Работа

Теорема гюйгенса штейнера позволяет определить. Теорема Штейнера — формулировка

Уважаемые посетители сайта , предлагает Вашему вниманию работу по математике на тему , где представлены материалы теоретического и практического характера, рекомендации по решению задач с использованием указанной теоремы.

Теорема Штейнера , или, как именуется она в других источниках, теорема Гюйгенса-Штейнера, получила свое название в честь ее автора – Якоба Штейнера (швейцарского математика), а также благодаря дополнениям – Христиана Гюйгенса (голландского физика, астронома и математика). Рассмотрим кратко их вклад в и других наук.

Теорема Штейнера — об авторах теоремы

Якоб Штейнер
(1796—1863)

Якоб Штейнер (1796—1863) — один из , который считается основателем, как синтетической геометрии кривых линий, так и поверхностей второго и высших порядков.

Что касается Христиана Гюйгенса, то его вклад в различные науки тоже не мал. Он значительно усовершенствовал (до 92-кратного увеличения изображения), открыл кольца Сатурна и спутник его — Титан, а в 1673 году в своем довольно содержательном труде «Маятниковые часы», представил работы по кинематике ускоренного .

Теорема Штейнера — формулировка

Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):

J= J 0 + md 2 (1)

Где в формуле принимаем соответственно величины: d – расстояние между осями ОО 1 ║О’O 1 ’;
J 0 – момент инерции тела, рассчитанный относительно оси, что проходит сквозь центр масс и будет определяться соотношением (2):

J 0 = J d = mR 2 /2 (2)

Так как d = R, тогда и момент инерции относительно оси, которая проходит через указанную на рисунке точку А будет определяется формулой (3):

J = mR 2 + mR 2 /2 = 3 / 2 mR 2 (3)

Более подробная информация о теореме представлена в реферате и презентации, которые можно скачать по ссылкам перед статьей.

Теорема Штейнера. Момент инерции – содержание работы

Введение

Часть 1. Динамика вращения твердого тела
1.1. Моменты инерции шара и диска
1.2. Теорема Гюйгенса-Штейнера
1.3. Динамика вращательного движения твердого тела — теоретические основы
Момент импульса
Момент силы
Момент инерции относительно оси вращения
Главный закон динамики вращательного движения твердого тела относительно неподвижной оси

Момент инерции определяется как , если распределение массы равномерно, то заменяется на – элементарный объём, – плотность вещества. .

Теорема Штейнера: момент инерции относительно произвольной оси равен сумме момента инерции относительно оси, параллельной данной и проходящей через центр инерции тела, и произведения массы тала на квадрат расстояния а между осями: .

Момент инерции:

1) однородного тонкого стержня массы , длины относительно оси, проходящей через центр масс и перпендикулярной стержню:

2) однородного тонкого стержня массы , длины относительно оси, проходящей через один из концов стержня:

3) тонкого кольца массы , радиуса R относительно оси симметрии, перпендикулярной плоскости кольца:

4) однородного диска (цилиндра) массы , радиуса R, высоты h относительно оси симметрии, перпендикулярной основанию: .

21. Кинетическая энергия вращающегося твёрдого тела.

При вращении тела с угловой скоростью все его элементарные массы движутся со скоростью они обладают кинетической энергией , – для тела, вращающегося вокруг неподвижной оси. При вращении на материальные точки массы , образующие твёрдое тело, действуют как внешние, так и внутренние силы. За промежуток времени испытывает перемещение ,при этом силы совершают работу . Работа всех сил будет равна . При сложении с учётом 3-его закона Ньютона сумма работ внутренних сил = 0. Следовательно, . В соответствии с теоремой о кинетической энергии, приращение кинетической энергии = работе всех сил, действующих на тело .

Вычислим кинетическую энергию твёрдого тела, совершающего произвольное плоское движение. все точки движутся в параллельных плоскостях. Вращение совершается вокруг оси, перпендикулярно плоскостям, и движется вместе с некоторой точкой О. Скорость материальной точки массы представим в виде . Тело перемещается поступательно, следовательно, , – выражение кинетической энергии тела, совершающего произвольное плоское движение. Если в качестве точки О выбрать центр масс, тогда и .

Гироскопы.

Гироскоп (или волчок) – массивное твёрдое тело, симметричное некоторой оси, совершающее вращения вокруг неё с большой угловой скоростью. В силу симметрии гироскопа выполняется . При попытке повернуть вращающийся гироскоп вокруг некоторой оси наблюдается гироскопический эффект – под действием сил, которые, казалось бы, должны были вызвать поворот оси гироскопа ОО вокруг прямой О’O’, ось гироскопа поворачивается вокруг прямой О’’О’’ (ось ОО и прямая О’O’ предполагаются лежащими в плоскости чертежа, а прямая О’’О’’ и силы f1 и f2 – перпендикулярными к этой плоскости). Объяснение эффекта основано на использование уравнения момента . Момент импульса поворачивается вокруг оси ОХ в силу соотношения . Вместе с вокруг ОХ поворачивается и гироскоп. Вследствие гироскопического эффекта на подшипнике, на котором вращается гироскоп, начинают действовать гироскопические силы . Под действием гироскопических сил ось гироскопа стремиться занять положение, параллельное угловой скорости вращения Земли.

Описанное поведение гироскопа положено в основу гироскопического компаса . Преимущества гироскопа: указывает точное направление на географический северный полюс, его работа не подвержена воздействию металлических предметов.

Прецессия гироскопа – особый вид движения гироскопа имеет место в том случае, если момент действующих на гироскоп внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Рассмотрим движение гироскопа с одной закреплённой точкой на оси под действием силы тяжести , – расстояние от закреплённой точки до центра инерции гироскопа, – угол между гироскопом и вертикалью. направлен момент перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа. Уравнение движения: приращение импульса = Следовательно, изменяет своё положение в пространстве таким образом, что его конец описывает окружность в горизонтальной плоскости. За промежуток времени гироскоп повернулся на угол ось гироскопа описывает конус вокруг вертикальной оси с угловой скоростью – угловая скорость прецессии.

В приведенных примерах оси проходят через центр инерции тела. Мо­мент инерции относительно других осей вращения определяется при по­мощи теоремы Штейнера: момент инерции тела относительно произвольной оси вращения равен сумме момента инерции Jc относительно параллельной оси, проходящей через центр инерции тела, и величины произведения массы тела на квадрат расстояния между ними. где m масса тела, а - расстояние от центра инерции тела до выбранной оси вращения, т.е.

, где m - масса тела, а - расстояние от центра

инерции тела до выбранной оси вращения.

Покажем на одном примере применение теоремы Штейнера. Вычислим момент инерции тонкого стержня относительно оси, проходящей через его край перпендикулярно стержню. Прямое вычисление сводится к тому же ин­тегралу (*),но взятому в других пределах:

Расстояние до оси, проходящей через центр масс, равно а = ℓ/2. По теореме Штейнера получаем тот же результат.

.

§22.Основной закон динамики вращательного движения.

Формулировка закона: Скорость изменения момента импульса относительно полюса равна главному моменту силы относительно того же полюса, т.е.

.

В проекциях на оси координат:
.

Если вращение тела происходит относительно неподвижной оси, то основной закон динамики вращательного движения примет вид: . В данном случае момент импульса легко выразить через угловую скорость и момент инерции тела относительно рассматриваемой оси:
. Тогда основной закон динамики вращательного движения примет вид:
. Если тело не рассыпается и не деформируется, то

, вследствие чего
. Если ко всему
, то
и, оно равно:
.

Элементарная работа, совершаемая моментом силы, при вращательном движении относительно неподвижной оси вычисляется по формуле:
(*). Полная работа
. Если
, то
.

На основании формулы (*), получим выражение для кинетической энергии вращательного движения твёрдого тела относительно неподвижной оси. Т.к.
, то. После интегрирования, получим окончательный результат для кинетической энергии вращательного движения относительно неподвижной оси
.

§23.Закон сохранения момента импульса.

Как уже указывалось, законы сохранения энергии и импульса связаны с однородностью времени и пространства, соответственно. Но у трехмер­ного пространства, в отличие от одномерного времени, имеется еще одна симметрия. Пространство само по себе изотропно, в нем нет выделен­ных направлений. С этой симметрией связанзакон сохранения момента импульса. Эта связь проявляется в том, что момент количества движе­ния, является одной из основных величин, описывающих вращательное движение.

По определению момент импульса отдельной частицы равен .

Направление вектора L определяется по правилу буравчика (штопора), а его величина равна L = r p sin , где

  угол между направлениями радиус-вектора частицы и ее импульса. Величина ℓ = r sin равна рас­стоянию от начала координатО до прямой, вдоль которой направлен импульс частицы. Эта величина называетсяплечом импульса. ВекторL зависит от выбора начала координат, поэтому говоря о нем, обычно указывают: "момент импульса относительно точкиО ".

Рассмотрим производную по времени от момента импульса:

.

Первое слагаемое равно нулю, т.к. . Во втором слагаемом, согласно второму закону Ньютона, производную по импульсу можно заменить на действующую на тело силу. Векторное произведение радиус-вектора на силу называетсямоментом силы относительно точкиО: .

Направление момента силы определяется тем же правилом буравчика. Его величина М = r F sin , где

     угол между радиус-вектором и силой. Аналогично тому, как это было сделано выше, определяется и плечо силы

= r sin - расстояние от точкиО до линии действия силы. В итоге получаем уравнение движения для момента импульса частицы:.

По форме уравнение аналогично второму закону Ньютона: вместо им­пульса частицы стоит момент импульса, а вместо силы -момент силы. Если
,то
, т.е. момент импульса постоянен в отсутствие внешних моментов сил.

Формулировка закона: Момент импульса замкнутой системы относительно полюса не изменяется с течением времени.

В частном случае вращения относительно неподвижной оси, имеем:
, где

начальные момент инерции и угловая скорость тела относительно рассматриваемой оси, а

конечные момент инерции и угловая скорость тела относительно рассматриваемой оси.

Закон сохранения полной механической энергии с учётом вращательного движения: полная механическая энергия консервативной системы постоянна: .

Пример: Найти скорость системы при прохождении расстояния h.

Дано: m, M, h. Найти: V - ?



Найдем связь между моментами инерции относительно двух различных параллельных осей. Она устанавливается теоремой Гюйгенса-Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции этого тела относительно оси проходящей через центр масс, параллельно данной и произведения массы на квадрат расстояния между осями .

Докажем эту теорему. Пусть S сечение тела. Будем предполагать, что центр масс находится в точке О и оси, проходящие через точки О и А, перпендикулярны к рисунку. Мысленно разобьем тело на элементарные массы
. Момент инерции тела найдем, проинтегрировав по всем элементарным массам. Радиус-вектор элементарной массы
относительно оси А
, где - ее радиус-вектор относительно оси О, - радиус-вектор
, его модуль равен расстоянию между осями. Таким образом

. (5.11)

Умножая обе части равенства (5.11) на
и интегрируя по всему объему, получим:

Так как ось О проходит через центр масс, последний интеграл в (5.12) обращается в нуль.

.

Интеграл слева дает момент инерции относительно оси А, первый интеграл справа - момент инерции относительно оси О, второй интеграл справа дает полную массу тела. Откуда

. (5.13)

Это и есть аналитическое выражение теоремы Гюйгенса-Штейнера.

Примеры вычисления моментов инерции

1. Определим момент инерции тонкого однородного стержня длиною L и массой m относительно оси, проходящей через один из его концов. (см.рис.)

Направим ось Х вдоль стержня. Стержень будем считать тонким. Выделим элементарную массу
, имеющую длину
и расположенную на расстоянии Х от оси вращения. Причем, поскольку стержень однородный масса этого элемента

Проинтегрировав по всей длине стержня получим:

Момент инерции этого же стержня относительно оси, проходящей через центр масс определяется как:

2. Определим момент инерции однородного диска, расположенного

перпендикулярно оси вращения, проходящей через центр масс. Радиус диска R, масса – m. Используя симметрию задачи, разобьем диск на элементарные массы в виде тонких колец радиусом r и шириной
. (см.рис.)

Масса этого элемента
, где
- площадь поперечного сечения диска или поверхностная плотность диска,
- площадь кольца. Тогда
. Интегрируя в пределах от 0 доR, получим.

Предположим, что мы умеем вычислять моменты инерции относительно любой оси, проходящей через центр масс. Теперь возникает задача вычисления момента инерции тела относительно произвольной оси. Она решается с помощью теоремы Штейнера.

Эта теорема утверждает, что момент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной ей оси, проходящей через центр масс, сложенному с произведением массы тела на квадрат расстояния центра масс тела от оси вращения.

Для доказательства теоремы рассмотрим некую ось С , проходящую через центр масс и параллельную ей ось О , отстоящую от оси С на расстоянии а. Ось О может находиться и вне тела. Обе оси перпендикулярны плоскости чертежа (рис. 2.12).

Рис. 2.12. К доказательству теоремы Штейнера

Из рис. 2.12 видно, что положение элемента массы относительно этих осей определяется векторами и , связь между которыми имеет вид:

Квадрат расстояния равен скалярному произведению

Тогда момент инерции тела относительно оси О можно представить в следующем виде:

Последнее слагаемое в этом выражении есть момент инерции тела относительно оси, проходящей через центр масс. Обозначим его через Сумма . Напомним, что оси О и С параллельны и следовательно, вектор перпендикулярен оси С. Поэтому скалярное произведение Таким образом, мы получаем:

(2.10.1)

Уравнение движения твердого тела.

Абсолютно твердое тело имеет шесть степеней свободы и, следовательно, его движение описывается с помощью шести дифференциальных уравнений второго порядка. Три из них описывают движение центра масс твердого тела:

, , , (2.11.1)

где — координаты центра масс тела, — проекции внешних сил на оси координат, m — масса тела. Три других являются уравнениями моментов относительно осей ОХ , ОУ и ОZ в декартовой системе координат:

, , , (2.11.2)

где L x , L y , L z — моменты импульса системы относительно осей ОХ , ОУ , ОZ , а M x , M y , M z — моменты внешних сил относительно этих же осей.

Если перемещать точку приложения силы вдоль линии ее действия, то моменты сил и результирующие силы не будут меняться, если мы имеем дело с абсолютно твердым телом. В этом случае не будут меняться и уравнения движения (2.11.1), (2.11.2).

Если найдены решения уравнений (2.11.1), (2.11.2), при известных начальных условиях, то определены и шесть координат, характеризующих движение твердого тела. Эти координаты являются функциями времени. Однако системы уравнений (2.11.1) и (2.11.2) не всегда позволяют получить решение в аналитической форме. В этом случае говорят, что уравнение движения не удается проинтегрировать, и решение уравнений находят путем численного интегрирования.