультиплетного метода и не проводил полную оценку всех экспериментальных и систематических ошибок.

Известный астрофизик Джон Бэкол (John Bahcall) из Принстона подверг критике сам многомультиплетный метод, но проблемы, на которые он обращает внимание, относятся к категории случайных ошибок, которые сводятся к минимуму при использовании больших выборок. Бэкол, а также Джефри Ньюман (Jeffrey Newman) из Национальной лаборатории им. Лоуренса в Беркли рассматривали линии испускания, а не поглощения. Их подход намного менее точен, хотя в будущем, возможно, окажется полезным.

Законодательная реформа

Если наши результаты окажутся правильными, последствия будут огромны. До недавнего времени все попытки оценить, что произошло бы с Вселенной, если бы постоянная тонкой структуры изменилась, были неудовлетворительными. Они не шли дальше рассмотрения $\alpha$ как переменной в тех же формулах, которые были получены в предположении, что она постоянна. Согласитесь, весьма сомнительный подход. Если $\alpha $ изменяется, то энергия и импульс в связанных с ней эффектах должны сохраняться, что должно влиять на гравитационное поле во Вселенной. В 1982 г. Якоб Бекенштейн (Jacob D. Bekenstein) из Еврейского университета в Иерусалиме впервые обобщил законы электромагнетизма для случая непостоянных констант. В его теории $\alpha $ рассматривается как динамическая компонента природы, т.е. как скалярное поле. Четыре года назад один из нас (Бэрроу) вместе с Хеуордом Сэндвиком (Håvard Sandvik) и Хояо Магуэйхо (João Magueijo) из Имперского колледжа в Лондоне расширили теорию Бекенштейна, включив в нее учет сил тяготения.

Предсказания обобщенной теории заманчиво просты. Поскольку электромагнетизм в космических масштабах намного слабее гравитации, изменения $\alpha$ на несколько миллионных не оказывают на расширение Вселенной заметного влияния. А вот расширение существенно влияет на $\alpha $ за счет несоответствия между энергиями электрического и магнитного полей. В течение первых десятков тысяч лет космической истории излучение доминировало над заряженными частицами и поддерживало баланс между электрическим и магнитным полями. По мере расширения Вселенной излучение разреживалось, и доминирующим элементом космоса стало вещество. Электрические и магнитные энергии оказались неравными, и $\alpha $ начала возрастать пропорционально логарифму времени. Приблизительно 6 млрд. лет назад начала преобладать темная энергия, ускорившая расширение, которое затрудняет распространение всех физических взаимодействий в свободном пространстве. В результате $\alpha$ снова стала почти постоянной.

Описанная картина согласуется с нашими наблюдениями. Спектральные линии квазара характеризуют тот период космической истории, когда доминировала материя и $\alpha$ возрастала. Результаты лабораторных измерений и исследований в Окло соответствуют периоду, когда доминирует темная энергия и $\alpha$ постоянна. Особенно интересно дальнейшее изучение влияния изменения $\alpha$ на радиоактивные элементы в метеоритах, потому что оно позволяет исследовать переход между двумя названными периодами.

Альфа – это только начало

Если постоянная тонкой структуры изменяется, то материальные объекты должны падать по-разному. В свое время Галилей сформулировал слабый принцип эквивалентности, согласно которому тела в вакууме падают с одинаковой скоростью независимо от того, из чего они состоят. Но изменения $\alpha$ должны порождать силу, действующую на все заряженные частицы. Чем больше протонов содержит атом в своем ядре, тем сильнее он будет чувствовать ее. Если выводы, сделанные при анализе результатов наблюдения квазаров, верны, то ускорение свободного падения тел из различных материалов должно отличаться примерно на 1 $\cdot$ $10^{–14}$. Это в 100 раз меньше, чем можно измерить в лаборатории, но достаточно много, чтобы обнаружить различия в таких экспериментах, как STEP (проверка принципа эквивалентности в космосе).

В предыдущих исследованиях $\alpha $ ученые пренебрегали неоднородностью Вселенной. Подобно всем галактикам, наш Млечный путь приблизительно в миллион раз более плотен, чем космическое пространство в среднем, так что он не расширяется вместе со Вселенной. В 2003 г. Бэрроу и Дэвид Мота (David F. Mota) из Кембриджа вычислили, что $\alpha$ может вести себя по-разному в пределах галактики и в более пустых областях пространства. Как только молодая галактика уплотняется и, релаксируя, приходит в гравитационное равновесие, $\alpha$ становится постоянной внутри галактики, но продолжает меняться снаружи. Таким образом, эксперименты на Земле, в которых проверяется постоянство $\alpha$, страдают от предвзятого выбора условий. Нам еще предстоит разобраться, как это сказывается на проверке слабого принципа эквивалентности. Никакие пространственные вариации $\alpha$ пока еще не были замечены. Полагаясь на однородность реликтового излучения, Бэрроу недавно показал, что $\alpha $ не изменяется больше чем на 1 $\cdot$ $10^{–8}$ между областями небесной сферы, отстоящими на $10^o$.

Нам остается ждать появления новых данных и проведения новых исследований, которые окончательно подтвердят или опровергнут гипотезу об изменении $\alpha $. Исследователи сосредоточились именно на этой константе просто потому, что эффекты, обусловленные ее вариациями, легче заметить. Но если $\alpha $ действительно непостоянна, то другие константы тоже должны изменяться. В таком случае нам придется признать, что внутренние механизмы природы гораздо сложнее, чем мы предполагали.

ОБ АВТОРАХ:
Джон Бэрроу (John D. Barrow) , Джон Веб (John K. Webb) занялись исследованием физических постоянных в 1996 г. во время совместного творческого отпуска в Сассекском университете в Англии. Тогда Бэрроу исследовал новые теоретические возможности изменения констант, а Веб занимался наблюдениями квазаров. Оба автора пишут научно-популярные книги и часто выступают в телевизионных программах.

Л.И. Холодов, И.В. Горячев

Соображения о физическом смысле постоянной тонкой структуры

Нашим соображениям мы предпошлем полное изложение статьи Георгия Кирокосяна «Физический смысл постоянной тонкой структуры», которая была опубликована в Интернете 7.12.2010 г., так как в ней, по нашему мнению, достаточно хорошо показана история постоянной тонкой структуры, как «загадки XX века».

«Названная фундаментальная постоянная микромира: α ≈ 1/137 была введена в физику в 20-е годы Арнольдом Зоммерфельдом для описания энергетических подуровней, обнаруженных экспериментально в спектрах излучения атомов. С тех пор были выявлены и множество других проявлений того же самого постоянного отношения в разнообразных явлениях, связанных с взаимодействиями элементарных частиц. Ведущие физики того времени постепенно осознали значение этого числа, как в мире элементарных частиц, так и в целом – в устройстве нашего мироздания. С этой точки зрения достаточно сказать только, что все основные свойства и характеристики объектов микромира: размеры электронных орбит в атомах, энергии связи (как между элементарными частицами, так и атомами), и тем самым, все физические и химические свойства вещества, определяются величиной этой константы. В дальнейшем, используя названную постоянную, удалось разработать и весьма результативную формальную теорию – современную квантовую электродинамику (КЭД), с фантастической точностью описывающую квантовое электромагнитное взаимодействие.

Из вышесказанного можно судить обо всей важности задачи выяснения физического смысла и причинного механизма возникновения этой постоянной, что является открытым вопросом в физике с тех пор, как она была обнаружена. На языке теоретиков, решение данной задачи означает: назвать ту исходную концепцию возникновения названной константы, исходя из которой последовательными выкладками можно прийти к экспериментально установленному её значению. О значимости же поставленного вопроса можно судить из шуточного высказывания знаменитого физика с мировым именем, Вольфганга Паули: «Когда я умру, первым делом посчитаю спросить у дьявола, – каков смысл постоянной тонкой структуры?» Ну, а Ричард Фейнман считал сам факт существования этого загадочного числа «проклятием для всех физиков» и советовал хорошим теоретикам «зарубить его на стене и всегда думать над ним»!

Представленный вопрос приобрел такое значение, прежде всего, потому что названная постоянная непосредственно связана с проблемой понимания физической сущности элементарных частиц, поскольку она проявляется не раздельно от них, а как их глубинное свойство. Посему многие физики в течение долгих лет упорно пытались решить эту величайшую задачу, применяя разные подходы и методы. Но пока все их усилия не увенчались успехом.

Что же предложено автором? Ему удалось обнаружить, что решение «загадки XX века» на самом деле содержится в наших учебниках и в хорошо известных формулах, относящихся к волнам, если только аккуратно подсчитать! Сказанное означает, что α является классической волновой константой. Но следует предупредить, что самое простейшее объяснение загадки может вызывать недоумение, если изначально мы не склонны слушать то, что нам предлагается. Как показал опыт, представленное решение проблемы весьма трудно воспринимается многими специалистами, хотя верность результата никем и не опровергается!

В чем же заключается причина этого затруднения? К сожалению, ведущие современные теоретики, чрезмерно увлеченные формально-математическими теориями (которые первоначально рассматривались как временный компромиссный вариант), уже успели забыть о существовании в физике нерешенной фундаментальной дилеммы «частицы – волны». В результате трудно встретить физика, которого бы не удивил подход автора – представить частицу как локализовано-стоячую волну (хотя официально это вполне допустимо, в силу той же нерешенной дилеммы). И это притом, что к аналогичному заключению уже давно пришли бесспорные авторитеты физической науки: Эйнштейн, Шредингер, Гейзенберг и др. под давлением весомых аргументов.

Представленный труд и полученный результат, на взгляд автора, может являться серьёзным указанием на правоту убеждений корифеев физики. Но этот вывод в свое время был упорно проигнорирован большинством голосов коллег (поскольку не удалось получить необходимых результатов, подтверждающих верность этого умозаключения). Как следствие, исследования в этой области теоретической физики пошли в неэффективном направлении. Предложенное решение может являться ключом к выявлению физической сущности элементарных частиц и тем самым открывать понятный путь к описанию микромира, альтернативный современным формально-феноменологическим теориям. Однако решающее слово принадлежит здесь глубоко мыслящим экспертам – теоретикам, которые, как мы надеемся, непременно найдутся и дадут объективную оценку представленному труду».