Домашний очаг

В результате чего рождается сверхновая звезда. Что приводит к сверхновой? Разная природа взрывов

Сверхновая звезда или вспышка сверхновой - феномен, в ходе которого звезда резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки . Является результатом катаклизмического процесса, возникающего в конце эволюции некоторых звёзд и сопровождающегося выделением огромной энергии.

Как правило, сверхновые звёзды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект - нейтронная звезда , если масса звезды до взрыва составляла более 8 солнечных масс (M ☉), либо чёрная дыра при массе звезды свыше 20 M ☉ (масса оставшегося после взрыва ядра - свыше 5 M ☉). Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо всего прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд .

Имя составляется из метки SN , после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z . Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa , ab , и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova ) с небесными координатами в формате: Jhhmmssss+ddmmsss .

Общая картина

Современная классификация сверхновых
Класс Подкласс Механизм
I
Линии водорода отсутствуют
Сильные линии ионизированного кремния (Si II) на 6150 Ia Термоядерный взрыв
Iax
В максимуме блеска имеют меньшую светимость и меньшую же в сравнении Ia
Линии кремния слабые или отсутствуют Ib
Присутствуют линии гелия (He I).
Гравитационный коллапс
Ic
Линии гелия слабые или отсутствуют
II
Присутствуют линии водорода
II-P/L/N
Спектр постоянен
II-P/L
Нет узких линий
II-P
Кривая блеска имеет плато
II-L
Звёздная величина линейно уменьшается со временем
IIn
Присутствуют узкие линии
IIb
Спектр со временем меняется и становится похожим на спектр Ib.

Кривые блеска

Кривые блеска для I типа в высокой степени сходны: 2-3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25-40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин. Абсолютная звёздная величина максимума в среднем для вспышек Ia составляет M B = − 19.5 m {\textstyle M_{B}=-19.5^{m}} , для Ib\c - .

А вот кривые блеска типа II достаточно разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе от − 20 m {\textstyle -20^{m}} до − 13 m {\textstyle -13^{m}} . Среднее значение для IIp - M B = − 18 m {\textstyle M_{B}=-18^{m}} , для II-L M B = − 17 m {\textstyle M_{B}=-17^{m}} .

Спектры

Вышеприведённая классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров - основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:

  • Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещённые эмиссионные компоненты.
  • Линии , , , наблюдаемые в ультрафиолетовом излучении.

Наблюдения вне оптического диапазона

Частота вспышек

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости. Общепринятой величиной, характеризующей частоту вспышек в разных типах галактик, является SNu :

1 S N u = 1 S N 10 10 L ⊙ (B) ∗ 100 y e a r {\displaystyle 1SNu={\frac {1SN}{10^{10}L_{\odot }(B)*100year}}} ,

где L ⊙ (B) {\textstyle L_{\odot }(B)} - светимость Солнца в фильтре B. Для разных типов вспышек её величина составляет :

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Наблюдение остатков сверхновых

Каноническая схема молодого остатка следующая :

  1. Возможный компактный остаток; обычно это пульсар , но возможно и чёрная дыра
  2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе .
  3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.
  4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур T S ≥ 10 7 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1-20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и т. п указывают на тепловую природу излучения из обоих слоёв.

Оптическое излучение молодого остатка создаёт газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Теоретическое описание

Декомпозиция наблюдений

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 10 10 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M ⊙ .

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика - 1M ⊙ , преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный .

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой прародителем являются короткоживущие O-звезды с массой 8-10M ⊙ .

Термоядерный взрыв

Один из способов высвободить требуемое количество энергии - резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции - белые карлики . Однако сам по себе последний - устойчивая звезда, и всё может измениться только при приближении к пределу Чандрасекара . Это приводит к однозначному выводу, что термоядерный взрыв возможен только в кратных звёздных системах, скорее всего, в так называемых двойных звёздах .

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлечённого во взрыв вещества.

  • Второй компаньон - обычная звезда, с которого вещество перетекает на первый.
  • Второй компаньон - такой же белый карлик. Такой сценарий называет двойным вырождением.
  • Взрыв происходит при превышении предела Чандрасекара .
  • Взрыв происходит до него.

Общим во всех сценариях образования сверхновых Ia является то, что взрывающийся карлик скорее всего является углеродно-кислородным. Во взрывной волне горения, идущей от центра к поверхности, текут реакции :

12 C + 16 O → 28 S i + γ (Q = 16.76 M e V) {\displaystyle ^{12}C~+~^{16}O~\rightarrow ~^{28}Si~+~\gamma ~(Q=16.76~MeV)} , 28 S i + 28 S i → 56 N i + γ (Q = 10.92 M e V) {\displaystyle ^{28}Si~+~^{28}Si~\rightarrow ~^{56}Ni~+~\gamma ~(Q=10.92~MeV)} .

Масса вступающего в реакцию вещества определяет энергетику взрыва и, соответственно, блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 10 51 эрг .

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада :

56 N i → 56 C o → 56 F e {\displaystyle ^{56}Ni~\rightarrow ~^{56}Co~\rightarrow ~^{56}Fe}

Изотоп 56 Ni нестабилен и имеет период полураспада 6.1 дней. Далее e -захват приводит к образованию ядра 56 Co преимущественно в возбуждённом состоянии с энергией 1.72 МэВ. Этот уровень нестабилен, и переход электрона в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0.163 МэВ до 1.56 МэВ. Эти кванты испытывают комптоновское рассеяние , и их энергия быстро уменьшается до ~ 100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и, как следствие, нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается, и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчёты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени изотоп 56 Ni уже распался, и энерговыделение идёт за счёт β-распада 56 Co до 56 Fe (T 1/2 = 77 дней) с энергиями возбуждения вплоть до 4.2 МэВ.

Гравитационный коллапс ядра

Второй сценарий выделения необходимой энергии - это коллапс ядра звезды. Масса его должна быть в точности равна массе его остатка - нейтронной звезды, подставив типичные значения получаем :

E t o t ∼ G M 2 R ∼ 10 53 {\displaystyle E_{tot}\sim {\frac {GM^{2}}{R}}\sim 10^{53}} эрг,

где M = 0 , а R = 10 км, G - гравитационная постоянная. Характерное время при этом:

τ f f ∼ 1 G ρ 4 ⋅ 10 − 3 ⋅ ρ 12 − 0 , 5 {\displaystyle \tau _{ff}\sim {\frac {1}{\sqrt {G\rho }}}~4\cdot 10^{-3}\cdot \rho _{12}^{-0,5}} c,

где ρ 12 - плотность звезды, нормированная на 10 12 г/см 3 .

Полученное значение на два порядка превосходит кинетическую энергию оболочки. Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой - не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия - процесс нейтронизации :

3 H e + e − → 3 H + ν e {\displaystyle {}^{3}He+e^{-}\to {}^{3}H+\nu _{e}}

4 H e + e − → 3 H + n + ν e {\displaystyle {}^{4}He+e^{-}\to {}^{3}H+n+\nu _{e}}

56 F e + e − → 56 M n + ν e {\displaystyle {}^{56}Fe+e^{-}\to {}^{56}Mn+\nu _{e}}

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение):

E + + n → ν ~ e + p {\displaystyle e^{+}+n\to {\tilde {\nu }}_{e}+p}

E − + p → ν e + n {\displaystyle e^{-}+p\to \nu _{e}+n}

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад:

E − + (A , Z) → (A , Z − 1) + ν e , {\displaystyle e^{-}+(A,Z)\to (A,Z-1)+\nu _{e},}

(A , Z − 1) → (A , Z) + e − + ν ~ e . {\displaystyle (A,Z-1)\to (A,Z)+e^{-}+{\tilde {\nu }}_{e}.}

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества. Достаточная концентрация вырожденных электронов достигается при плотностях ρ n u c = 2 , 8 ⋅ 10 14 {\textstyle \rho _{nuc}=2,8\cdot 10^{14}} г/см 3 .

Заметим, что процессы нейтронизации идут только при плотностях 10 11 /см 3 , достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Модель молодого остатка сверхновой

Теория эволюции остатка сверхновой

Выделяется три этапа эволюции остатка сверхновой:

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками. Время рассасывания достигает:

T m a x = 7 E 51 0.32 n 0 0.34 P ~ 0 , 4 − 0.7 {\displaystyle t_{max}=7E_{51}^{0.32}n_{0}^{0.34}{\tilde {P}}_{0,4}^{-0.7}} лет

Теория возникновения синхротронного излучения

Построение детального описания

Поиск остатков сверхновых

Поиск звёзд-предшественников

Теория сверхновых Ia

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам :

  • Мгновенная детонация
  • Отложенная детонация
  • Пульсирующая отложенная детонация
  • Турбулентное быстрое горение

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два белых карлика. Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Химическая эволюция и воздействие на межзвёздную среду

Химическая эволюция Вселенной. Происхождение элементов с атомным номером выше железа

Взрывы сверхновых - основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее ) He . Однако процессы их породившие для различных групп элементов и даже изотопов свои.

R-процесс

r-проце́сс - это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n ,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β − -распада изотопа . Иными словами среднее время захвата n нейтронов τ(n,γ) должно быть:

τ (n , γ) ≈ 1 n τ β {\displaystyle \tau (n,\gamma)\approx {\frac {1}{n}}\tau _{\beta }}

где τ β - среднее время β-распада ядер, образующих цепочку r-процесса. Это условие накладывает ограничение на плотность нейтронов, т.к.:

τ (n , γ) ≈ (ρ (σ n γ , v n) ¯) − 1 {\displaystyle \tau (n,\gamma)\approx \left(\rho {\overline {(\sigma _{n\gamma },v_{n})}}\right)^{-1}}

где (σ n γ , v n) ¯ {\displaystyle {\overline {(\sigma _{n\gamma },v_{n})}}} - произведение сечения реакции (n ,γ) на скорость нейтрона относительно ядра мишени, усреднённое по максвелловскому спектру распределения скоростей. Учитывая что, r-процесс происходит в тяжёлых и средних ядрах, 0.1 с < τ β < 100 с, то для n ~ 10 и температуры среды T = 10 9 , получим характерную плотность

ρ ≈ 2 ⋅ 10 17 {\displaystyle \rho \approx 2\cdot 10^{17}} нейтронов/см 3 .

Такие условия достигаются в:

ν-процесс

Основная статья: ν-процесс

ν-процесс - это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7 Li , 11 B , 19 F , 138 La и 180 Ta

Влияние на крупномасштабную структуру межзвёздного газа галактики

История наблюдений

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185 (англ. ) , была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054 , породившая Крабовидную туманность . Сверхновые звёзды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году . В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи , следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности , в то время как возраст остатка сверхновой RX J0852.0-4622 (англ. ) оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты , соответствующие времени взрыва сверхновой.

23 февраля 1987 года в Большом Магеллановом Облаке на расстоянии 168 тыс. световых лет от Земли вспыхнула сверхновая SN 1987A , самая близкая к Земле, наблюдавшаяся со времён изобретения телескопа. Впервые был зарегистрирован поток нейтрино от вспышки. Вспышка интенсивно изучалась с помощью астрономических спутников в ультрафиолетовом, рентгеновском и гамма-диапазонах. Остаток сверхновой исследовался с помощью ALMA , «Хаббла » и «Чандры ». Ни нейтронная звезда , ни чёрная дыра , которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены.

22 января 2014 года в галактике M82 , расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J . Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).

Наиболее известные сверхновые звёзды и их остатки

  • Сверхновая SN 1604 (Сверхновая Кеплера)
  • Сверхновая G1.9+0.3 (Самая молодая из известных в нашей Галактике)

Исторические сверхновые в нашей Галактике (наблюдавшиеся)

Сверхновая Дата вспышки Созвездие Макс. блеск Рассто-
яние (св. лет)
Тип вспы-
шки
Дли-
тель-
ность види-
мости
Остаток Примечания
SN 185 , 7 декабря Центавр −8 3000 Ia ? 8-20 мес. G315.4-2.3 (RCW 86) китайские летописи: наблюдалась рядом с Альфой Центавра.
SN 369 неизвестно неиз-
вестно
неиз-
вестно
неиз-
вестно
5 мес. неизвестно китайские летописи: положение известно очень плохо. Если она находилась вблизи галактического экватора, весьма вероятно, что это была сверхновая, если же нет, она, скорее всего, была медленной новой.
SN 386 Стрелец +1,5 16 000 II ? 2-4 мес. G11.2-0.3 китайские летописи
SN 393 Скорпион 0 34 000 неиз-
вестно
8 мес. несколько кандидатур китайские летописи
SN 1006 , 1 мая Волк −7,5 7200 Ia 18 мес. SNR 1006 швейцарские монахи, арабские учёные и китайские астрономы.
SN 1054 , 4 июля Телец −6 6300 II 21 мес. Крабовидная туманность на Ближнем и Дальнем Востоке (в европейских текстах не значится, не считая туманных намёков в ирландских монастырских хрониках).
SN 1181 , август Кассиопея −1 8500 неиз-
вестно
6 мес. Возможно, 3C58 (G130.7+3.1) труды профессора Парижского университета Александра Некэма, китайские и японские тексты.
SN 1572 , 6 ноября Кассиопея −4 7500 Ia 16 мес. Остаток сверхновой Тихо Это событие зафиксировано во многих европейских источниках, в том числе и в записях молодого Тихо Браге . Правда, он заметил вспыхнувшую звезду лишь 11 ноября , но зато следил за ней целых полтора года и написал книгу «De Nova Stella» («О новой звезде») - первый астрономический труд на эту тему.
SN 1604 , 9 октября Змееносец −2,5 20000 Ia 18 мес. Остаток сверхновой Кеплера С 17 октября её стал изучать Иоганн Кеплер , который изложил свои наблюдения в отдельной книге.
SN 1680 , 16 августа Кассиопея +6 10000 IIb неиз-
вестно (не более недели)
Остаток Сверхновой Кассиопея А возможно замечена Флемстидом и занесена в каталог как 3 Кассиопеи .

Сверхновая звезда – взрыв умирающих очень крупных звезд с огромным выбросом энергии, в триллион раз превышающая энергию Солнца. Сверхновая звезда может осветить всю галактику, а свет, посланный звездой, дойдет то края Вселенной.Если одна из таких звезд взорвется на расстоянии 10 световых лет от Земли, то Земля полностью сгорит от выбросов энергии и радиации.

Сверхновая звезда

Сверхновые звезды не только уничтожают, они так же восполняют необходимые элементы в космос: железо, золото, серебро и другие. Всё что мы знаем о Вселенной было создано из останков когда-то взорвавшейся сверхновой звезды. Сверхновая один из самых красивых и интересных объектов во Вселенной. Самые крупные взрывы во Вселенной оставляют после себя особые, самые странные останки во Вселенной:

Нейтронные звезды

Нейтронные очень опасные и странные тела. Когда гигантская звезда превращается в сверхновую, ее ядро сжимается до размера с земной мегаполис. Давление внутри ядра настолько велико, что даже атомы внутри начинают плавиться. Когда атомы настолько спрессованы, что между ними не остается никакого пространства накапливается колоссальная энергия и происходит мощнейший взрыв. После взрыва остается невероятно плотная Нейтронная звезда. Чайная ложка Нейтронной звезды будет весить 90 млн. тонн.

Пульсар – останки после взрыва сверхновой звезды. Тело которое схожее с массой и плотностью нейтронной звезды. Вращаясь с огромной скоростью, пульсары выпускают в космос радиационные вспышки из северного и южного полюсов. Скорость вращения может достигать 1000 оборотов в секунду.

Когда взрывается звезда в 30 раз больше нашего Солнца она создает звезду, которая называется Магнитаром. Магнитары создают мощные магнитные поля они еще более странные чем Нейтронные звезды и Пульсары. Магнитное поле Магнитара превышает земное в несколько тысяч раз.

Черные дыры

После гибели гиперновых звезд, звезд еще более крупнее чем суперзвезда, образуется самое загадочное и опасное место во Вселенной – черная дыра. После смерти такой звезды, черная дыра начинает поглощать ее останки. Материала для поглощения у черной дыры слишком много и она выбрасывает останки звезды обратно в космос, образуя 2 луча гамма излучений.

Что касается нашей , то Солнце, конечно, не обладает достаточной массой для того, чтобы стать черной дырой, пульсаром, магнитаром или даже нейронной звездой. По космическим меркам наша звезда очень мала для такого финала её жизни. Ученые говорят о том, что после истощения топлива наша звезда увеличится в размерах в несколько десятков раз, что позволит ей поглотить в себя планеты земной группы: Меркурий, Венеру, Землю и, возможно, Марс.

> Сверхновая звезда

Узнайте, что такое сверхновая звезда : описание взрыва и вспышки звезды, где рождаются сверхновые, эволюция и развитие, роль двойных звезд, фото и исследования.

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые звезды?

Очень часто сверхновые можно заметить в других галактиках. Но в нашем Млечном Пути это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад (последствия взрыва сверхновой).

Что приводит к сверхновой?

Сверхновая звезда рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двойные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Почему исследователи интересуются сверхновыми звездами?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету. Посмотрите видео, в котором раскрываются особенности сверхновых звезд и их взрывов.

Наблюдения вспышек сверхновых

Астрофизик Сергей Блинников об открытии первой сверхновой звезды, остатках после вспышки и современных телескопах

Как их найти сверхновые звезды?

Для процесса поиска сверхновых звезд исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Фото получают при помощи телескопов Хаббл и Чандра.

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Измерение расстояний до небесных тел

Астроном Владимир Сурдин о цефеидах, вспышках сверхновых звезд и скорости расширения Вселенной:

Чем вы можете помочь в исследовании сверхновых звезд?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую! А если говорить точнее, то у вас есть все шансы запечатлеть взрыв сверхновой звезды.

Когда звезды подмигивают нам с ночного неба, вряд ли мы задумываемся о том, что видим их такими, какими они были сотни и тысячи лет назад. Именно столько требуется фотонам, чтобы достичь наших глаз, двигаясь со световой скоростью.

Многие из далеких солнц, вероятно, уже давным-давно погасли, другие, пока невидимые для нас, уже успели родиться. Об их появлении рано или поздно узнают наши потомки.

Строительный материал для звезд

Для появления на свет новой звезды требуется огромное количество водорода? простейшего из всех существующих молекул. Она состоит из двух атомов, а те, в свою очередь, из ядра с одним протоном, вокруг которого расплылся в квантовом облаке один единственный электрон.

А еще необходим дейтерий, тяжелый водород, в ядре которого помимо протона содержится еще один нейтрон? элементарная частица, не имеющая электрического заряда.

Водород? одно из первых веществ, образовавшихся после Большого Взрыва, после того как раскаленная до невероятных температур материя в виде протонов, нейтронов, электронов и других элементарных частиц начала конденсироваться.

Снимок ближайшей к Солнцу звезды – Проксимы Центавра

©ESA/Hubble & NASA

Сразу после Большого Взрыва

Молекулы водорода образовывались в гигантских количествах, когда температура юной Вселенной несколько понизилась, и протоны начали объединяться с электронами.

Эта фаза началась по современным представлениям уже через одну секунду после Большого Взрыва и продолжалась в течение трех минут; за это время температура Вселенной резко упала.

Молодая Вселенная состояла на 75% из водорода, с 25% гелия, a также следами других элементов? до бора (не считая антиматерии).

Строительный материал для рождения звезд был готов, но одного наличия водорода было мало. Молекулы должны были сконденсироваться настолько, чтобы гравитационная сила притяжения между ними привела к термоядерной реакции.

Непосредственно после Большого Взрыва материя была равномерно распределена в пространстве и, вероятно, так бы и осталась водородным облаком, если бы не квантовые флуктуации, которые привели к колебаниям плотности газа и создали определенные структуры.

Рассеянное звездное скопление Плеяды в созвездии Тельца

©Roberto Colombari

Звездная колыбель

Следы этих структур до сих пор можно обнаружить в виде космического фонового излучения и межзвездных туманностей во Вселенной, состоящих из водорода и гелия. Именно из такого водородного облака и образуются звезды, когда плотность газа достигает определенного, очень высокого уровня.

При этом температура газа возрастает, и его молекулы начинают вращение. Чем плотнее становится облако, тем вращение усиливается, молекулы водорода сталкиваются и излучают фотоны в инфракрасном спектре.

При вращении молекулярное облако, именуемое также звездной колыбелью, коллапсирует, но одновременно возникают центробежные силы, которые отталкивают сгущающуюся материю наружу. Так возникает протопланетный диск, в котором могут сформироваться планеты? скорее всего это будут газовые гиганты, вроде Юпитера.

Звездное сверхскопление Westerlund 1

©ESO/VPHAS+ Survey/N. Wright

Рождение звезды

Примерно через 50 млн лет газовое облако, наконец, становится протозвездой? вращающимся плазменным шаром. При этом молекулы водорода из-за чудовищных температур разрушаются, образуя отдельные атомы.

Какая-то часть протозвезд так и не достигает температуры, необходимой для термоядерного синтеза. Такие протозвезды образуют коричневые карлики, которые постепенно остывают в течение нескольких сотен млн лет. Их масса невелика? всего 1–10 % солнечной.

Но в крупных протозвездах процесс коллапса продолжается, внутренняя температура возрастает, пока энергия атомов водорода не достигает критического значения, при котором начинается термоядерная реакция. Энергия гравитации превращается в тепло, плазменный шар начинает излучать, гравитационный коллапс приостанавливается? наша звезда готова.

Взрыв сверхновой в галактике M82 в созвездии Большая Медведица

©UCL/University of London Observatory/Steve Fossey/Ben Cooke/Guy Pollack/Matthew Wilde/Thomas Wright

Жизнь и смерть звезды

В результате термоядерной реакции водород превращается в гелий, звезда функционирует подобно нашему Солнцу. Через несколько миллиардов лет весь водород внутри звезды оказывается исчерпанным, водородное ядро превращается в гелиевое, хотя во внешней оболочке реакции все еще продолжаются.

Гелиевое ядро становится все крупнее и крупнее, масса его растет, вновь начинается гравитационный коллапс. Во время этой фазы звезда становится красным гигантом.

Внутри ядра звезды под влиянием гравитационного сжатия вновь проходят термоядерные реакции: гелий превращается в другие элементы: углерод, затем кислород, кремний? вплоть до железа.

Вот и пришел конец нашей звезде. Если она достаточно массивна? раз в восемь тяжелее нашего Солнца, то может превратиться в сверхновую, которая при взрыве разлетается в открытом космосе. Вспышки сверхновой могут быть при этом ярче своих галактик.

Образующаяся при этом ударная волна может привести к сжатию других межзвездных облаков и образованию новых звезд. Впрочем, зачастую сияние новых звезд может запустить цепную реакцию, которая дает толчок рождения новых светил. Так образуются целые звездные поколения.

При этом из разлетевшейся материи сверхновых могут сформироваться твердые планеты вблизи новообразующихся звезд, а также многочисленные астероиды, несущиеся в межзвездном пространстве.