Работа

Вспышка сверхновой звезды. Сверхновые и черные дыры

Сверхновая звезда – взрыв умирающих очень крупных звезд с огромным выбросом энергии, в триллион раз превышающая энергию Солнца. Сверхновая звезда может осветить всю галактику, а свет, посланный звездой, дойдет то края Вселенной.Если одна из таких звезд взорвется на расстоянии 10 световых лет от Земли, то Земля полностью сгорит от выбросов энергии и радиации.

Сверхновая звезда

Сверхновые звезды не только уничтожают, они так же восполняют необходимые элементы в космос: железо, золото, серебро и другие. Всё что мы знаем о Вселенной было создано из останков когда-то взорвавшейся сверхновой звезды. Сверхновая один из самых красивых и интересных объектов во Вселенной. Самые крупные взрывы во Вселенной оставляют после себя особые, самые странные останки во Вселенной:

Нейтронные звезды

Нейтронные очень опасные и странные тела. Когда гигантская звезда превращается в сверхновую, ее ядро сжимается до размера с земной мегаполис. Давление внутри ядра настолько велико, что даже атомы внутри начинают плавиться. Когда атомы настолько спрессованы, что между ними не остается никакого пространства накапливается колоссальная энергия и происходит мощнейший взрыв. После взрыва остается невероятно плотная Нейтронная звезда. Чайная ложка Нейтронной звезды будет весить 90 млн. тонн.

Пульсар – останки после взрыва сверхновой звезды. Тело которое схожее с массой и плотностью нейтронной звезды. Вращаясь с огромной скоростью, пульсары выпускают в космос радиационные вспышки из северного и южного полюсов. Скорость вращения может достигать 1000 оборотов в секунду.

Когда взрывается звезда в 30 раз больше нашего Солнца она создает звезду, которая называется Магнитаром. Магнитары создают мощные магнитные поля они еще более странные чем Нейтронные звезды и Пульсары. Магнитное поле Магнитара превышает земное в несколько тысяч раз.

Черные дыры

После гибели гиперновых звезд, звезд еще более крупнее чем суперзвезда, образуется самое загадочное и опасное место во Вселенной – черная дыра. После смерти такой звезды, черная дыра начинает поглощать ее останки. Материала для поглощения у черной дыры слишком много и она выбрасывает останки звезды обратно в космос, образуя 2 луча гамма излучений.

Что касается нашей , то Солнце, конечно, не обладает достаточной массой для того, чтобы стать черной дырой, пульсаром, магнитаром или даже нейронной звездой. По космическим меркам наша звезда очень мала для такого финала её жизни. Ученые говорят о том, что после истощения топлива наша звезда увеличится в размерах в несколько десятков раз, что позволит ей поглотить в себя планеты земной группы: Меркурий, Венеру, Землю и, возможно, Марс.

сразу после взрыва во многом зависит от удачи. Именно она определяет, удастся ли изучить процессы рождения сверхновой, или же придется гадать о них по следам взрыва - распространяющейся от бывшей звезды планетарной туманности . Число телескопов, построенных человеком, недостаточно велико для постоянного наблюдения всего неба, тем более - во всех областях спектра электромагнитного излучения. Зачастую на помощь ученым приходят астрономы-любители, направляющие свои телескопы куда вздумается, а не на интересные и важные для изучения объекты. Но ведь взрыв сверхновой может произойти где угодно!

Пример помощи от астрономов-любителей представляет сверхновая в спиральной галактике М51 . Известная как галактика Вертушка, она очень популярна среди любителей наблюдения Вселенной. Галактика расположена на расстоянии 25 миллионов световых лет от нас и повернута прямо к нам своей плоскостью, за счет чего ее очень удобно наблюдать. Галактика имеет спутник, который соприкасается с одним из рукавов М51. Свет от звезды, взорвавшейся в галактике, достиг Земли в марте 2011 года и был зарегистрирован астрономами-любителями. Вскоре сверхновая получила официальное обозначение 2011dh и стала центром внимания как профессиональных астрономов, так и любителей. «М51 - одна из ближайших к нам галактик, она чрезвычайно красива и потому широко известна», - говорит сотрудник Калтеха Шилер ван Дайк.

Детально рассмотренная сверхновая 2011dh оказалась принадлежащей к редкому классу взрывов типа IIb. Такие взрывы происходят, когда массивная звезда лишается практически всего своего внешнего облачения, состоящего из топлива-водорода, который, скорее всего, перетягивает ее компаньон по двойной системе . После этого, из-за отсутствия топлива, прекращается термоядерный синтез, излучение звезды не может противостоять гравитации, стремящейся сжать звезду, и она падает к центре. Это один из двух путей взрыва сверхновых, и при таком сценарии (падение звезда на себя под действием гравитации) только каждая десятая звезда рождает взрыв типа IIb.

Существует несколько хорошо обоснованных гипотез относительно общей схемы рождения сверхновой типа IIb, однако восстановление точной цепи событий очень трудно. Поскольку о звезде нельзя сказать, что она очень скоро станет сверхновой, невозможно подготовиться к ее тщательному наблюдению. Конечно, изучение состояния звезды может подсказать, что она скоро станет сверхновой, но это - на масштабах времени Вселенной в миллионы лет, тогда как для наблюдения нужно знать время взрыва с точностью в несколько лет. Лишь изредка астрономам улыбается удача и они имеют детальные снимки звезды до взрыва. В случае галактики М51 имеет место эта ситуация - благодаря популярности галактики существует множество ее снимках, на которых 2011dh еще не взорвалась. «В течение нескольких дней после открытия сверхновой мы обратились к архивам орбитального телескопа Хаббл. Как оказалось, с помощью этого телескопа раньше создавалась подробная мозаика галактики М51 в разных длинах волн», - говорит ван Дайк. В 2005 году, когда телескоп Хаббл сфотографировал область нахождения 2011dh, на ее месте была лишь неприметная желтая гигантская звезда .

Наблюдения за сверхновой 2011dh показали, что она плохо укладывается в стандартное представление о взрыве огромной звезды. Напротив, она более подходит как результат взрыва небольшого светила, например, компаньона желтого сверхгиганта со снимков Хаббла, который лишился практически всей своей атмосферы. Под действием гравитации близкого гиганта от звезды осталось лишь ее ядро, которое и взорвалось. «Мы решили, что предшественником сверхновой была практически полностью раздетая звезда, голубая и невидимая поэтому для Хаббла, - говорит ван Дайк. - Желтый гигант скрывал своим излучением небольшого голубого компаньона, пока он не взорвался. Таков наш вывод».

Другая команда исследователей, занимавшаяся звездой 2011dh, пришла к противоположному, совпадающему с классической теорией, выводу. Именно желтый гигант был предшественником сверхновой по данным Джастина Маунда, сотрудника Королевского университета в Белфасте. Однако в марте этого года сверхновая выдала загадку для обоих коллективов. Первым проблему заметил ван Дайк, решивший собрать дополнительные сведения о 2011dh с помощью телескопа Хаббл. Однако аппарат не нашел на старом месте большой желтой звезды. «Мы лишь хотели еще раз пнаблюдать за эволюцией сверхновой, - говорит ван Дайк. - Мы никак не могли предполагать, что желтая звезда куда-то денется». Другая команда пришла к тем же выводам, используя наземные телескопы: гигант исчез.

Исчезновение желтого гиганта указывает на него как истинного предшественника сверхновой. Публикация ван Дайка разрешает этот спор: «Другая команда была совершенно права, а мы ошиблись». Впрочем, изучение сверхновой 2011dh на этом не заканчивается. По мере спадания яркости 2011dh, галактика М51 вернется к своему состоянию до взрыва (хотя и без одной яркой звезды). К концу этого года яркость сверхновой должна упасть настолько, что станет виден компаньон желтого сверхгиганта - если он был, как предполагает классическая теория рождения сверхновых типа IIb. Несколько групп астрономов уже зарезервировали наблюдательное время телескопа Хаббл для изучения эволюции 2011dh. «Мы должны найти компаньона сверхновой по двойной системе, - говорит ван Дайк. - Если она будет обнаружена, в вопросе происхождения таких взрывов возникнет уверенное понимание».

Сверхновая звезда или вспышка сверхновой - феномен, в ходе которого звезда резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки . Является результатом катаклизмического процесса, возникающего в конце эволюции некоторых звёзд и сопровождающегося выделением огромной энергии.

Как правило, сверхновые звёзды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект - нейтронная звезда , если масса звезды до взрыва составляла более 8 солнечных масс (M ☉), либо чёрная дыра при массе звезды свыше 20 M ☉ (масса оставшегося после взрыва ядра - свыше 5 M ☉). Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо всего прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд .

Имя составляется из метки SN , после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z . Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa , ab , и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova ) с небесными координатами в формате: Jhhmmssss+ddmmsss .

Общая картина

Современная классификация сверхновых
Класс Подкласс Механизм
I
Линии водорода отсутствуют
Сильные линии ионизированного кремния (Si II) на 6150 Ia Термоядерный взрыв
Iax
В максимуме блеска имеют меньшую светимость и меньшую же в сравнении Ia
Линии кремния слабые или отсутствуют Ib
Присутствуют линии гелия (He I).
Гравитационный коллапс
Ic
Линии гелия слабые или отсутствуют
II
Присутствуют линии водорода
II-P/L/N
Спектр постоянен
II-P/L
Нет узких линий
II-P
Кривая блеска имеет плато
II-L
Звёздная величина линейно уменьшается со временем
IIn
Присутствуют узкие линии
IIb
Спектр со временем меняется и становится похожим на спектр Ib.

Кривые блеска

Кривые блеска для I типа в высокой степени сходны: 2-3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25-40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин. Абсолютная звёздная величина максимума в среднем для вспышек Ia составляет M B = − 19.5 m {\textstyle M_{B}=-19.5^{m}} , для Ib\c - .

А вот кривые блеска типа II достаточно разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе от − 20 m {\textstyle -20^{m}} до − 13 m {\textstyle -13^{m}} . Среднее значение для IIp - M B = − 18 m {\textstyle M_{B}=-18^{m}} , для II-L M B = − 17 m {\textstyle M_{B}=-17^{m}} .

Спектры

Вышеприведённая классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров - основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:

  • Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещённые эмиссионные компоненты.
  • Линии , , , наблюдаемые в ультрафиолетовом излучении.

Наблюдения вне оптического диапазона

Частота вспышек

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости. Общепринятой величиной, характеризующей частоту вспышек в разных типах галактик, является SNu :

1 S N u = 1 S N 10 10 L ⊙ (B) ∗ 100 y e a r {\displaystyle 1SNu={\frac {1SN}{10^{10}L_{\odot }(B)*100year}}} ,

где L ⊙ (B) {\textstyle L_{\odot }(B)} - светимость Солнца в фильтре B. Для разных типов вспышек её величина составляет :

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Наблюдение остатков сверхновых

Каноническая схема молодого остатка следующая :

  1. Возможный компактный остаток; обычно это пульсар , но возможно и чёрная дыра
  2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе .
  3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.
  4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур T S ≥ 10 7 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1-20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и т. п указывают на тепловую природу излучения из обоих слоёв.

Оптическое излучение молодого остатка создаёт газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Теоретическое описание

Декомпозиция наблюдений

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 10 10 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M ⊙ .

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика - 1M ⊙ , преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный .

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой прародителем являются короткоживущие O-звезды с массой 8-10M ⊙ .

Термоядерный взрыв

Один из способов высвободить требуемое количество энергии - резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции - белые карлики . Однако сам по себе последний - устойчивая звезда, и всё может измениться только при приближении к пределу Чандрасекара . Это приводит к однозначному выводу, что термоядерный взрыв возможен только в кратных звёздных системах, скорее всего, в так называемых двойных звёздах .

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлечённого во взрыв вещества.

  • Второй компаньон - обычная звезда, с которого вещество перетекает на первый.
  • Второй компаньон - такой же белый карлик. Такой сценарий называет двойным вырождением.
  • Взрыв происходит при превышении предела Чандрасекара .
  • Взрыв происходит до него.

Общим во всех сценариях образования сверхновых Ia является то, что взрывающийся карлик скорее всего является углеродно-кислородным. Во взрывной волне горения, идущей от центра к поверхности, текут реакции :

12 C + 16 O → 28 S i + γ (Q = 16.76 M e V) {\displaystyle ^{12}C~+~^{16}O~\rightarrow ~^{28}Si~+~\gamma ~(Q=16.76~MeV)} , 28 S i + 28 S i → 56 N i + γ (Q = 10.92 M e V) {\displaystyle ^{28}Si~+~^{28}Si~\rightarrow ~^{56}Ni~+~\gamma ~(Q=10.92~MeV)} .

Масса вступающего в реакцию вещества определяет энергетику взрыва и, соответственно, блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 10 51 эрг .

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада :

56 N i → 56 C o → 56 F e {\displaystyle ^{56}Ni~\rightarrow ~^{56}Co~\rightarrow ~^{56}Fe}

Изотоп 56 Ni нестабилен и имеет период полураспада 6.1 дней. Далее e -захват приводит к образованию ядра 56 Co преимущественно в возбуждённом состоянии с энергией 1.72 МэВ. Этот уровень нестабилен, и переход электрона в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0.163 МэВ до 1.56 МэВ. Эти кванты испытывают комптоновское рассеяние , и их энергия быстро уменьшается до ~ 100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и, как следствие, нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается, и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчёты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени изотоп 56 Ni уже распался, и энерговыделение идёт за счёт β-распада 56 Co до 56 Fe (T 1/2 = 77 дней) с энергиями возбуждения вплоть до 4.2 МэВ.

Гравитационный коллапс ядра

Второй сценарий выделения необходимой энергии - это коллапс ядра звезды. Масса его должна быть в точности равна массе его остатка - нейтронной звезды, подставив типичные значения получаем :

E t o t ∼ G M 2 R ∼ 10 53 {\displaystyle E_{tot}\sim {\frac {GM^{2}}{R}}\sim 10^{53}} эрг,

где M = 0 , а R = 10 км, G - гравитационная постоянная. Характерное время при этом:

τ f f ∼ 1 G ρ 4 ⋅ 10 − 3 ⋅ ρ 12 − 0 , 5 {\displaystyle \tau _{ff}\sim {\frac {1}{\sqrt {G\rho }}}~4\cdot 10^{-3}\cdot \rho _{12}^{-0,5}} c,

где ρ 12 - плотность звезды, нормированная на 10 12 г/см 3 .

Полученное значение на два порядка превосходит кинетическую энергию оболочки. Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой - не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия - процесс нейтронизации :

3 H e + e − → 3 H + ν e {\displaystyle {}^{3}He+e^{-}\to {}^{3}H+\nu _{e}}

4 H e + e − → 3 H + n + ν e {\displaystyle {}^{4}He+e^{-}\to {}^{3}H+n+\nu _{e}}

56 F e + e − → 56 M n + ν e {\displaystyle {}^{56}Fe+e^{-}\to {}^{56}Mn+\nu _{e}}

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение):

E + + n → ν ~ e + p {\displaystyle e^{+}+n\to {\tilde {\nu }}_{e}+p}

E − + p → ν e + n {\displaystyle e^{-}+p\to \nu _{e}+n}

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад:

E − + (A , Z) → (A , Z − 1) + ν e , {\displaystyle e^{-}+(A,Z)\to (A,Z-1)+\nu _{e},}

(A , Z − 1) → (A , Z) + e − + ν ~ e . {\displaystyle (A,Z-1)\to (A,Z)+e^{-}+{\tilde {\nu }}_{e}.}

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества. Достаточная концентрация вырожденных электронов достигается при плотностях ρ n u c = 2 , 8 ⋅ 10 14 {\textstyle \rho _{nuc}=2,8\cdot 10^{14}} г/см 3 .

Заметим, что процессы нейтронизации идут только при плотностях 10 11 /см 3 , достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Модель молодого остатка сверхновой

Теория эволюции остатка сверхновой

Выделяется три этапа эволюции остатка сверхновой:

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками. Время рассасывания достигает:

T m a x = 7 E 51 0.32 n 0 0.34 P ~ 0 , 4 − 0.7 {\displaystyle t_{max}=7E_{51}^{0.32}n_{0}^{0.34}{\tilde {P}}_{0,4}^{-0.7}} лет

Теория возникновения синхротронного излучения

Построение детального описания

Поиск остатков сверхновых

Поиск звёзд-предшественников

Теория сверхновых Ia

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам :

  • Мгновенная детонация
  • Отложенная детонация
  • Пульсирующая отложенная детонация
  • Турбулентное быстрое горение

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два белых карлика. Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Химическая эволюция и воздействие на межзвёздную среду

Химическая эволюция Вселенной. Происхождение элементов с атомным номером выше железа

Взрывы сверхновых - основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее ) He . Однако процессы их породившие для различных групп элементов и даже изотопов свои.

R-процесс

r-проце́сс - это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n ,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β − -распада изотопа . Иными словами среднее время захвата n нейтронов τ(n,γ) должно быть:

τ (n , γ) ≈ 1 n τ β {\displaystyle \tau (n,\gamma)\approx {\frac {1}{n}}\tau _{\beta }}

где τ β - среднее время β-распада ядер, образующих цепочку r-процесса. Это условие накладывает ограничение на плотность нейтронов, т.к.:

τ (n , γ) ≈ (ρ (σ n γ , v n) ¯) − 1 {\displaystyle \tau (n,\gamma)\approx \left(\rho {\overline {(\sigma _{n\gamma },v_{n})}}\right)^{-1}}

где (σ n γ , v n) ¯ {\displaystyle {\overline {(\sigma _{n\gamma },v_{n})}}} - произведение сечения реакции (n ,γ) на скорость нейтрона относительно ядра мишени, усреднённое по максвелловскому спектру распределения скоростей. Учитывая что, r-процесс происходит в тяжёлых и средних ядрах, 0.1 с < τ β < 100 с, то для n ~ 10 и температуры среды T = 10 9 , получим характерную плотность

ρ ≈ 2 ⋅ 10 17 {\displaystyle \rho \approx 2\cdot 10^{17}} нейтронов/см 3 .

Такие условия достигаются в:

ν-процесс

Основная статья: ν-процесс

ν-процесс - это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7 Li , 11 B , 19 F , 138 La и 180 Ta

Влияние на крупномасштабную структуру межзвёздного газа галактики

История наблюдений

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185 (англ. ) , была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054 , породившая Крабовидную туманность . Сверхновые звёзды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году . В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи , следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности , в то время как возраст остатка сверхновой RX J0852.0-4622 (англ. ) оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты , соответствующие времени взрыва сверхновой.

23 февраля 1987 года в Большом Магеллановом Облаке на расстоянии 168 тыс. световых лет от Земли вспыхнула сверхновая SN 1987A , самая близкая к Земле, наблюдавшаяся со времён изобретения телескопа. Впервые был зарегистрирован поток нейтрино от вспышки. Вспышка интенсивно изучалась с помощью астрономических спутников в ультрафиолетовом, рентгеновском и гамма-диапазонах. Остаток сверхновой исследовался с помощью ALMA , «Хаббла » и «Чандры ». Ни нейтронная звезда , ни чёрная дыра , которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены.

22 января 2014 года в галактике M82 , расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J . Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).

Наиболее известные сверхновые звёзды и их остатки

  • Сверхновая SN 1604 (Сверхновая Кеплера)
  • Сверхновая G1.9+0.3 (Самая молодая из известных в нашей Галактике)

Исторические сверхновые в нашей Галактике (наблюдавшиеся)

Сверхновая Дата вспышки Созвездие Макс. блеск Рассто-
яние (св. лет)
Тип вспы-
шки
Дли-
тель-
ность види-
мости
Остаток Примечания
SN 185 , 7 декабря Центавр −8 3000 Ia ? 8-20 мес. G315.4-2.3 (RCW 86) китайские летописи: наблюдалась рядом с Альфой Центавра.
SN 369 неизвестно неиз-
вестно
неиз-
вестно
неиз-
вестно
5 мес. неизвестно китайские летописи: положение известно очень плохо. Если она находилась вблизи галактического экватора, весьма вероятно, что это была сверхновая, если же нет, она, скорее всего, была медленной новой.
SN 386 Стрелец +1,5 16 000 II ? 2-4 мес. G11.2-0.3 китайские летописи
SN 393 Скорпион 0 34 000 неиз-
вестно
8 мес. несколько кандидатур китайские летописи
SN 1006 , 1 мая Волк −7,5 7200 Ia 18 мес. SNR 1006 швейцарские монахи, арабские учёные и китайские астрономы.
SN 1054 , 4 июля Телец −6 6300 II 21 мес. Крабовидная туманность на Ближнем и Дальнем Востоке (в европейских текстах не значится, не считая туманных намёков в ирландских монастырских хрониках).
SN 1181 , август Кассиопея −1 8500 неиз-
вестно
6 мес. Возможно, 3C58 (G130.7+3.1) труды профессора Парижского университета Александра Некэма, китайские и японские тексты.
SN 1572 , 6 ноября Кассиопея −4 7500 Ia 16 мес. Остаток сверхновой Тихо Это событие зафиксировано во многих европейских источниках, в том числе и в записях молодого Тихо Браге . Правда, он заметил вспыхнувшую звезду лишь 11 ноября , но зато следил за ней целых полтора года и написал книгу «De Nova Stella» («О новой звезде») - первый астрономический труд на эту тему.
SN 1604 , 9 октября Змееносец −2,5 20000 Ia 18 мес. Остаток сверхновой Кеплера С 17 октября её стал изучать Иоганн Кеплер , который изложил свои наблюдения в отдельной книге.
SN 1680 , 16 августа Кассиопея +6 10000 IIb неиз-
вестно (не более недели)
Остаток Сверхновой Кассиопея А возможно замечена Флемстидом и занесена в каталог как 3 Кассиопеи .

Еще несколько веков назад астрономы заметили, как блеск некоторых звезд в галактике неожиданно увеличивался более чем в тысячу раз. Редкое явление многократного увеличение свечения космического объекта ученые обозначили, как рождение сверхновой звезды. Это в некотором роде космический нонсенс, потому что в этот момент звезда не рождается, а прекращает свое существование.

Вспышка сверхновой звезды - это, по сути, взрыв звезды, сопровождающийся выделением колоссального количества энергии ~10 50 эрг. Яркость свечения сверхновой, которая становится видна в любой точке Вселенной, возрастает течение нескольких суток. При этом каждую секунду выделяется такое количество энергии, которое может выработать Солнце за все время своего существования.

Взрыв сверхновой звезды как следствие эволюции космических объектов

Ученые-астрономы объясняют это явление эволюционными процессами, миллионы лет происходящими со всеми космическими объектами. Чтобы представить себе процесс появления сверхновой, нужно понять строение звезды (рисунок ниже) .

Звезда - это огромный объект, обладающий колоссальной массой и, следовательно, такой же гравитацией. У звезды есть маленькое ядро, окруженное внешней оболочкой из газов, составляющих основную массу звезды. Гравитационные силы давят на оболочку и ядро, сжимая их с такой силой, что газовая оболочка раскаляется и, расширяясь, начинает давить изнутри, компенсируя силу гравитации. Паритет двух сил обусловливает стабильность звезды.

Под действием огромных температур в ядре начинается термоядерная реакция, превращающая водород в гелий. Выделяется еще больше тепла, излучение которого внутри звезды возрастает, но пока еще сдерживается гравитацией. А дальше начинается настоящая космическая алхимия: запасы водорода истощаются, гелий начинает превращаться в углерод, углерод - в кислород, кислород - в магний…Так посредством термоядерной реакции происходит синтез все более тяжелых элементов.

До момента появления железа все реакции идут с выделением тепла, но как только железо начинает перерождаться в следующие за ним элементы, реакция из экзотермической переходит в эндотермическую, то есть тепло перестает выделяться и начинает расходоваться. Баланс сил гравитации и теплового излучения нарушается, ядро сжимается в тысячи раз, и к центру звезды устремляются все внешние слои оболочки. Врезаясь в ядро со скоростью света, они отскакивают обратно, сталкиваясь друг с другом. Происходит взрыв внешних слоев, и вещество, из которого состоит звезда, разлетается со скоростью в несколько тысяч километров в секунду.

Процесс сопровождается такой яркой вспышкой, что ее можно увидеть даже невооруженным глазом, если сверхновая загорелась в ближайшей галактике. Затем свечение начинает угасать, и на месте взрыва образуется…А что же остается после взрыва сверхновой? Существует несколько вариантов развития событий: во-первых, остатком сверхновой может быть ядро из нейтронов, которое ученые называют нейтронной звездой, во-вторых, черная дыра, в-третьих, газовая туманность.

Вспышка сверхновой звезды (обозначается SN) - явление несравненно более крупного масштаба, чем вспышка новой. Когда в одной из звездных систем мы наблюдаем появление сверхновой, блеск этой одной звезды оказывается подчас того же порядка, что интегральный блеск всей звездной системы. Так, вспыхнувшая в 1885 г. близ центра туманности Андромеды звезда достигла блеска , тогда как интегральный блеск туманности равен , т. е. световой поток от сверхновой всего в четыре раза с небольшим уступает потоку от туманности. В двух случаях блеск сверхновой оказывался больше блеска галактики, в которой сверхновая появлялась. Абсолютные звездные величины сверхновых в максимуме близки к что на , т. е. в 600 раз ярче, чем абсолютная звездная величина обычной новой в максимальном блеске. Отдельные сверхновые достигают в максимуме , что в десять миллиардов раз превышает светимость Солнца.

В нашей Галактике за последнее тысячелетие достоверно наблюдались три сверхновые звезды: в 1054 г. (в Тельце), в 1572 г. (в Кассиопее), в 1604 г. (в Змееносце). По-видимому, прошла незамеченной также вспышка сверхновой в Кассиопее около 1670 г., от которой сейчас осталась система разлетающихся газовых волокон и мощное радиоизлучение (Cas А). В некоторых галактиках на протяжении 40 лет вспыхивало три и даже четыре сверхновые (в туманностях NGC 5236 и 6946). В среднем, в каждой галактике вспыхивает одна сверхновая за 200 лет, а у названных двух галактик этот интервал снижается до 8 лет! Международное сотрудничество за четыре года (1957-1961) привело к открытию сорока двух сверхновых. Общее число наблюдавшихся сверхновых превышает в настоящее время 500.

По особенностям изменения блеска сверхновые распадаются на два типа - I и II (рис. 129); возможно, что существует еще III тип, объединяющий сверхновые с наименьшей светимостью.

Сверхновые I типа отличаются быстротечным максимумом (около недели), после чего в течение 20-30 дней блеск падает со скоростью за одни сутки. Затем падение замедляется и далее, вплоть до наступления невидимости звезды, протекает с постоянной скоростью за сутки. Светимость звезды убывает при этом экспоненциально, вдвое за каждые 55 суток. Например, Сверхновая 1054 г. в Тельце достигла такого блеска , что была видна днем в течение почти месяца, а ее видимость невооруженным глазом продолжалась два года. В максимуме блеска абсолютная звездная величина сверхновых I типа достигает в среднем , а амплитуда от максимума до минимального блеска после вспышки .

Сверхновые II типа имеют меньшую светимость: в максимуме , амплитуда неизвестна. Вблизи максимума блеск несколько задерживается, но спустя 100 дней после максимума падает гораздо быстрее, чем у сверхновых I типа, а именно на за 20 дней.

Сверхновые звезды вспыхивают обычно на периферии галактик.

Сверхновые I типа встречаются в галактиках любой формы, а II типа - только в спиральных. Те и другие в спиральных галактиках бывают чаще всего вблизи экваториальной плоскости, предпочтительно в ветвях спиралей, и, вероятно, избегают центр галактики. Скорее всего они принадлежат к плоской составляющей (I типу населения).

Спектры сверхновых I типа ничем не похожи на спектры новых звезд. Их удалось расшифровать лишь после того, как отказались от идеи весьма широких эмиссионных полос, а темные промежутки были восприняты как весьма широкие абсорбционные полосы, сильно смещенные в фиолетовую сторону на величину ДХ, соответствующую скоростям приближения от 5000 до 20 000 км/с.

Рис. 129. Кривые фотографического блеска сверхновых звезд I и II типа. Вверху - изменение блеска двух сверхновых I типа, вспыхнувших в 1937 г. почти одновременно в туманностях IС 4182 и NGC 1003. На оси абсцисс отложены юлианские дни. Внизу - синтетическая кривая блеска трех сверхновых II типа, полученная соответствующим сдвигом индивидуальных кривых блеска вдоль оси звездных величин (ординаты, оставленной неразмеченной). Прерывистая кривая изображает изменение блеска сверхновой I типа. На оси абсцисс отложены дни от произвольного начала

Такими оказываются скорости расширения оболочек сверхновых! Понятно, что до максимума и первое время после максимума спектр сверхновой сходен со спектром сверхгиганта, цветовая температура которого около 10 000 К или выше (ультрафиолетовый избыток около );

вскоре после максимума температура излучения падает до 5-6 тыс. Кельвинов. Но спектр остается богатым линиями ионизованных металлов, прежде всего CaII (как ультрафиолетовый дублет, так и инфракрасный триплет), хорошо представлены линии гелия (HeI) и очень выделяются многочисленные линии азота (NI), а линии водорода идентифицируются с большой неуверенностью. Конечно, в отдельных фазах вспышки в спектре встречаются и эмиссионные линии, однако недолговечные. Очень большая ширина абсорбционных линий объясняется большой дисперсией скоростей в выброшенных газовых оболочках.

Спектры сверхновых II типа сходны со спектрами обыкновенных новых звезд: широкие эмиссионные линии, окаймленные с фиолетовой стороны линиями поглощения, которые имеют ту же ширину, что и эмиссии. Характерно наличие весьма заметных бальмеровских линий водорода, светлых и темных. Большая ширина абсорбционных линий, образующихся в движущейся оболочке, в той ее части, которая лежит между звездой и наблюдателем, свидетельствует как о дисперсии скоростей в оболочке, так и об ее огромных размерах. Температурные изменения у сверхновых II типа сходны с тем, что происходит у I типа, и скорости расширения доходят до 15 000 км/с.

Между типами сверхновых и их расположением в Галактике или частотой встречаемости в галактиках разных типов существует корреляция, хотя и не очень строгая. Сверхновые I типа встречаются предпочтительнее среди звездного населения сферической составляющей и, в частности, в эллиптических галактиках, а сверхновые II типа, наоборот - среди населения диска, в спиральных и редко - неправильных туманностях. Впрочем, все сверхновые, наблюдавшиеся в Большом Магеллановом Облаке, были I типа. Конечный продукт сверхновых в других галактиках, как правило, неизвестен. При амплитуде около сверхновые, наблюдаемые в других галактиках, в минимуме блеска должны быть объектами , т. е. совершенно недоступными наблюдению.

Все эти обстоятельства могут помочь при выяснении, какими могут быть звезды - предвестники сверхновых. Встречаемость сверхновых I типа в эллиптических галактиках с их старым населением позволяет считать и предсверхновые старыми звездами малой массы, израсходовавшими весь водород. Наоборот, у сверхновых II типа, которые появляются главным образом в богатых газом спиральных ветвях, предшественникам требуется для пересечения ветви около лет, так что их возраст около сотни миллионов лет. За это время звезда должна, начав с главной последовательности, покинуть ее при исчерпании водородного горючего в своих недрах. Звезда маломассивная не успеет пройти этот этап, и, следовательно, предвестник сверхновой II типа должен обладать массой не меньше и быть молодой ОВ-звездой вплоть до взрыва.

Правда, указанное выше появление сверхновых I типа в Большом Магеллановом облаке несколько нарушает достоверность описанной картины.

Естественно допустить, что предвестник сверхновой I типа есть белый карлике массой около , лишенный водорода. Но он стал таким потому, что входил в состав двойной системы, в которой более массивный красный гигант отдает свое вещество бурным потоком так, что от него остается, в конце концов, вырожденное ядро - белый карлик углеродно-кислородного состава, а бывший спутник сам становится гигантом и начинает обратно отсылать вещество белому карлику, образуя там Н = Не-оболочку. Масса его растет и тогда, когда приближается к пределу (18.9), а центральная температура его возрастает до 4-10° К, при которой «возгорается» углерод.

У обычной звезды с ростом температуры возрастает давление, которое поддерживает вышележащие слои. Но у вырожденного газа давление зависит только от плотности, оно не будет возрастать с температурой, и вышележащие слои будут падать к центру, а не расширяться, чтобы компенсировать рост температуры. Будет происходить спадание (коллапс) ядра и прилежащих к нему слоев. Спадание идет резко ускоренно, пока возросшая температура не снимет вырождения, и тогда начнется расширение звезды «в тщетных потугах» стабилизироваться, в то время как волна сгорания углерода проносится через нее. Этот процесс длится секунду-две, за это время вещество с массой около одной массы Солнца превращается в , распад которого (с выделением -квантов и позитронов) поддерживает высокую температуру у оболочки, бурно расширяющейся до размеров в десятки а. е. Образуется (с временем полураспада ), от распада которого возникает в количестве около Белый карлик разрушается до конца. Но не видно причин для образования нейтронной звезды. А между тем в остатках вспышки сверхновой мы не находим заметного количества железа, а находим нейтронные звезды (см. дальше). В этих фактах - главная трудность изложенной модели вспышки сверхновой I типа.

Но объяснения механизма вспышки сверхновой II типа встречаются с еще большими затруднениями. По-видимому, ее предшественник не входит в состав двойной системы. При большой массе (более ) он эволюционирует самостоятельно и быстро, переживая одну за другой фазы сгорания Н, Не, С, О до Na и Si и далее до Fe-Ni-ядра. Каждая новая фаза включается при исчерпании предыдущей, когда, потеряв способность противодействовать гравитации, ядро коллапсирует, температура повышается и следующий этап вступает в действие. Если дело дойдет до фазы Fe-Ni, источник энергии пропадет, так как железное ядро разрушается под воздействием высокоэнергичных фотонов на множество -частиц, и этот процесс эндотермичен. Он помогает коллапсу. И уже нет больше энергии, способной остановить коллапсирующую оболочку.

А у ядра есть возможность перейти в состояние черной дыры (см. с. 289) через стадию нейтронной звезды посредством реакции .

Дальнейшее развитие явлений становится очень неясным. Предложено много вариантов, но в них не содержится объяснения того, как при коллапсе ядра оболочка выбрасывается наружу.

Что же до описательной стороны дела, то при массе оболочки в и скорости выбрасывания около 2000 км/с, затраченная на это энергия достигает , а излучение в течение вспышки (в основном за 70 суток) уносит с собой .

Мы еще раз вернемся к рассмотрению процесса вспышки сверхновой, но уже с помощью изучения остатков вспышек (см. § 28).