Работа

Технологические процессы сборки. Технология сборки машин

Основные виды столярных соединений. Столярные изделия состоят из отдельных деталей. Деталью называют простейшую составную часть столярного изделия. Размеры и формы детали задаются чертежом изделия. Детали могут быть цельными и составными.

Цельные детали изготовляют из массивной древесины, а составные склеивают из листов шпона, некондиционных обрезков столярных заготовок или вырезают из фанеры, столярной, древесноволокнистой или древесностружечной плиты.

Детали собирают в сборочные единицы. Основными сборочными единицами являются щиты, рамки и коробки.

Сборочные единицы собираются в группы, а группы - в изделия. Группой является оконная створка с форточкой, тумба письменного стола.

При сборке столярных изделий применяют неподвижные и подвижные, разъемные и неразъемные соединения.

Неподвижные и неразъемные соединения осуществляются с помощью столярных вязок на клею, а также путем соединения гвоздями, металлическими шпильками или скрепками и деревянными нагелями.

Подвижные и разъемные соединения крепят шурупами, болтами, специальными металлическими или пластмассовыми креплениями.

Имеются следующие типы столярных соединений (ГОСТ 9330-76):

  • шиповое соединение брусков под углом;
  • шиповое соединение щитов под углом;
  • сращивание брусков или соединение брусков торцами по длине;
  • сплачивание щитов или соединение делянок продольными

кромками.

При сборке соединяемые бруски и щиты должны иметь правильную геометрическую форму, точные в пределах допуска габаритные размеры, быть гладко выстроганы.

Соединения брусков под углом могут быть концевыми или серединными. Элементами соединения брусков под углом являются шип, гнездо, проушина, шкант и т.д. Шипом называется концевая часть бруска, обработанная на станке, которая входит в соответствующее отверстие (гнездо или проушину) другого бруска, сопрягаемого с первым. У шипа (рис. 4.7) различают боковые грани 2, заплечики 3 и вершину 1.

Концевые шиповые соединения брусков под углом имеют следующие виды: на шип открытый несквозной (см. рис. 4.7, а) и сквозной (см. рис. 4.7, 6 ), который может быть одинарным, двойным или тройным; на шип с полупотемком (часть шипа снимается не на полную длину) несквозной (см. рис. 4.7, в) и сквозной (см. рис. 4.7, г); на шип с потемком (укороченный) несквозной (см. рис. 4.7, д) и сквозной (см. рис. 4.7, е); на круглый вставной шип - шкант (см. рис. 4.7, ж) на «ус» со вставным шипом несквозным (см. рис. 4.7, з) или сквозным (см. рис. 4.7, и).

Серединные шиповые соединения брусков под углом могут выполняться на прямой шип несквозной и сквозной, в паз и гребень, в «ласточкин хвост» и на круглый вставной шип (шкант).

Угловое ящичное соединение может быть концевое, когда конец одного щита соединяют с концом другого, и серединное, когда конец одного щита соединяют с серединой другого.

Концевое ящичное соединение под углом может быть осуществлено на прямой открытый шип, на круглый вставной шип.

Рис. 4.7.

А - шип: 7 - вершина шипа; 2 - боковая грань; 3 - заплечик; Б - гнездо; В - проушина; а - открытый несквозной шип; б - открытый сквозной шип; в - с полу-потемком несквозной шип; г - с полупотемком сквозной шип; б - с потемком несквозной шип; е - с потемком сквозной шип; ж - круглый вставной шип (шкант); з - на «ус» со вставным несквозным шипом; и - на «ус» со вставным сквозным шипом

Серединное ящичное соединение под углом может быть в паз и гребень, на шип «ласточкин хвост», на круглый вставной шип (шкант).

Соединение брусков торцами по длине может быть выполнено тремя способами: соединением на зубчатый шип (рис. 4.8, а), на «ус» (рис. 4.8, б) и впритык (рис. 4.8, в). Зубчатое соединение выполняют по ширине детали и толщине.

Рис. 4.8. Соединение брусков по длине: а - на зубчатый шип; 6 - на «ус»; в - впритык

Соединение делянок продольными кромками (сплачивание щитов) может производиться на гладкую фугу, в паз и гребень, на рейку и в четверть.

Общая сборка сборочных единиц в изделия. Перед сборкой сборочные единицы и детали комплектуют. Сборка может быть последовательно-расчлененной и параллельно-расчлененной.

Последовательно-расчлененная сборка представляет собой порядок работы, когда все изделие собирают из деталей последовательно, начиная от каркаса. При этом никакие промежуточные сборочные единицы не собирают.

Параллельно-расчлененная сборка характерна тем, что вначале детали собирают в отдельные сборочные единицы, а затем уже из них собирают все изделие.

Технологический процесс сборки изделия разделяется на следующие операции: сборка каркаса или корпуса изделия; постановка и закрепление неподвижных сборочных единиц или деталей, усиливающих основную конструкцию; установка подвижных частей изделия, закрепляемых в направляющих или на шарнирах; крепление второстепенных деталей (раскладок, штапиков).

Каркас или корпус изделия собирают из основных сборочных единиц и деталей, несущих главную нагрузку. Общую сборку производят с помощью шиповых соединений, клея, болтов, винтов, металлических скреп и различного рода стяжек.

Общая сборка, как и сборка сборочных единиц, требует обжима собираемого изделия и фиксации собираемых частей в определенном положении в момент соединения. Для этой цели применяют сборочные станки (ваймы, стапеля) и различные приспособления.

Возможны случаи, когда общая сборка изделий не производится на предприятии. При соблюдении всех технических и технологических требований производства некоторые изделия, например корпусную мебель разборной конструкции, можно выпускать комплектами отдельных сборочных единиц и деталей и собирать в магазине или у потребителя. На предприятии производят контрольную сборку части комплектов из каждой партии изделий.

Организация общей сборки. Различают стапельную и конвейерную сборку изделий. При стапельной сборке изделия собирают от начала до конца на одном рабочем месте на сборочном станке или приспособлении, при конвейерной сборке - на ряде рабочих мест, расположенных последовательно одно за другим.

За каждым рабочим местом закрепляется определенная сборочная операция. Для перемещения собираемого изделия при конвейерной сборке применяют специальные конвейеры, которые могут быть распределительными и рабочими.

Распределительный конвейер предназначен для транспортирования собираемых элементов изделия. Рабочие места и сборочные станки располагаются последовательно вдоль конвейера с одной или двух сторон.

Рабочий конвейер - это такой вид поточного производства, при котором сборка изделий производится на самом транспортном устройстве без съема с него изделий.

Сборка на рабочем конвейере является более совершенным процессом по сравнению со сборкой на распределительном конвейере. Работа на рабочем конвейере протекает по единому ритму, т.е. каждая отдельная операция выполняется за одно и то же время.

Рабочие сборочные конвейеры имеют пульсирующее или периодическое движение. На время выполнения операции конвейер останавливается, по окончании операции он продвигается на длину рабочего места.

Сборка деталей и сборочные единицы. Детали в сборочные единицы собирают с помощью столярных соединений и клея. Последовательность сборки деталей такая:

  • нанесение клея на сопрягаемые поверхности;
  • предварительная сборка путем вставки шипов в гнезда и проушины;
  • обжатие сборочной единицы для плотного соединения всех деталей;
  • выдержка до отверждения клея.

Если собираемая сборочная единица должна иметь дополнительно крепление в виде винтов, металлических скреп, болтов, то их ставят после обжатия сборочной единицы.

Клей наносят на обе склеиваемые поверхности. В шиповом соединении намазывают клеем шипы и проушины. Обычно эта операция выполняется вручную путем окунания шипов в ванну с клеем, в проушины гнезда клей можно впрыскивать форсунками.

Предварительная сборка может отсутствовать, если обжатие сборочных единиц осуществляется в сборочных станках с многосторонним действием. Качественную и точную массовую сборку сборочных единиц можно обеспечить только при условии точного изготовления деталей на станках.

Детали должны быть взаимозаменяемыми. Для этого их изготовляют по системе допусков и посадок. Если это условие не соблюдено, то сборка потребует дополнительной ручной подгонки деталей. Операция подгонки часто оказывается более трудоемкой, чем весь процесс сборки сборочной единицы.

Оборудование для сборочных работ. Сборочные единицы для плотного соединения всех деталей обжимают на сборочных станках. Сборочные станки состоят из приспособления для фиксации собираемых деталей и обжимного механизма, приводимого в действие электродвигателем, сжатым воздухом или вручную.

Наибольшее распространение в столярно-мебельном производстве получили сборочные станки с пневматическим обжимным механизмом. В зависимости от конструкции сборочные единицы требуют обжатия в одном или двух взаимно перпендикулярных направлениях или в двух направлениях по диагонали (при сборке рамок соединениями на «ус»).

Станок, изображенный на рис. 4.9, а , обжимает рамку или коробку только в одном направлении, поэтому на нем собирают простые рамки и коробки без продольных средников. Второй

станок (рис. 4.9, б) обжимает рамку с двух сторон: на этом станке можно собирать сложные рамки и коробки с продольными средниками.

Рис. 4.9. Схемы сборочных станков:

а - с односторонним обжимом; б - с двусторонним обжимом; 7 - неподвижный упор; 2 - продольные бруски рамки; 3 - поперечные бруски; 4 - подвижный упор; 5 - направляющие; 6,8 - пневмоцилиндры; 7 - продольный средник

На станках работают следующим образом. Детали кладут на платформу станка в определенном порядке. При этом сопрягаемые поверхности располагают одну напротив другой на некотором расстоянии. Включают привод пневмоцилиндра, и рамка обжимается.

На станке с двусторонним обжимом цилиндры включаются поочередно. Вначале включают цилиндр 8 для соединения продольного средника 7 с поперечным, а затем пневмоцилиндры б для обжима всей рамки.

Точность изготовления сборочных единиц. Собранные единицы должны удовлетворять следующим основным техническим требованиям:

  • размеры должны соответствовать заданным по чертежу;
  • они должны иметь правильную геометрическую форму, без перекосов;
  • шиповые соединения должны быть плотными и прочными.

Выполнение этих требований зависит от точности изготовления собираемых деталей, от положения фиксаторов и направляющих в сборочном станке и от давления прижима.

Точность размеров собранной единицы определяется точностью размеров деталей. Величина возможных отклонений для разных измерений будет различной. Внутренние размеры рамки будут иметь меньшие отклонения, чем наружные.

Объясняется это тем, что отклонения внутренних размеров рамки определяются только отклонением в расстоянии между заплечиками шипов на брусках, в то время как отклонения наружного размера рамки складываются из отклонений внутреннего размера и отклонений ширины продольных брусков рамки.

Размеры собранных единиц могут колебаться также от неравномерного обжима или от неравномерностей усадки древесины ввиду разной твердости. Отклонения от правильной формы (перекосы) могут быть следствием неточной обработки деталей или неравномерного обжима сборочной единицы в разных частях.

Когда к точности внутренних размеров рамки или коробки предъявляются жесткие требования, при обжиме рамки необходимо в ее просвет вставлять жесткий металлический шаблон, который будет служить своего рода калибром. Для контроля формы сборочных единиц пользуются шаблонами и угольниками.

Выдержка сборочных единиц после сборки. Сборочные единицы, собранные на клею, перед последующей обработкой должны пройти выдержку для отверждения клеевых швов. Если сборочные единицы направить сразу после сборки на дальнейшую обработку, клеевой шов может разрушиться, сборочная единица потеряет прочность и форму.

Продолжительность выдержки зависит от вида клея, температурных условий, конструкции сборочной единицы и характера последующей обработки. Время выдержки без подогрева для сборочных единиц, собранных шиповыми соединениями, должно составлять 24 ч.

Продолжительность выдержки можно сократить (до 30-45 мин), если сборочные единицы подогревать, особенно при склеивании смоляными клеями, для чего их помещают в камеры с подогретым воздухом (65-70°С).

Самым эффективным методом подогрева является подогрев токами высокой частоты. Время выдержки может быть доведено до 1-2 мин.

Сборка - это образование разъемных или неразъемных соединений составных частей заготовки или изделия. Сборка может осуществляться простым соединением деталей, их запрессовкой, свинчиванием, сваркой, пайкой, клейкой и т. д. В зависимости от типа производства затраты времени на сборочные работы составляют от общей трудоемкости: в массовом и крупносерийном производстве 20… 30 %; серийном - 25… 35%; в единичном и мелкосерийном – 35… 40%. В различных отраслях машиностроения доля сборочных работ различна: в тяжелом машиностроении 30… 35%; в станкостроении 25… 30%; в автомобилестроении 18… 20%; в приборостроении 40… 45% Основная часть слесарно-сборочных работ – это ручные работы, т. е работы требующие больших затрат физического труда и высокой квалификации рабочих.

Рабочие места сборки резьбовых соединений оснащаются винто-, гайко-, шпильковертами. Поворотные столы используют при ручной и автоматизированной сборке изделий массой до 50 кг. Манипуляторы для передачи деталей имеют строго заданную траекторию перемещения, снабжены захватными органами различной конструкции грузоподъмностью до 20 кг. В процессе сборки осуществляется контроль с применением универсальных и специальных мерительных средств и приспособлений.

По объему paзделяют общую сборку, результатом которой является изделие в целом, и узловую сборку, результатом которой является составная часть изделия, т. е. сборочная единица или узел. В условиях единичного и мелкосерийного типов производства основная часть сборочных работ выполняется на общей сборке и лишь малая их доля осуществляется над отдельными сборочными единицами. С увеличением серийности производства сборочные работы все больше разделяются на отдельные сборочные единицы, а в условиях массового и крупносерийного типов производств объем узловой сборки становится равным или даже превосходит объем общей сборки. Это в значительной мере способствует механизации и автоматизации сборочных работ и повышению их производительности.

По стадиям процесса сборка подразделяется на предварительную, промежуточную, сборку под сварку, окончательную и др. Предварительная сборка, т. е. сборка заготовок, составных частей или изделий, которые в последующем подлежат разборке. Промежуточная сборка, т. е. сборка заготовок, выполняемая для дальнейшей их совместной обработки. Например, предварительная сборка корпуса редуктора с крышкой для последующей совместной обработки отверстий подшипники. Сборка под сварку, т. е. сборка заготовок для их последующей сварки. Процесс соединения деталей при помощи сварки в большинстве случаев является сборочным. Окончательная сборка, т. е. сборка изделия или его составной части, после которой не предусмотрена его последующая разборка при изготовлении. После окончательной сборки некоторых изделий может следовать их демонтаж, который включает работы по частичной разборке собранного изделия для его подготовки к транспортированию потребителю.

Технологический процесс сборки представляет собой часть производственного процесса, непосредственно связанную с подготовкой, пригонкой, взаимной ориентацией, с последовательным соединением, фиксацией деталей и узлов для получения готового изделия. К технологическому процессу сборки относят операции: соединения, проверки правильности действия отдельных механизмов и узлов и машины в целом (точность, плавность движений, бесшумность, надежность функционирования смазочной системы и т. п.), очистки, промывки, окраски и отделки и контроля. Технологическая операция сборки представляет собой законченную часть этого процесса, выполняемую непрерывно над одной сборочной единицей одним или группой рабочих на одном рабочем месте. Сборочная операция - это технологическая операция установки и образования соединений составных частей заготовки и изделия. Переход сборочного процесса - это законченная часть операции сборки, выполняемая над определенным участком сборочного единения (узла) неизменным методом выполнения работы при пользовании одних и тех же инструментов и приспособлений. Приемом сборочного процесса называется отдельное законченное действие рабочего в процессе сборки или подготовки к сборке изделия или узла.

Технологический процесс сборки может включать следующие операции (по ГОСТ 3. 1703 -79): сборка, балансировка, закрепление, запрессовывание, клепка, контровка, маркирование, пломбирование, склеивание, стопорение, свинчивание, установка, центровка, штифтование, шплинтование, разборка, распрессовывание, расшплинтовывание, расштифтовывание, распломбирование, развинчивание.

Технологическая схема сборки – наглядное изображения порядка сборки машины и входящих в нее деталей сборочных единиц или комплектов. Каждый элемент изделия обозначают прямоугольником, в котором указывают наименование составной части, позицию на сборочном чертеже изделия, количество. Деталь или собранная ранее сборочная единица, с которой, присоединяя к ней другие детали и сборочные единицы, начинают сборку изделия, называют базовой деталью. Процесс сборки изображается на схеме горизонтальной (вертикальной) линией, направленной от прямоугольника с изображением базовой детали к прямоугольнику, изображающему готовое изделие. Сверху и снизу от горизонтальной (справа и слева от вертикальной) линии показывают прямоугольники, условно обозначающие детали и сборочные единицы в соответствии с последовательностью их присоединения к базовой детали. На схеме сборки также условными значками (кружками, треугольниками с буквами) показывают места регулировки, пригонки и другие операции.

Любая машина состоит из отдельных частей. Простейшей из них является деталь, т. е. изделие, изготовленное из однородного по наименованию и марке материала без применения сборочных операций. Изделие, составные части которого подлежат соединению между собой на предприятии-изготовителе посредством сборочных операций, называется сборочной единицей. Таким образом, технологический процесс соединения, установки и фиксации деталей в сборочных единицах называется сборкой.

Сборка является заключительной стадией всего технологического процесса изготовления сложного изделия. От качества сборки зависят эксплуатационные показатели изделия, его надежность, работоспособность и долговечность. В ряде случаев сборка является наиболее трудоемким процессом: для многих машин, приборов, аппаратов трудоемкость сборки составляет от 40 до 60 % от общей трудоемкости изготовления. При разработке процессов производства изделий составляют технологические схемы сборки, определяющие базовые (с которых начинают сборку) детали, базовые сборочные единицы и последовательность сборки и комплектования деталей и сборочных единиц, имеющих для удобства сборки условные обозначения (индексы). На технологических схемах сборки условно изображают последовательность процесса с указанием индексов используемых деталей и сборочных единиц.

На этапе сборки получают разъемные или неразъемные соединения деталей.

Разъемные соединения позволяют собирать или разбирать изделия без разрушения деталей (резьбовые, шпоночные, шлицевые и др. соединения). Неразъемные соединения применяются для таких изделий (узлов), которые не нужно разбирать при контроле и ремонте.

Основные технологии неразъемных соединений

К неразъемным технологиям относятся: заклепочные соединения, сварка, пайка, склеивание и их комбинации.

заклепочные соединения – клепка – рабочий процесс, при котором происходит соединение двух или нескольких деталей посредством деформирования (расклепывания стержней) заклепок, вставленных в просверленные в деталях отверстия.

Заклепочные соединения широко применяются в производстве летательных аппаратов (от 25 до 40 % массы всех соединений), автомобилей и других машиностроительных изделий.

Недостатки заклепочных соединений: низкая производительность; высокая трудоемкость и материалоемкость; отсутствие постоянства показателей прочности; неравномерность распределения нагрузки по отдельным заклепкам в направлении действия усилия; трудность контроля.

Достоинства: высокая прочность при вибрационных нагрузках.

Заклепки изготовляются из алюминиевых сплавов, низкоуглеродистых сталей, латуни, меди, титановых сплавов.

Процесс соединения деталей заклепками состоит из следующих основных операций: сверление или пробивание отверстия под заклепку; зенкования или штамповки гнезда под закладную головку заклепки при потайной клепке; установки заклепки в отверстие; собственно клепка; контроль качества соединения.

По степени механизации клепочных работ различают клепку: ручную, механизированную (пневматическими молотками или переносными прессами); машинную (клепка на стационарном прессовом оборудовании); автоматическую, выполняемую на специальных клепочных автоматах.

сварка процесс получения неразъемных соединений посредством установления межатомных связей между соединяемыми частицами при их нагревании и (или) пластическим деформированием.

Для возникновения межатомных связей необходимо свариваемые поверхности сблизить на расстояние, соизмеримое с атомным радиусом (расстояние между центрами атомов составляет 0,2…0,5 нм), чтобы начали действовать силы межатомного сцепления. В реальных условиях такому сближению поверхностей препятствуют микронеровности, окисные и органические пленки, адсорбированные газы, а также отсутствие необходимой ориентации кристаллических решеток зерен, выходящих на эти поверхности.

Для получения качественного соединения необходимо устранить причины, препятствующие сближению контактируемых поверхностей, и сообщить поверхностным атомам энергию активации для перевода их в активное состояние.

Энергию активации передают в виде теплоты (термическая активация) или в виде упругопластической деформации (механическая активация). В соответствии с этим образование связей между атомами свариваемых поверхностей происходит в жидкой или твердой фазах, а все способы сварки можно разделить на две основные группы: сварка плавлением и сварка пластическим деформированием .

Сварка плавлением происходит в две стадии. На первой стадии происходит разогрев кромок до их оплавления. При этом разрушается кристаллическая решетка и образуется жидкая металлическая ванна, общая для двух свариваемых заготовок, называемая сварочной ванной. Поверхностные пленки разрушаются или всплывают на поверхность сварочной ванны. Жидкий металл смачивает оплавленные поверхности, что обеспечивает возникновение межатомных связей между соприкасающимися атомами жидкой и твердой фаз. На второй стадии при охлаждении происходит кристаллизация с образованием межатомных связей.

При сварке давлением сближение поверхностных атомов достигается за счет совместной пластической деформации в зоне соединения. Необходимо кратковременное механическое воздействие на заготовки для их сжатия и сближения атомов до возникновения межатомных сил связи. Очистка поверхности от пленок, а также сближение атомов достигается путем совместной пластической деформации в зоне соединения. Неровности снимаются, поверхностные пленки раздробляются. Заготовки контактируют по чистым поверхностям. Сварка давлением возможна лишь при том условии, что материал способен воспринимать значительные местные пластические деформации без разрушения. Часто для повышения пластичности материала места соединения нагревают.

Как при сварке плавлением, так и при сварке давлением в зоне соединения возникает тот тип связи между атомами, которой имеет место внутри свариваемых материалов. В обоих случаях в зону, где происходит образование соединения, вводится энергия.

В зависимости от формы энергии, используемой для образования сварного соединения, различают три класса сварочных процессов: термический, термомеханический и механический.

К термическому классу относятся виды сварки, осуществляемые плавлением с использованием тепловой энергии, а именно: дуговая, электрошлаковая, электронно-лучевая, плазменно-лучевая, ионно-лучевая, тлеющим разрядом, световая, индукционная, газовая, термитная и литейная.

К термомеханическому классу относятся виды сварки, осуществляемые с использованием тепловой энергии и давления, а именно: контактная, диффузионная, индукционно-прессовая, газопрессовая, термокомпрессионная, дугопрессовая, шлакопрессовая, термитно-прессовая и печная.

К механическому классу относятся виды сварки, осуществляемые с использованием механической энергии и давления, а именно: холодная, взрывом, ультразвуковая, трением и другие.

По техническим признакам виды сварки подразделяются по: способу защиты металла в зоне сварки (на воздухе, в вакууме, под флюсом, в защитных газах), непрерывности процесса (непрерывные и прерывистые), по степени механизации (ручная, механизированная, автоматизированная и автоматическая).

Сейчас известно более 70 технологических процессов сварки. Одни процессы применяются широко, другие – ограниченно, но сварка в целом является наиболее важным способом получения неразъемных соединений. Она применяется почти во всех областях техники. Сваривают не только металлы, но также стекло, некоторые виды керамики и пластмасс и разнородные материалы. Сварка осуществляется на земле, под водой и в космосе. Современные авиация, строительство, электроника уже просто немыслимы без сварки. В судостроении, например, использование сварки вместо клепки позволило сократить цикл строительства судов в 5…10 раз и на 20…25 % снизить их металлоемкость. В строительстве предварительная подготовка крупных сварных блоков и их последующая сборка и сварка на монтаже в 2…3 раза и более ускоряет сооружение мостов, крупных резервуаров, цементных печей, нефтеперерабатывающих установок, доменных печей. Сейчас практически все строительные металлоконструкции – сварные. Применение сварки позволяет более эффективно использовать прокат, поковки и отливки в конструкциях. Поэтому на изготовление сварных конструкций расходуется около половины выплавляемой стали, в обозримом будущем роль сварки не уменьшится.

Несмотря на успехи в разработке новых способов сварки, доминирующее положение в производстве уже около полувека занимает дуговая сварка. На нее приходится более 60 % всего объема сварочных работ. Пока еще нет другого способа, который по своей универсальности и простоте мог бы конкурировать с дуговой сваркой.

Ручная дуговая сварка металлическими электродами с покрытием является одним из самых распространенных способов сварки. Ее широко применяют для соединения заготовок малых и средних толщин (до 30 мм) короткими швами.

Ручную сварку начинают зажиганием дуги путем прикосновения конца электрода к свариваемому изделию и быстрого отвода на расстояние в несколько миллиметров. На дуге возникает напряжение 20...25 В, зависящее от длины дуги и марки электрода.

На рис.10 показана схема ручной дуговой сварки. Электрическая дуга горит между металлическим стержнем электрода 1 и свариваемой заготовкой 7. Стержень электрода плавится, и расплавленный металл в виде отдельных капель 8 переносится в сварочную ванну 4, образовавшуюся в результате плавления кромок заготовок. Вместе со стержнем плавится электродное покрытие 2, образуя газовую защитную атмосферу 3 вокруг дуги (температура, которой 4000…6000 С) и жидкий шлак, покрывающий поверхность металлической сварочной ванны и капли жидкого металла. По мере движения дуги происходит затвердевание сварочной ванны и образование сварного шва 6. Затвердевший шлак образует на поверхности шва твердую шлаковую корку 5.

пайка - процесс получения неразъемного соединения заготовок без их расплавления путем смачивания сопрягаемых поверхностей жидким припоем с последующей его кристаллизацией. Проникновение жидкого припоя в зазор между соединяемыми поверхностями происходит за счет капиллярных явлений, для протекания которых необходимы определенные условия. Для обеспечения растекания припоя по поверхности заготовок и хорошего смачивания заготовки нагревают, а также обрабатывают флюсами, которые растворяют и удаляют с поверхности оксиды, уменьшают поверхностное натяжение.

Пайка стала очень быстро развиваться в последнее время в связи с развитием авиа- и ракетостроения, атомной техники, двигателестроения и электроники. По прочности паяное соединение уступает сварному. Однако во многих случаях пайка имеет преимущества перед сваркой. Она экономичнее сварки, не вызывает существенных изменений химического состава и механических свойств деталей. Разработка новых припоев и методов пайки позволила создавать паяные соединения иногда даже более прочные и надежные, чем сварные. Остаточные деформации при пайке меньше, чем при сварке, что обеспечивает большую точность конструкции. С помощью пайки можно соединить разнородные металлы, а также металлы со стеклом, керамикой, графитом и другими неметаллическими материалами, что трудно или невозможно сделать сваркой. Кроме того, при пайке можно за один прием получить много соединений, что очень удобно при изготовлении сложных узлов и при массовом производстве. Все это делает пайку весьма перспективным процессом, область применения которого в последние годы быстро расширяется со все возрастающей скоростью.

Припои представляют собой сплавы цветных металлов сложного состава. За счет изменения химического состава можно получать припои с разной температурой плавления. Все припои по температуре плавления подразделяются на особо легкоплавкие (Тпл. < 145 С), легкоплавкие (Тпл = 145…450 С), среднеплавкие (Тпл = 450…1100 С) и тугоплавкие (Тпл > 1050 С).

Особо легкоплавкие и легкоплавкие припои изготовляют на основе висмута, индия, кадмия, цинка, олова, свинца. Их применяют для образования соединений, не требующих высокой прочности. Широко известны оловянно-свинцовые припои ПОС - 61, ПОС - 40 с содержанием олова 61 и 40 % соответственно.

Среднеплавкие и высокоплавкие припои содержат медь, цинк, никель, а также благородные металлы – серебро, золото, платину.

Припои изготовляют в виде прутков и проволок, а также отдельными порциями определенной массы и формы, которые укладывают в место соединения.

Паять можно углеродистые и легированные стали всех марок, твердые сплавы, цветные металлы, чугуны. При этом необходимо правильно выбрать соответствующий припой и флюс. Флюс не должен химически взаимодействовать с припоем, температура его плавления должна быть ниже температуры плавления припоя, он должен растворять и удалять окисные пленки, уменьшать поверхностное натяжение, улучшать смачиваемость и растекаемость расплавленного припоя. Применяют твердые, пастообразные и жидкие флюсы. Наибольшее применение в качестве флюсов находят бура

Nа В О, борная кислота Н ВО, хлористый цинк ZпСI , фтористый калий КF.

Способы пайки классифицируют в зависимости от используемых источников нагрева. При пайке в печах заранее собирают соединяемый узел, закладывают в него припой и наносят флюс, а затем помещают в печь. Припой расплавляется и заполняет зазоры между соединяемыми заготовками.

Пайку погружением выполняют в ваннах с расплавленными солями или припоями. На паяемую поверхность наносят флюс, припой размещают между поверхностями заготовок, заготовки скрепляют и погружают в ванну. Соленая ванна предохраняет место пайки от окисления.

Нагрев заготовок можно осуществлять токами высокой частоты, газовым пламенем, плазменной горелкой, кварцевой лампой, паяльником. Припой можно размещать заранее у места пайки или вводить его в процессе пайки вручную.

склеивание – технологический процесс соединения деталей с помощью клея или растворителя, образующих прочную клеевую пленку, выдерживающую внешние нагрузки на деталь.

Прочность клеевого соединения характеризуется силами адгезии и когезии. Адгезия характеризуется силами сцепления между клеем и склеиваемым материалом. Когезия – свойство частиц клея соединяться между собой молекулярными или межатомными силами.

В последние годы разработаны различные клеевые композиции, обеспечивающие высокую прочность, надежность и долговечность клеевых соединений. Современные клеи склеивают практически все однородные и разнородные материалы: металлы, пластмассы, резину, древесину, керамику, композиционные материалы.

Клеями называют коллоидные растворы пленкообразующих полимеров, способных при затвердевании образовывать прочные пленки, хорошо прилипающие к различным материалам (обладающие адгезией).

По природе происхождения клеи различают:

а) растительные – крахмал, декстрин, натуральный каучук, канифоль;

б) животные – казеиновый, столярный;

в) синтетические;

г) клеи на основе эфиров целлюлозы;

д) клеи на основе конденсационных смол;

е) клеи на основе полимеризационных смол.

По способу поставки клеи разделяют на жидкие, порошкообразные, растворяющиеся перед употреблением, пленочные.

По теплостойкости клеи характеризуются: 60…80 С, 100…130 С, 200…350 С, 700…1200 С.

В состав клея входят пленкообразующие вещества (синтетические смолы и каучуки), растворители (спирт, ацетон, бензин и др.), пластификаторы (каучук), наполнители (окись алюминия, кварцевая мука, графит).

Универсальные клеи БФ-2, БФ-4, БФ-6 – применяются для склеивания металлов, пластмасс, керамики и стекла.

Эпоксидные клеи состоят из эпоксидной смолы, пластификатора и отвердителя. Склеивают металлы с металлами и с пластическими массами.

Клеи бывают холодного и горячего отверждения.

Технологический процесс склеивания включает следующие основные операции: подготовка деталей (сборка); подготовка поверхности; нанесение клея; открытая выдержка; сборка (соединение) деталей; отверждение клея по заданному режиму, включающему подбор давления, температуры и времени отвердения; контроль качества склеивания (простукиванием, вихревыми токами, ультразвуковыми приборами и т. д.)

Подготовка поверхности имеет очень важное значение, от качества ее подготовки зависит прочность соединения. Подготовка поверхности включает следующие процессы: очистку от окислов и загрязнений, обезжирование, создание шероховатости для повышения сил адгезии. В некоторых случаях создают специальные покрытия с наличием шероховатости или пористости: анодирование, цинкование и т. д.

Клей наносится тонким слоем (чем тоньше слой, тем выше прочность соединения), не более 0,1…0,2 мм. Способы нанесения клея: кистью, штапелем, пульверизатором и т.д. Склеенные детали закрепляются в струбцинах или используются зажимы с применением давления 5…300 МПа.

К недостаткам технологии склеивания следует отнести: необходимость подогрева конструкции; недостаточную разработку технологии и зависимость прочности соединения от подготовки поверхности; ненадежность методов контроля качества клеевых соединений, недостаточная стабильность прочности клеевых соединений.

§ 8.1 Общие понятия о сборочных процессах

Технологический процесс сборки представляет собой часть производственного процесса, характеризующуюся последовательным соединением и фиксацией всех деталей, составляющих ту или иную сборочную единицу или изделие. Фиксацию деталей выполняют при помощи различных видов соединений. Существуют разъёмные и неразъёмные соединения. К разъёмным относятся соединения, которые можно разъединить без нарушения целостности деталей или элементов соединения. К ним относятся:

– резьбовые соединения при помощи болтов, винтов, шпилек и гаек;

– соединения деталей с зазором, шпоночные, шлицевые (эти соединения бывают подвижными и неподвижными).

К неразъёмным относятся соединения, которые нельзя разъединить без нарушения целостности деталей или элементов соединения. К ним относятся сварные, паяные, клеевые, заклёпочные соединения, соединения с натягом, завальцовкой.

Сборочные работы составляют значительную часть общей трудоёмкости изготовления изделий – от 18 до 40% в зависимости от типа производства и конкретного изделия. В машиностроении готовые изделия обычно собирают на том же заводе, где изготовляют детали для этого изделия. Только очень крупногабаритные изделия собирают на месте эксплуатации (подъёмные краны, тяжёлые станки, мощные турбины). Но и в этих случаях большинство узлов собирается на заводе изготовителе, а также производится общая предварительная сборка и производятся испытания.

§ 8.2 Виды работ, выполняемые в сборочном производстве

Основными операциями сборки являются операции соединения сопрягаемых элементов и фиксации их правильного взаимного расположения. У любой сборочной единицы существует базовая деталь, к которой присоединяются все остальные детали и сборочные единицы более высоких порядков. Различают узловую и общую сборку. На узловой сборке полностью собираются самостоятельные узлы (двигатель, редуктор), способные выполнять определённые функции. На общей сборке все узлы и детали, входящие в состав изделия, соединяются вместе в законченное изделие. Например, узлами автомобиля являются двигатель, коробка перемены передач, привод колеса, реечный механизм рулевого управления, тормозные цилиндры и многие другие. Базовой сборочной единицей автомобиля является кузов (сам кузов состоит из множества деталей, соединяемых друг с другом методом контактной сварки). На общей сборке все узлы присоединяются к кузову, и в результате получается готовое изделие – автомобиль.

Электрическая сборка и монтаж . Предметом электромонтажных работ является изготовление токопроводящих соединений, электрических и электромагнитных схем. В состав этих работ входят заготовка соединительных проводов, вязка жгутов, внутренний электрический монтаж и соединение элементов монтажной схемы. Например, в автомобиле по всему кузову прокладываются предварительно заготовленные жгуты электрических проводов. Концы проводов подготовлены для быстрого соединения, т.е. имеют клеммы и контакты. В процессе общей сборки провода подключаются к присоединяемому к кузову электрооборудованию (фары, стартер, электробензонасос, система зажигания, электростеклоподъёмники и др.). Таким образом, электромонтажные работы обеспечивают требуемое соединение электрооборудования, источника тока и органов управления.


Подготовка деталей к сборке . На этих работах выполняются операции, обеспечивающие лёгкость и качество сборки. Промывка и продувка деталей после механической обработки предназначена для удаления стружки, абразивной пыли, остатков смазочно-охлаждающих жидкостей. После мойки выполняют сушку.

Обрубка и зачистка заусенцев предназначена для удаления мелких дефектов на ограниченных участках поверхности. Эти работы предназначены для облегчения сборки путем подготовки фасок. Заусенцы всегда остаются на кромках деталей после механической обработки вследствие пластических свойств металла. Их можно удалять на дополнительных операциях механической обработки или в процессе подготовки деталей к сборке.

Сверление отверстий и нарезание резьбы предназначено для изготовления крепёжных отверстий, не изготовленных на основных операциях механической обработки. Так поступают в тех случаях, когда требуется точное взаимное расположение нескольких узлов на крупногабаритной базовой детали. Узлы сначала выставляют с требуемой точностью, а затем в необходимых местах сверлят крепёжные отверстия, нарезают резьбу и фиксируют положение узлов.

Подготовку деталей к сборке выполняют на сборочных участках в единичном или мелкосерийном производстве. В крупносерийном и массовом производстве подготовка выполняется в процессе механической обработки, и на сборочные участки детали поступают полностью готовые к сборке.

Технический контроль и испытания изделий . Эти работы также выполняются в сборочном производстве. Целью технического контроля является определение соответствия правильности работы, точности, мощности, скорости, экологичности и других параметров изделия требуемым техническим условиям. В случае выявления несоответствий производится устранение выявленных дефектов, регулировка, подгонка для достижения требуемых параметров. Например, двигатели испытывают на мощность, на чистоту выхлопа, на коэффициент полезного действия. Станки испытывают на жёсткость, точность.

§ 8.3 Технологическая организация процессов сборки

В зависимости от типа производства (единичного, серийного и массового) изменяется и организация процессов сборки. В единичном производстве технологические процессы детально не разрабатывают, а делают только наметку последовательности операций и приблизительно определяют рабочее время. Детальная разработка экономически нецелесообразна. Сборка выполняется последовательно, операции не разделяются на более простые переходы. Большинство операций выполняется одой бригадой высококвалифицированных слесарей, способных выполнять различные сборочные работы. Специализация существует только по профессиям, например, слесарь, электрик. Небольшие изделия собираются одним высококвалифицированным слесарем. Такая организация работ называется сборка по принципу концентрации.

Разнообразная номенклатура изделий в единичном производстве не позволяет оснащать сборочные участки специальной высокопроизводительной оснасткой и инструментами. Такую оснастку применяют только в тех случаях, когда без неё невозможно выполнить какую-нибудь сборочную операцию. В основном применяются универсальные ручные инструменты и оснастка, не отличающиеся высокой производительностью. Поэтому, качество сборки зависит от выполняющих её рабочих. В единичном производстве выполняется много подготовительных работ: зачистка заусенцев, пригонка, промывка и т.д.

В серийном производстве изделия выпускаются сериями через определённые промежутки времени. Технологический процесс построен по принципу параллельно-последовательного выполнения операций. Сложные операции разделяются на более простые переходы, различные узлы собираются в различных бригадах. При такой организации работ существует специализация, т.е. некоторые виды работ выполняются одним рабочим или бригадой. Специализация позволяет значительно повысить производительность труда и привлекать к работам менее квалифицированных рабочих. Выпуск сериями делает экономически целесообразным оснащать сборочные участки специализированной оснасткой, механизированным инструментом, что также значительно повышает производительность труда. Пригоночные и подготовительные работы на сборке стараются исключить.

В массовом производстве производят детальную разработку техпроцесса сборки. Специализация сборочных работ наивысшая, т.е. за каждым рабочим местом закреплена одна сборочная операция, что позволяет оснащать рабочие места высокопроизводительной специальной оснасткой, механизированным инструментом, специальными сборочными стендами, в ряде случаев, сборочными линиями. Поэтому, работу могут выполнять рабочие низкой квалификации. Качество сборки в большей степени зависит от применяемого оборудования и инструментов. Такая организация работ называется сборкой по принципу дифференциации. Пригоночные и подготовительные работы на сборочных участках полностью исключаются.

Стационарная и подвижная сборка . При стационарной сборке изделие полностью собирается на одном рабочем месте. Все детали, входящие в состав изделия поступают на это рабочее место. Сборка может выполняться одной бригадой (рабочим) или сменяющимися бригадами, которые специализируются по видам работ.

При подвижной сборке изделие последовательно перемещается по всем рабочим местам, на каждом из которых выполняется своя сборочная операция. Перемещение изделия может быть свободным или принудительным. При свободном перемещении изделие перемещается самими рабочими, обычно на тележках. При принудительном – оно перемещается при помощи транспортных устройств, которые называются конвейерами. Конвейер может быть напольный, подвесной, непрерывно действующий и шаговый.

§ 8.4 Оборудование и инструменты,

применяемые в сборочном производстве

В сборочном производстве применяется следующее оборудование.

Установочные и зажимные приспособления служат для установки и закрепления собираемых деталей в требуемом для сборки положении, а также для придания устойчивости деталям перед фиксацией и облегчения сборки. Приспособления могут быть универсальными и специальными, с ручным и механизированным приводом в зависимости от типа производства. Эти приспособления: тиски, оправки, струбцины и др.

Рабочие приспособления предназначены для выполнения отдельных операций: например, для установки пружин, уплотнительных манжет, вальцевания, запрессовки и др.

Сборочный инструмент . Это инструмент для выполнения различных соединений: гаечные ключи, отвёртки, молотки, плоскогубцы, клещи и др. Инструмент может быть ручным и механизированным. Например, пневматический или электрический гайковёрт – это механизированный инструмент. Он имеет привод и заворачивает винт или гайку с большой скоростью. Рабочий только подводит гайковерт к гайке, а усилий для затягивания ему прикладывать не нужно. Кроме того, современные гайковёрты заворачивают гайки с требуемым крутящим моментом, т.е. автоматически обеспечивают качество соединения. В массовом производстве используются сборочные стенды. Это такое оборудование, которое соединяет в себе требуемые для выполнения операции установочные, зажимные, рабочие приспособления и механизированный сборочный инструмент. Сборочные стенды работают в автоматическом или полуавтоматическом режиме.

Режущий инструмент . Это инструменты для выполнения вспомогательных и подготовительных работ: зачистки заусенцев, сверления отверстий и нарезания резьбы, клеймения и т.д. К этим инструментам относятся напильники, надфили, зубила, кернеры, свёрла, метчики и др, а также электрические и пневматические дрели, шлифовальные машины и др.

Контрольно-измерительные средства и приборы . Они предназначены для проведения технического контроля и испытаний. Для различных видов контроля существует множество различных средств: щупы, индикаторы часового типа, динамометрические ключи, динамометры, ваттметры, счётчики, координатно-измерительные машины, тахометры и многое другое.

Кроме того, в сборочном производстве используются тележки, конвейеры, различные подъёмно-транспортные устройства, верстаки, сборочные столы, специальные станции (например, станция для нанесения герметика или клея на соединяемые поверхности), оборудование для окраски и др.

Вопросы для самоконтроля

1) Какие виды работ выполняются в сборочном производстве?

2) Какие виды механической обработки могут выполняться в сборочном производстве?

3) Какие изделия собирают на общей сборке?

4) Какие изделия собирают на узловой сборке?

5) Назовите некоторые сборочные инструменты?

Сертификация систем качества

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по практической работе студентов

«ПОСТРОЕНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ СБОРКИ ИЗДЕЛИЯ»

Направление подготовки: 220500 «Управление качеством»

Специальность: 220501 «Управление качеством»

очной формы обучения

Разработал к.т.н., доц. Кашмин О.С.

Рассмотрено на заседании каф. АСС
Протокол №_______ от__________________2006 г.

Зав. каф. д.т.н. проф.

Иноземцев А.Н

1.ч работы копируем полностью в работу.

Цель и задачи работы

Ознакомиться с формой и порядком заполнения спецификаций изделий, изучить правила построения технологических схем сборки и их назначение.

Общая часть

Сборка – завершающий этап производственного процесса в машиностроении, она в значительной мере определяет качество изделий и их выпуск в заданные сроки. Трудоемкость узловой и общей сборки составляет в среднем около 30 % всей трудоемкости изготовления машин. В массовом и крупносерийном производстве эта доля меньше, а в единичном и мелкосерийном, где выполняется большой объем пригоночных работ, трудоемкость сборки достигает 40…50%. В связи с этим правильная организация, всесторонняя технологическая проработка сборочных работ, по части их содержания, структуры, механизации и автоматизации, имеет большое народнохозяйственное значение.

Технологический процесс сборки - процесс, содержащий действия по установке и образование соединений составных частей заготовки или изделия.

Узловая сборка – сборка, объектом которой является составная часть изделия.

Общая сборка – сборка, объектом которой является изделие в целом.

Законченную часть технологического процесса, выполняемую на одном рабочем месте называют технологической операцией . Операция включает все действия оборудования и рабочих над одним или несколькими совместно собираемыми объектами (операционная партия).

Элементами технологических операций являются технологические и вспомогательные переходы, рабочие и вспомогательные ходы, установ, позиция .

Кроме технологических, различают еще вспомогательные операции , к которым относятся транспортирование, контроль, маркировку, смазку и др. работы. Сборку выполняют в определенной технологически и экономически целесообразной последовательности для получения изделий, полностью отвечающих установленным для них требованиям. Увеличение выпуска машин должно обеспечиваться интенсификацией технологических процессов. Поэтому основная задача технолога–машиностроителя заключается в построении высокопроизводительных технологических процессов.

Большую помощь технологам при разработке технологических процессов общей и узловой сборки оказывают технологические схемы сборки. Эти схемы отражают структуру и последовательность сборки изделия и его составных частей. Технологические схемы сборки, не входящие согласно стандартам ЕСТД (Единой Системы Технологической Документации) в комплект технологической документации, рекомендуется составлять непосредственно по чертежам изделия перед разработкой основной технологической документации (технологических карт установленных форм).

Технологические схемы упрощают проектирование процессов сборки и позволяют оценить технологичность конструкции изделия. При построении технологических схем можно выявить допущенные конструктивные неувязки собираемого изделия. Технологические схемы сборки дают возможность четко представить порядок и последовательность выполнения сборочных операций, определяя их содержание и средства механизации. Для построения технологических схем необходимо различать виды изделий, классификация которых установлена ГОСТ 2.101-68 (рис.1), в соответствии с которой различают: детали, сборочные единицы, комплексы и комплекты.

Изделием называется любой предмет или набор предметов производства, подлежащих изготовлению на предприятии. Определение видов изделий.

Деталь – изделие, изготовленное из однородного по наименованию и марке материала, без применения сборочных операций.

Сборочная единица – изделие, составные части которого подлежат соединению между собой на предприятии-изготовителе сборочными операциями (свинчиванием, сочленением, клепкой, пайкой и т.п.).

Комплекс – два или более специфицированных изделия, не соединенных на предприятии-изготовителе сборочными операциями, но предназначенные для выполнения взаимосвязанных эксплуатационных функций.

Комплект – два или более изделия, не соединенных на предприятии-изготовителе сборочными операциями и представляющих набор изделий, имеющих общее эксплуатационное назначение вспомогательного характера. Например, комплект запасных частей, комплект инструментов и принадлежностей.

Изделия в зависимости от наличия или отсутствия в них составных частей делятся на:

а) неспецифицированные (детали) – не имеющих составных частей;

б) специфицированные (сборочные единицы, комплексы, комплекты) - состоящие из двух или более составных частей. Понятие "составная часть" следует применять только в отношении конкретного изделия, в состав которого она входит. Составной частью может быть любое изделие (деталь, сборочная единица, комплекс и комплект).

Рис.1 Виды изделий и их структура

Правила построения технологических схем сборки

Сборку изделия (его составной части) начинают с базовой детали, которая первая устанавливается в сборочное приспособление (стенд, панель) и к которой в процессе сборки присоединяются другие детали или сборочные единицы.

Технологический процесс общей и узловой сборок представляется с помощью технологических схем, которые отражают структуру и последовательность сборки изделия и его составных частей.

Примеры технологических схем общей и узловых сборок показаны в приложении.

Единых общепринятых правил построения и оформление схем сборки в отечественной технологии машиностроения нет, в различных источниках могут встречаться не совпадающие рекомендации. Тем не менее можно сформулировать ряд правил, которые следует соблюдать при построении схем и их пользовании, исходящих из общепринятых требованиям наглядности и однозначности представлений.

2.1. На схемах каждый элемент изделия (деталь, сборочная единица) имеет свое условное обозначение (таблица). Деталь обозначается прямоугольником, сборочная единица шестиугольником, которые разделены на три зоны:

в зоне 1 проставляются обозначение и позиция детали (сборочной единицы) по чертежу;

в зоне 2 – наименование детали (сборочной единицы) по чертежу;

в зоне 3 – количество одновременно устанавливаемых деталей (сборочных единиц). Указанные в таблице размеры условного обозначения элемента изделия желательно выдерживать, составляя технологическую схему сборки, при выполнении данной лабораторной работы. В общем случае условные элементы изображаются произвольного масштаба, одинакового для данной схемы.

2.2. Процесс общей сборки изображают на схеме сплошной горизонтальной линией. Начало линии сборки обозначается сплошь зачерненным кружком Ш5 мм.

2.3. построение технологической схемы общей сборки начинают с базового элемента изделия, который располагают в левой части схемы, условное обозначение собранного объекта – в правой.

2.4. Процесс узловой сборки изображается линией, которую проводят в направлении от базового элемента к собранному объекту.

2.5. Линия сборки изображается сплошной основной линией по ГОСТ2.303-68.

2.6. Условное изображение сборочных единиц, деталей, а также линии установки, демонтажа, информации выполняется сплошной тонкой линией по ГОСТ 2.303-68.

2.7. Условное обозначение всех деталей непосредственно входящих в изделие располагают сверху в порядке последовательности сборки.

2.8. Условное обозначение всех непосредственно входящих в изделие сборочных единиц располагают снизу.

2.9. При возможности одновременной установки нескольких составных частей изделия на его базовую деталь их соединительные линии на схеме сходятся в одной точке.

2.10. При необходимости технологические схемы сборки снабжают надписями-сносками, поясняющими характер сборочных работ (запрессовку, смазку, проверку зазора, доработку, клепку, выверку и т.п.), когда они не ясны из схемы, и выполняемый при сборке контроль.

2.11. Составляют в первую очередь схему общей сборки, а затем схемы узловой сборки (параллельно), обеспечивая необходимую согласованность и координацию действий на основе схемы общей сборки изделия.

Технологические схемы сборки на одно и тоже изделие можно составить в нескольких вариантах, которые отличаются структурой и последовательностью комплектования сборочных элементов. Принятый вариант фиксируют составленной схемой, которая является одним из технологических документов.

Создавая новые машины, следует предусмотреть их общую сборку из предварительно собранных составных частей (принцип узловой сборки), что обеспечивает преимущества не только при их производстве, но также при обслуживании, эксплуатации и ремонте.

3. ВОПРОСЫ ДЛЯ КОНТРОЛЯ

3.1. Составные части технологического процесса.

3.2. Классификация изделий и их составных частей по ЕСКД.

3.3. Назначение технологических схем сборки.

3.4. Основные правила составления технологических схем сборки.

4. ЗАДАНИЕ ДЛЯ РАБОТЫ

Получив в качестве объекта работы изделие, оформить его сборочный чертеж и спецификацию, а также построить технологическую схему сборки сборки изделия. Произвести описание принятой схемы сборки.

5. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

5.1. Ознакомиться с инструкцией по безопасному выполнению лабораторных работ.

5.2. Ознакомиться с содержанием лабораторной работы, заданием.

5.3. Получить изделие для выполнения работы и необходимые инструменты.

5.4. Ознакомиться с конструкцией и назначением изделия.

5.5. Оформить сборочный чертеж изделия (вывести позицию на входящие в изделия сборочные единицы и детали).

5.6. Построить технологическую схему сборки.

5.7. Произвести сборку изделия и окончательно откорректировать технологическую схему сборки.

5.8. Составить отчет и сдать его преподавателю.

6. УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ОТЧЕТА

Отчет оформляется на специальных бланках, выданных преподавателем.

Графическая и текстовая часть отчета должна быть выполнена карандашом аккуратно, стандартным шрифтом с использованием чертежных инструментов.

Отчет составляется индивидуально и подписывается каждым студентом.

7. БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. ГОСТ 2.101- 68 ЕСКД Виды изделий.

2. ГОСТ 2.108-68 (СТ СЭВ 2516-80). ЕСКД Спецификация.

3. ГОСТ 3.1407-74. ЕСКД Правила оформления документации на слесарные, слесарно-сборочные и электромонтажные работы.

4. Сборка и монтаж изделий машиностроения: Справочник. В 2-х т. /Ред. совет: В.С.Корсаков (пред.) и др. - М.: Машиностроение, 1983.– Т.1. Сборка изделий машиностроения / Под ред. В.С.Корсакова, В.К. Замятина, 1983.- 480 с.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27