Все вопросы

Вольфрам — свойства и область применения. Где применяется вольфрам

Содержание статьи

ВОЛЬФРАМ –(Wolframium), W – химический элемент 6 (VIb) группы периодической системы Д.И.Менделеева, атомный номер 74, атомная масса 183,85. Известно 33 изотопа вольфрама: от 158 W до 190 W. В природе обнаружено пять изотопов, три из которых являются стабильными: 180 W (доля среди природных изотопов 0,120%), 182 W (26,498%), 186 W (28,426%), а другие два слабо радиоактивны: 183 W (14,314%, Т ½ = 1,1·10 17 лет), 184 W (30,642%, Т ½ = 3·10 17 лет). Конфигурация электронной оболочки – 4f 14 5d 4 6s 2 . Наиболее характерна степень окисления +6. Известны соединения со степенями окисления вольфрама +5, +4, +3, +2 и 0.

Еще в 14–16 вв. горняки и металлурги в Рудных горах Саксонии отмечали, что некоторые руды нарушали процесс восстановления оловянного камня (минерала касситерита, SnO 2) и приводили к зашлаковыванию расплавленного металла. На профессиональном языке того времени этот процесс характеризовали так: «Эти руды вырывают олово и пожирают его, как волк пожирает овцу». Рудокопы дали этой «надоедливой» породе названия «Wolfert» и «Wolfrahm», что в переводе означает «волчья пена» или «пена в пасти у разъяренного волка». Немецкий химик и металлург Георг Агрикола в своем фундаментальном труде Двенадцать книг о металлах (1556) приводит латинское название этого минерала – Spuma Lupi, или Lupus spuma, которое по существу представляет собой кальку с народного немецкого названия.

В 1779 Питер Вульф (Peter Wulf) исследовал минерал, сейчас называемый вольфрамитом (FeWO 4 ·x MnWO 4), и пришел к выводу, что тот должен содержать неизвестное ранее вещество. В 1783 в Испании братья д"Эльгуйяр (Juan Jose и Fausto D"Elhuyar de Suvisa) при помощи азотной кислоты выделили из этого минерала «кислую землю» – желтый осадок оксида неизвестного металла, растворимый в аммиачной воде. В минерале также были обнаружены оксиды железа и марганца. Хуан и Фаусто прокалили «землю» с древесным углем и получили металл, который они предложили называть «вольфрамом», а сам минерал – «вольфрамитом». Таким образом, испанские химики д"Эльгуйяр первыми опубликовали сведения об обнаружении нового элемента.

Позже стало известно, что впервые оксид вольфрама был обнаружен не в «пожирателе олова» – вольфрамите, а в другом минерале.

В 1758 шведский химик и минералог Аксель Фредрик Кронштедт (Axel Fredrik Cronstedt) открыл и описал необычайно тяжелый минерал (CaWO 4 , названный в последствии шеелитом), который назвал Tung Sten, что по-шведски означает «тяжелый камень». Кронштедт был убежден, что этот минерал содержит новый, еще не открытый, элемент.

В 1781 великий шведский химик Карл Шееле разложил «тяжелый камень» азотной кислотой, обнаружив при этом, помимо соли кальция, «желтую землю», не похожую на белую «молибденовую землю», впервые выделенную им же три года назад. Интересно, что один из братьев д"Эльгуйяр работал в то время в его лаборатории. Шееле назвал металл «tungsten», по названию минерала, из которого был впервые выделен желтый оксид. Так у одного и того же элемента появилось два названия.

В 1821 фон Леонард предложил называть минерал CaWO 4 шеелитом.

Название вольфрам можно найти у Ломоносова; Соловьев и Гесс (1824) называют его волчец, Двигубский (1824) – вольфрамий.

Еще в начале 20 в. во Франции, Италии и Англо-Саксонских странах элемент «вольфрам» обозначали как Tu (от tungsten). Лишь в середине прошлого столетия утвердился современный символ W.

Вольфрам в природе. Типы месторождений.

Вольфрам – довольно редкий элемент, его кларк (процентное содержание в земной коре) составляет 1,3·10 –4 % (57-е место среди химических элементов).

Вольфрам встречается, главным образом, в виде вольфраматов железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов.

Наиболее распространенный минерал вольфрамит представляет собой твердый раствор вольфраматов железа и марганца (Fe, Mn)WO 4 . Это тяжелые твердые кристаллы цвета от коричневого до черного, в зависимости от того, какой элемент преобладает в их составе. Если больше марганца (Mn:Fe > 4:1), то кристаллы черные, если же преобладает железо (Fe:Mn > 4:1) – коричневые. Первый минерал называют гюбнеритом, второй – ферберит. Вольфрамит парамагнитен и хорошо проводит электрический ток.

Из других минералов вольфрама промышленное значение имеет шеелит – вольфрамат кальция CaWO 4 . Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит не магнитится, но обладает другой характерной особенностью – способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.

Как правило месторождения вольфрамовых руд связаны с областями распространения гранитов. Крупные кристаллы вольфрамита или шеелита – большая редкость. Обычно минералы лишь вкраплены в древние гранитные породы. Средняя концентрация вольфрама в них всего 1–2%, поэтому извлекать его довольно трудно. Всего известно около 15 собственных минералов вольфрама. Среди них расоит и штольцит, представляющие собой две различные кристаллические модификации вольфрамата свинца PbWO 4 . Другие минералы являются продуктами разложения или вторичными формами обычных минералов – вольфрамита и шеелита, например, вольфрамовая охра и гидротунгстит, являющийся гидратированным оксидом вольфрама, образовавшимся из вольфрамита; русселит – минерал, содержащий оксиды висмута и вольфрама. Единственный неоксидный минерал вольфрама – тунгстенит WS 2 , основные запасы которого сосредоточены в США. Обычно содержание вольфрама в разрабатываемых месторождениях лежит в пределах от 0,3 до 1,0% WO 3 .

Все вольфрамовые месторождения имеют магматическое или гидротермальное происхождение. В процессе охлаждения магмы происходит дифференциальная кристаллизация, поэтому шеелит и вольфрамит часто обнаруживаются в виде жил, там, где магма проникала в трещины земной коры. Большая часть вольфрамовых месторождений сосредоточена в молодых горных цепях – Альпах, Гималаях и Тихоокеанском поясе. По данным Американской геологической службы за 2003 (U.S. Geological Surveys) в Китае находится порядка 62% мировых запасов вольфрама. Значительные залежи этого элемента разведаны также в США (Калифорния, Колорадо), Канаде, России, Южной Корее, Боливии, Бразилии, Австралии и Португалии.

Мировые запасы вольфрамовых руд оцениваются в 2,9·106 тонн в пересчете на металл. Наибольшими запасами обладает Китай (1,8·106 тонн), второе место делят Канада и Россия (2,6·105 и 2,5·105 тонн соответственно). На третьем месте находятся США (1,4·105 тонн), однако сейчас почти все американские месторождения законсервированы. Среди остальных стран весомыми запасами обладают Португалия (запасы 25 000 т), Северная Корея (35 000 т), Боливия (53 000 т) и Австрия (10 000 т).

Ежегодная мировая добыча вольфрамовых руд составляет 5,95·10 4 тонн в пересчете на металл, из которых 49,5·10 4 тонн (83%) извлекается в Китае. В России добывается 3400 тонн, в Канаде – 3000 тонн.

На Кинг-Айленде в Австралии добывается 2000–2400 тонн вольфрамовой руды в год. В Австрии шеелит добывается в Альпах (провинции Зальцбург и Штайермарк). В северо-восточной Бразилии разрабатывается совместное месторождение вольфрама, золота и висмута (шахты Канунг и месторождение Кальзас в Юконе) с предполагаемым запасом золота 1 млн. унций и 30 000 т оксида вольфрама. Мировым лидером в разработке вольфрамового сырья является Китай (месторождения Жианьши (60% китайской добычи вольфрама), Хуньань (20%), Юннань (8%), Гуаньдонь (6%), Гуаньжи и Внутренняя Монголия (2% каждое) и другие). Объемы ежегодной добычи в Португалии (месторождение Панасхира) оцениваются в 720 т вольфрама в год. В России основные месторождения вольфрамовых руд расположены в двух регионах: на Дальнем Востоке (Лермонтовское месторождение, 1700 т концентрата в год) и на Северном Кавказе (Кабардино-Балкария, Тырныауз). Завод в Нальчике перерабатывает руду в оксид вольфрама и паравольфрамат аммония.

Крупнейшим потребителем вольфрама является Западная Европа – ее доля на мировом рынке составляет 30%. По 25% от общего потребления приходится на Северную Америку и Китай, а 12–13% на долю Японии. Спрос на вольфрам в странах СНГ оценивается в 3000 тонн металла в год.

Более половины (58%) всего потребляемого металла используется в производстве карбида вольфрама, почти четверть (23%) – в виде различных сплавов и сталей. На изготовление вольфрамового «проката» (нитей для ламп накаливания, электрических контактов и т.д.) приходится 8% произведенного вольфрама, а оставшиеся 9% используются при получении пигментов и катализаторов.

Переработка вольфрамового сырья.

Первичная руда содержит около 0,5% оксида вольфрама. После флотации и отделения немагнитных компонентов остается порода, содержащая порядка 70% WO 3 . Затем обогащенная руда (и окисленный лом вольфрама) выщелачивается с помощью карбоната или гидроксида натрия:

4FeWO 4 + O 2 + 4Na 2 CO 3 = 4NaWO 4 + 2Fe 2 O 3 + 4CO 2

6MnWO 4 + O 2 + 6Na 2 CO 3 = 6Na 2 WO 4 + 2Mn 3 O 4 + 6CO 2

WO 3 + Na 2 CO 3 = Na 2 WO 4 + CO 2

WO 3 + 2NaOH = Na 2 WO 4 + H 2 O

Na 2 WO 4 + CaCl 2 = 2NaCl + CaWO 4 Ї .

Полученный раствор освобождается от механических примесей, а затем подвергается переработке. Первоначально осаждается вольфрамат кальция с последующим его разложением соляной кислотой и растворением образовавшегося WO 3 в водном аммиаке. Иногда очистку первичного вольфрамата натрия осуществляют с помощью ионообменных смол. Конечный продукт процесса – паравольфрамат аммония:

CaWO 4 + 2HCl = H 2 WO 4 Ї + CaCl 2

H 2 WO 4 = WO 3 + H 2 O

WO 3 + 2NH 3 · H 2 O (конц.) = (NH 4) 2 WO 4 + H 2 O

12(NH 4) 2 WO 4 + 14HCl (оч.разб.) = (NH 4) 10 H 2 W 12 O 42 + 14NH 4 Cl + 6H 2 O

Другим способом выделения вольфрама из обогащенной руды является обработка хлором или хлороводородом. Этот метод основан на относительно низкой температуре кипения хлоридов и оксохлоридов вольфрама (300° С). Способ применяется для получения особо чистого вольфрама.

Вольфрамитовый концентрат может быть сплавлен непосредственно с углем или коксом в камере с электрической дугой. При этом получают ферровольфрам, который используется при изготовлении сплавов в сталелитейной промышленности. Чистый концентрат шеелита также может быть добавлен в расплав стали.

Около 30% мирового потребления вольфрама обеспечивается за счет переработки вторичного сырья. Загрязненный лом карбида вольфрама, стружки, опилки и остатки порошкового вольфрама окисляются и переводятся в паравольфрамат аммония. Лом быстрорежущих сталей утилизируют в производстве этих же сталей (до 60–70% всего расплава). Лом вольфрама из ламп накаливания, электродов и химических реактивов практически не перерабатывается.

Основным промежуточным продуктом в производстве вольфрама является паравольфрамат аммония (NH 4) 10 W 12 O 41 · 5H 2 O. Он является и основным транспортируемым соединением вольфрама. Прокаливая паравольфрамат аммония, получают оксид вольфрама(VI), который затем обрабатывают водородом при 700–1000° С и получают порошок металлического вольфрама. Спеканием его с углеродным порошком при 900–2200° С (процесс цементации) получают карбид вольфрама.

В 2002 цена паравольфрамата аммония – основного коммерческого соединения вольфрама – составляла около 9000 долл. за тонну в пересчете на металл. В последнее время появилась тенденция к снижению цен на вольфрамовую продукцию вследствие большого предложения со стороны Китая и стран бывшего СССР.

В России вольфрамовые продукты производят: Скопинский гидрометаллургический завод «Металлург» (Рязанская область, вольфрамовый концентрат и ангидрид), Владикавказский Завод «Победит» (Северная Осетия, вольфрамовый порошок и слитки), Нальчикский Гидрометаллургический завод (Кабардино-Балкария, металлический вольфрам, карбид вольфрама), Кировградский завод твердых сплавов (Свердловская область, карбид вольфрама, вольфрамовый порошок), Электросталь (Московская область, паравольфрамат аммония, карбид вольфрама), Челябинский Электрометаллургический завод (ферровольфрам).

Свойства простого вещества.

Металлический вольфрам имеет светло-серый цвет. После углерода у него самая высокая температура плавления среди всех простых веществ. Ее значение определено в пределах 3387–3422° С. У вольфрама – превосходные механические качества при высоких температурах и наименьший коэффициент расширения среди всех металлов. Температура кипения 5400–5700° С. Вольфрам – один из наиболее тяжелых металлов с плотностью 19250 кг/м 3 . Электропроводность вольфрама при 0° C – величина порядка 28% от электропроводности серебра, являющегося наиболее электропроводящим металлом. Чистый вольфрам довольно легко поддается обработке, однако обычно он содержит примеси углерода и кислорода, что и придает металлу известную всем твердость.

Вольфрам обладает очень высоким модулем растяжения и сжатия, очень высоким сопротивлением температурной ползучести, высокой тепло- и электропроводностью, высоким коэффициентом электронной эмиссии, который может быть еще улучшен сплавлением вольфрама с некоторыми оксидами металлов.

Вольфрам химически стоек. Соляная, серная, азотная, фтороводородная кислоты, царская водка, водный раствор гидроксида натрия, аммиак (до 700° С), ртуть и пары ртути, воздух и кислород (до 400° С), вода, водород, азот, угарный газ (до 800° С), хлороводород (до 600° С) на вольфрам не действуют. С вольфрамом реагируют аммиак в смеси с пероксидом водорода, жидкая и кипящая сера, хлор (свыше 250° С), сероводород в условиях температуры красного каления, горячая царская водка, смесь фтористоводородной и азотной кислот, расплавы нитрата, нитрита, хлората калия, диоксида свинца, нитрита натрия, горячая азотная кислота, фтор, бром, йод. Карбид вольфрама образуется при взаимодействии углерода с вольфрамом при температуре выше 1400° С, оксид – при взаимодействии с водяным паром и диоксидом серы (при температуре красного каления), углекислым газом (выше 1200° С), оксидами алюминия, магния и тория.

Свойства важнейших соединений вольфрама.

Среди важнейших соединений вольфрама – его оксид, хлорид, карбид и паравольфрамат аммония.

Оксид вольфрама(VI) WO 3 – кристаллическое вещество светло-желтого цвета, при нагревании становящееся оранжевым, температура плавления 1473° С, кипения – 1800° С. Соответствующая ему вольфрамовая кислота неустойчива, в водном растворе в осадок выпадает дигидрат, теряющий одну молекулу воду при 70–100° С, а вторую – при 180–350° С. При реакции WO 3 со щелочами образуются вольфраматы.

Анионы вольфрамовых кислот склонны к образованию полисоединений. При реакции с концентрированными кислотами образуются смешанные ангидриды:

12WO 3 + H 3 PO 4 (кип., конц.) = H 3

При взаимодействии оксида вольфрама с металлическим натрием образуется нестехиометрический вольфрамат натрия, носящий название «вольфрамовая бронза»:

WO 3 + x Na = Na x WO 3

При восстановлении оксида вольфрама водородом в момент выделения образуются гидратированные оксиды со смешанной степенью окисления – «вольфрамовые сини» WO 3–n (OH) n , n = 0,5–0,1.

WO 3 + Zn + HCl ® («синь»), W 2 O 5 (OH) (коричн.)

Оксид вольфрама(VI) полупродукт в производстве вольфрама и его соединений. Является компонентом некоторых промышленно важных катализаторов гидрирования и пигментов для керамики.

Высший хлорид вольфрама WCl 6 образуется при взаимодействии оксида вольфрама (или металлического вольфрама) с хлором (так же как и с фтором) или тетрахлоридом углерода. Он отличается от других соединений вольфрама низкой температурой кипения (347° С). По своей химической природе хлорид является хлорангидридом вольфрамовой кислоты, поэтому при взаимодействии с водой образуются неполные хлорангидриды, при взаимодействии со щелочами – соли. В результате восстановления хлорида вольфрама алюминием в присутствии монооксида углерода образуется карбонил вольфрама:

WCl 6 + 2Al + 6CO = Ї + 2AlCl 3 (в эфире)

Карбид вольфрама WC получается при взаимодействии порошкового вольфрама с углем в восстановительной атмосфере. Твердость, сравнимая с алмазом, определяет сферу его применения.

Вольфрамат аммония (NH 4) 2 WO 4 устойчив только в аммиачном растворе. В разбавленной соляной кислоте в осадок выпадает паравольфрамат аммония (NH 4) 10 H 2 W 12 O 42 , являющийся основным полупродуктом вольфрама на мировом рынке. Паравольфрамат аммония легко разлагается при нагревании:

(NH 4) 10 H 2 W 12 O 42 = 10NH 3 + 12WO 3 + 6H 2 O (400 – 500° C)

Применение вольфрама.

Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5–18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68–86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» – очень твердый сплав, содержащий 80–87% вольфрама, 6–15% кобальта, 5–7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Долгие годы с момента открытия вольфрам оставался лабораторной редкостью, лишь в 1847 Оксланд получил патент на производство вольфрамата натрия, вольфрамовой кислоты и вольфрама из касситерита (оловянного камня). Второй патент, полученный Оксландом в 1857, описывал производство железо-вольфрамовых сплавов, которые составляют основу современных быстрорежущих сталей.

В середине 19 в. предпринимались первые попытки использовать вольфрам в производстве стали, однако долгое время не удавалось внедрить эти разработки в промышленность из-за высокой цены на металл. Возросшая потребность в легированных и высокопрочных сталях привела к запуску производства быстрорежущих сталей на фирме «Вифлеемская Сталь» (Bethlehem Steel). Образцы этих сплавов были впервые представлены в 1900 на Всемирной выставке в Париже.

Технология изготовления вольфрамовых нитей и ее история.

Объемы производства вольфрамовой проволоки имеют небольшую долю среди всех отраслей применения вольфрама, но развитие технологии ее получения сыграло ключевую роль в развитии порошковой металлургии тугоплавких соединений.

С 1878, когда Свон продемонстрировал в Ньюкастле изобретенные им восьми- и шестнадцатисвечевые угольные лампы, шел поиск более подходящего материала для изготовления нитей накаливания. Первая угольная лампа обладала эффективностью всего 1 люмен/ватт, которая была увеличена в следующие 20 лет модификацией методов обработки угля в два с половиной раза. К 1898 светоотдача таких лампочек составляла 3 люмен/ватт. Угольные нити в те времена нагревались пропусканием электрического тока в атмосфере паров тяжелых углеводородов. При пиролизе последних образующийся углерод заполнял поры и неровности нити, придавая ей яркий металлический блеск.

В конце 19 в. фон Вельсбах впервые изготовил металлическую нить для ламп накаливания. Он сделал ее из осмия (Т пл = 2700° С). Осмиевые нити обладали эффективностью 6 люмен/ватт, однако, осмий – редкий и чрезвычайно дорогой элемент платиновой группы, поэтому широкого применения в изготовлении бытовых устройств не нашел. Тантал с температурой плавления 2996° С широко использовался в виде вытянутой проволоки с 1903 по 1911 благодаря работам фон Болтона из фирмы Сименс и Хальске. Эффективность танталовых ламп составляла 7 люмен/ватт.

Вольфрам начал применяться в лампах накаливания в 1904 и вытеснил в этом качестве все остальные металлы к 1911. Обычная лампа накаливания с вольфрамовой нитью обладает свечением 12 люмен/ватт, а лампы, работающие под высоким напряжением – 22 люмен/ватт. Современные флуоресцентные лампы с вольфрамовым катодом имеют эффективность порядка 50 люмен/ватт.

В 1904 на фирме «Сименс-Хальске» попытались применить разработанный для тантала процесс волочения проволоки для более тугоплавких металлов, таких как вольфрам и торий. Жесткость и недостаток ковкости вольфрама не позволили гладко провести процесс. Тем не менее, позже, в 1913–1914, было показано, что расплавленный вольфрам может быть раскатан и вытянут с использованием процедуры частичного восстановления. Электрическую дугу пропускали между вольфрамовым стержнем и частично расплавленной вольфрамовой капелькой, помещенной в графитовый тигель, покрытый изнутри вольфрамовым порошком и находящийся в атмосфере водорода. Тем самым были получены небольшие капли расплавленного вольфрама, около 10 мм в диаметре и 20–30 мм в длину. Хотя и с трудом, но с ними уже можно было работать.

В те же годы Юст и Ханнаман запатентовали процесс изготовления вольфрамовых нитей. Тонкий металлический порошок смешивался с органическим связующим, полученная паста пропускалась через фильеры и нагревалась в специальной атмосфере для удаления связующего, при этом получалась тонкая нить чистого вольфрама.

В 1906–1907 был разработан хорошо известный процесс экструзии, применявшийся до начала 1910-х. Черный вольфрамовый порошок очень тонкого помола смешивался с декстрином или крахмалом до образования пластичной массы. Гидравлическим давлением эта масса продавливалась через тонкие алмазные сита. Получающаяся таким образом нить оказывалась достаточно прочной для того, чтобы быть намотанной на катушки и высушенной. Далее нити разрезались на «шпильки», которые нагревались в атмосфере инертного газа до температуры красного каления для удаления остатков влаги и легких углеводородов. Каждая «шпилька» закреплялась в зажиме и нагревалась в атмосфере водорода до яркого свечения пропусканием электрического тока. Это приводило к окончательному удалению нежелательных примесей. При высоких температурах отдельные маленькие частицы вольфрама сплавляются и образуют однородную твердую металлическую нить. Эти нити эластичны, хотя и хрупки.

В начале 20 в. Юст и Ханнаман разработали другой процесс, отличающийся своей оригинальностью. Угольная нить диаметром 0,02 мм покрывалась вольфрамом путем накаливания в атмосфере водорода и паров гексахлорида вольфрама. Покрытая таким образом нить нагревалась до яркого свечения в водороде при пониженном давлении. При этом вольфрамовая оболочка и углеродное ядро полностью сплавлялись друг с другом, образуя карбид вольфрама. Получающаяся нить имела белый цвет и была хрупкой. Далее нить нагревалась в токе водорода, который взаимодействовал с углеродом, оставляя компактную нить из чистого вольфрама. Нити обладали теми же характеристиками, что и полученные в процессе экструзии.

В 1909 американцу Кулиджу удалось получить ковкий вольфрам без применения наполнителей, а лишь с помощью разумной температурной и механической обработки. Основная проблема в получении вольфрамовой проволоки заключалась в быстром окислении вольфрама при высоких температурах и наличии зернистой структуры в получающемся вольфраме, которая приводила к его хрупкости.

Современное производство вольфрамовой проволоки является сложным и точным технологическим процессом. Исходным сырьем служит порошковый вольфрам, получаемый восстановлением паравольфрамата аммония.

Вольфрамовый порошок, применяемый для производства проволоки, должен иметь высокую чистоту. Обычно смешивают порошки вольфрама различного происхождения, чтобы усреднить качество металла. Смешиваются они в мельницах и во избежание окисления нагретого трением металла в камеру пропускают поток азота. Затем порошок прессуется в стальных пресс-формах на гидравлических или пневматических прессах (5–25 кг/мм 2). В случае использования загрязненных порошков, прессовка получается хрупкой, и для устранения этого эффекта добавляется полностью окисляемое органическое связующее. На следующей стадии производится предварительное спекание штабиков. При нагревании и охлаждении прессовок в потоке водорода их механические свойства улучшаются. Прессовки еще остаются достаточно хрупкими, и их плотность составляет 60–70% от плотности вольфрама, поэтому штабики подвергают высокотемпературному спеканию. Штабик зажимается между контактами, охлаждаемыми водой, и в атмосфере сухого водорода через него пропускается ток для нагрева его почти до температуры плавления. За счет нагревания вольфрам спекается и его плотность возрастает до 85–95% от кристаллического, в то же время увеличиваются размеры зерен, растут кристаллы вольфрама. Затем следует ковка при высокой (1200–1500° С) температуре. В специальном аппарате штабики пропускаются через камеру, которая сдавливается молотом. За одно пропускание диаметр штабика уменьшается на 12%. При ковке кристаллы вольфрама удлиняются, создается фибриллярная структура. После ковки следует протяжка проволоки. Стержни смазываются и пропускаются через сита из алмаза или карбида вольфрама. Степень вытяжки зависит от назначения получаемых изделий. Диаметр получаемой проволоки составляет около 13 мкм.

Биологическая роль вольфрама

ограничена. Его сосед по группе молибден является незаменимым в ферментах, обеспечивающих связывание атмосферного азота. Ранее вольфрам использовался в биохимических исследованиях только как антагонист молибдена, т.е. замена молибдена на вольфрам в активном центре фермента приводила к его дезактивации. Ферменты, напротив, дезактивирующиеся при замене вольфрама на молибден, обнаружены в термофильных микроорганизмах. Среди них формиатдегидрогеназы, альдегид-ферредоксин-оксидоредуктазы; формальдегид-ферредо-ксин-оксидоредуктаза; ацетиленгидратаза; редуктаза карбоновой кислоты. Структуры некоторых из этих ферментов, например, альдегид-ферредоксин-оксидоредуктазы сейчас определены.

Тяжелые последствия воздействия вольфрама и его соединений на человека не выявлены. При длительном воздействии больших доз вольфрамовой пыли может возникнуть пневмокониоз, заболевание, вызываемое всеми тяжелыми порошками, попадающими в легкие. Наиболее частые симптомы этого синдрома – кашель, нарушения дыхания, атопическая астма, изменения в легких, проявление которых уменьшается после прекращения контакта с металлом.

Материалы в Интернете: http://minerals.usgs.gov/minerals/pubs/commodity/tungsten/

Юрий Крутяков

Литература:

Колин Дж. Смителлс Вольфрам , М., Металлургиздат, 1958
Агте К., Вацек И. Вольфрам и молибден , М., Энергия, 1964
Фигуровский Н.А. Открытие элементов и происхождение их назван ий. М., Наука, 1970
Популярная библиотека химических элементов . М., Наука, 1983
US Geological Survey Minerals Yearbook 2002
Львов Н.П., Носиков А.Н., Антипов А.Н. Вольфрамосодержащие ферменты , т. 6, 7. Биохимия, 2002

–(Wolframium), W – химический элемент 6 (VIb) группы периодической системы Д.И.Менделеева, атомный номер 74, атомная масса 183,85. Известно 33 изотопа вольфрама: от 158 W до 190 W. В природе обнаружено пять изотопов, три из которых являются стабильными: 180 W (доля среди природных изотопов 0,120%), 182 W (26,498%), 186 W (28,426%), а другие два слабо радиоактивны: 183 W (14,314%, Т ½ = 1,1·10 17 лет), 184 W (30,642%, Т ½ = 3·10 17 лет). Конфигурация электронной оболочки – 4f 14 5d 4 6s 2 . Наиболее характерна степень окисления +6. Известны соединения со степенями окисления вольфрама +5, +4, +3, +2 и 0.

Еще в 14–16 вв. горняки и металлурги в Рудных горах Саксонии отмечали, что некоторые руды нарушали процесс восстановления оловянного камня (минерала касситерита, SnO 2) и приводили к зашлаковыванию расплавленного металла. На профессиональном языке того времени этот процесс характеризовали так: «Эти руды вырывают олово и пожирают его, как волк пожирает овцу». Рудокопы дали этой «надоедливой» породе названия «Wolfert» и «Wolfrahm», что в переводе означает «волчья пена» или «пена в пасти у разъяренного волка». Немецкий химик и металлург Георг Агрикола в своем фундаментальном труде Двенадцать книг о металлах (1556) приводит латинское название этого минерала – Spuma Lupi, или Lupus spuma, которое по существу представляет собой кальку с народного немецкого названия.

В 1779 Питер Вульф (Peter Wulf) исследовал минерал, сейчас называемый вольфрамитом (FeWO 4 ·x MnWO 4), и пришел к выводу, что тот должен содержать неизвестное ранее вещество. В 1783 в Испании братья д"Эльгуйяр (Juan Jose и Fausto D"Elhuyar de Suvisa) при помощи азотной кислоты выделили из этого минерала «кислую землю» – желтый осадок оксида неизвестного металла, растворимый в аммиачной воде. В минерале также были обнаружены оксиды железа и марганца. Хуан и Фаусто прокалили «землю» с древесным углем и получили металл, который они предложили называть «вольфрамом», а сам минерал – «вольфрамитом». Таким образом, испанские химики д"Эльгуйяр первыми опубликовали сведения об обнаружении нового элемента.

Позже стало известно, что впервые оксид вольфрама был обнаружен не в «пожирателе олова» – вольфрамите, а в другом минерале.

В 1758 шведский химик и минералог Аксель Фредрик Кронштедт (Axel Fredrik Cronstedt) открыл и описал необычайно тяжелый минерал (CaWO 4 , названный в последствии шеелитом), который назвал Tung Sten, что по-шведски означает «тяжелый камень». Кронштедт был убежден, что этот минерал содержит новый, еще не открытый, элемент.

В 1781 великий шведский химик Карл Шееле разложил «тяжелый камень» азотной кислотой, обнаружив при этом, помимо соли кальция, «желтую землю», не похожую на белую «молибденовую землю», впервые выделенную им же три года назад. Интересно, что один из братьев д"Эльгуйяр работал в то время в его лаборатории. Шееле назвал металл «tungsten», по названию минерала, из которого был впервые выделен желтый оксид. Так у одного и того же элемента появилось два названия.

В 1821 фон Леонард предложил называть минерал CaWO 4 шеелитом.

Название вольфрам можно найти у Ломоносова ; Соловьев и Гесс (1824) называют его волчец, Двигубский (1824) – вольфрамий.

Еще в начале 20 в. во Франции, Италии и Англо-Саксонских странах элемент «вольфрам» обозначали как Tu (от tungsten). Лишь в середине прошлого столетия утвердился современный символ W.

Вольфрам в природе. Типы месторождений. Вольфрам – довольно редкий элемент, его кларк (процентное содержание в земной коре) составляет 1,3·10 –4 % (57-е место среди химических элементов).

Вольфрам встречается, главным образом, в виде вольфраматов железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов.

Наиболее распространенный минерал вольфрамит представляет собой твердый раствор вольфраматов железа и марганца (Fe, Mn)WO 4 . Это тяжелые твердые кристаллы цвета от коричневого до черного, в зависимости от того, какой элемент преобладает в их составе. Если больше марганца (Mn:Fe > 4:1), то кристаллы черные, если же преобладает железо (Fe:Mn > 4:1) – коричневые. Первый минерал называют гюбнеритом, второй – ферберит. Вольфрамит парамагнитен и хорошо проводит электрический ток.

Из других минералов вольфрама промышленное значение имеет шеелит – вольфрамат кальция CaWO 4 . Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит не магнитится, но обладает другой характерной особенностью – способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.

Как правило месторождения вольфрамовых руд связаны с областями распространения гранитов. Крупные кристаллы вольфрамита или шеелита – большая редкость. Обычно минералы лишь вкраплены в древние гранитные породы. Средняя концентрация вольфрама в них всего 1–2%, поэтому извлекать его довольно трудно. Всего известно около 15 собственных минералов вольфрама. Среди них расоит и штольцит, представляющие собой две различные кристаллические модификации вольфрамата свинца PbWO 4 . Другие минералы являются продуктами разложения или вторичными формами обычных минералов – вольфрамита и шеелита, например, вольфрамовая охра и гидротунгстит, являющийся гидратированным оксидом вольфрама, образовавшимся из вольфрамита; русселит – минерал, содержащий оксиды висмута и вольфрама. Единственный неоксидный минерал вольфрама – тунгстенит WS 2 , основные запасы которого сосредоточены в США. Обычно содержание вольфрама в разрабатываемых месторождениях лежит в пределах от 0,3 до 1,0% WO 3 .

Все вольфрамовые месторождения имеют магматическое или гидротермальное происхождение. В процессе охлаждения магмы происходит дифференциальная кристаллизация, поэтому шеелит и вольфрамит часто обнаруживаются в виде жил, там, где магма проникала в трещины земной коры. Большая часть вольфрамовых месторождений сосредоточена в молодых горных цепях – Альпах, Гималаях и Тихоокеанском поясе. По данным Американской геологической службы за 2003 (U.S. Geological Surveys) в Китае находится порядка 62% мировых запасов вольфрама. Значительные залежи этого элемента разведаны также в США (Калифорния, Колорадо), Канаде, России, Южной Корее, Боливии, Бразилии, Австралии и Португалии.

Мировые запасы вольфрамовых руд оцениваются в 2,9·106 тонн в пересчете на металл. Наибольшими запасами обладает Китай (1,8·106 тонн), второе место делят Канада и Россия (2,6·105 и 2,5·105 тонн соответственно). На третьем месте находятся США (1,4·105 тонн), однако сейчас почти все американские месторождения законсервированы. Среди остальных стран весомыми запасами обладают Португалия (запасы 25 000 т), Северная Корея (35 000 т), Боливия (53 000 т) и Австрия (10 000 т).

Ежегодная мировая добыча вольфрамовых руд составляет 5,95·10 4 тонн в пересчете на металл, из которых 49,5·10 4 тонн (83%) извлекается в Китае. В России добывается 3400 тонн, в Канаде – 3000 тонн.

На Кинг-Айленде в Австралии добывается 2000–2400 тонн вольфрамовой руды в год. В Австрии шеелит добывается в Альпах (провинции Зальцбург и Штайермарк). В северо-восточной Бразилии разрабатывается совместное месторождение вольфрама, золота и висмута (шахты Канунг и месторождение Кальзас в Юконе) с предполагаемым запасом золота 1 млн. унций и 30 000 т оксида вольфрама. Мировым лидером в разработке вольфрамового сырья является Китай (месторождения Жианьши (60% китайской добычи вольфрама), Хуньань (20%), Юннань (8%), Гуаньдонь (6%), Гуаньжи и Внутренняя Монголия (2% каждое) и другие). Объемы ежегодной добычи в Португалии (месторождение Панасхира) оцениваются в 720 т вольфрама в год. В России основные месторождения вольфрамовых руд расположены в двух регионах: на Дальнем Востоке (Лермонтовское месторождение, 1700 т концентрата в год) и на Северном Кавказе (Кабардино-Балкария, Тырныауз). Завод в Нальчике перерабатывает руду в оксид вольфрама и паравольфрамат аммония.

Крупнейшим потребителем вольфрама является Западная Европа – ее доля на мировом рынке составляет 30%. По 25% от общего потребления приходится на Северную Америку и Китай, а 12–13% на долю Японии. Спрос на вольфрам в странах СНГ оценивается в 3000 тонн металла в год.

Более половины (58%) всего потребляемого металла используется в производстве карбида вольфрама, почти четверть (23%) – в виде различных сплавов и сталей. На изготовление вольфрамового «проката» (нитей для ламп накаливания, электрических контактов и т.д.) приходится 8% произведенного вольфрама, а оставшиеся 9% используются при получении пигментов и катализаторов.

Переработка вольфрамового сырья. Первичная руда содержит около 0,5% оксида вольфрама. После флотации и отделения немагнитных компонентов остается порода, содержащая порядка 70% WO 3 . Затем обогащенная руда (и окисленный лом вольфрама) выщелачивается с помощью карбоната или гидроксида натрия: 4FeWO 4 + O 2 + 4Na 2 CO 3 = 4NaWO 4 + 2Fe 2 O 3 + 4CO 2 + O 2 + 6Na 2 CO 3 = 6Na 2 WO 4 + 2Mn 3 O 4 + 6CO 2 WO 3 + Na 2 CO 3 = Na 2 WO 4 + CO 2

WO 3 + 2NaOH = Na 2 WO 4 + H 2 O

Na 2 WO 4 + CaCl 2 = 2NaCl + CaWO 4

Ї .

Полученный раствор освобождается от механических примесей, а затем подвергается переработке. Первоначально осаждается вольфрамат кальция с последующим его разложением соляной кислотой и растворением образовавшегося WO 3 в водном аммиаке. Иногда очистку первичного вольфрамата натрия осуществляют с помощью ионообменных смол. Конечный продукт процесса – паравольфрамат аммония:

CaWO 4 + 2HCl = H 2 WO 4

Ї + CaCl 2

H 2 WO 4 = WO 3 + H 2 O

WO 3 + 2NH 3 · H 2 O (конц .) = (NH 4) 2 WO 4 + H 2 O

12(NH 4) 2 WO 4 + 14HCl (

оч . разб .) = (NH 4) 10 H 2 W 12 O 42 + 14NH 4 Cl + 6H 2 O Другим способом выделения вольфрама из обогащенной руды является обработка хлором или хлороводородом. Этот метод основан на относительно низкой температуре кипения хлоридов и оксохлоридов вольфрама (300° С). Способ применяется для получения особо чистого вольфрама.

Вольфрамитовый концентрат может быть сплавлен непосредственно с углем или коксом в камере с электрической дугой. При этом получают ферровольфрам, который используется при изготовлении сплавов в сталелитейной промышленности. Чистый концентрат шеелита также может быть добавлен в расплав стали.

Около 30% мирового потребления вольфрама обеспечивается за счет переработки вторичного сырья. Загрязненный лом карбида вольфрама, стружки, опилки и остатки порошкового вольфрама окисляются и переводятся в паравольфрамат аммония. Лом быстрорежущих сталей утилизируют в производстве этих же сталей (до 60–70% всего расплава). Лом вольфрама из ламп накаливания, электродов и химических реактивов практически не перерабатывается.

Основным промежуточным продуктом в производстве вольфрама является паравольфрамат аммония (NH 4) 10 W 12 O 41 · 5H 2 O. Он является и основным транспортируемым соединением вольфрама. Прокаливая паравольфрамат аммония, получают оксид вольфрама(VI), который затем обрабатывают водородом при 700–1000° С и получают порошок металлического вольфрама. Спеканием его с углеродным порошком при 900–2200° С (процесс цементации) получают карбид вольфрама.

В 2002 цена паравольфрамата аммония – основного коммерческого соединения вольфрама – составляла около 9000 долл. за тонну в пересчете на металл. В последнее время появилась тенденция к снижению цен на вольфрамовую продукцию вследствие большого предложения со стороны Китая и стран бывшего СССР.

В России вольфрамовые продукты производят: Скопинский гидрометаллургический завод «Металлург» (Рязанская область, вольфрамовый концентрат и ангидрид), Владикавказский Завод «Победит» (Северная Осетия, вольфрамовый порошок и слитки), Нальчикский Гидрометаллургический завод (Кабардино-Балкария, металлический вольфрам, карбид вольфрама), Кировградский завод твердых сплавов (Свердловская область, карбид вольфрама, вольфрамовый порошок), Электросталь (Московская область, паравольфрамат аммония, карбид вольфрама), Челябинский Электрометаллургический завод (ферровольфрам).

Свойства простого вещества. Металлический вольфрам имеет светло-серый цвет. После углерода у него самая высокая температура плавления среди всех простых веществ. Ее значение определено в пределах 3387–3422° С. У вольфрама – превосходные механические качества при высоких температурах и наименьший коэффициент расширения среди всех металлов. Температура кипения 5400–5700° С. Вольфрам – один из наиболее тяжелых металлов с плотностью 19250 кг/м 3 . Электропроводность вольфрама при 0° C – величина порядка 28% от электропроводности серебра, являющегося наиболее электропроводящим металлом. Чистый вольфрам довольно легко поддается обработке, однако обычно он содержит примеси углерода и кислорода, что и придает металлу известную всем твердость.

Вольфрам обладает очень высоким модулем растяжения и сжатия, очень высоким сопротивлением температурной ползучести, высокой тепло- и электропроводностью, высоким коэффициентом электронной эмиссии, который может быть еще улучшен сплавлением вольфрама с некоторыми оксидами металлов.

Вольфрам химически стоек. Соляная, серная, азотная, фтороводородная кислоты, царская водка, водный раствор гидроксида натрия, аммиак (до 700° С), ртуть и пары ртути, воздух и кислород (до 400° С), вода, водород, азот, угарный газ (до 800° С), хлороводород (до 600° С) на вольфрам не действуют. С вольфрамом реагируют аммиак в смеси с пероксидом водорода, жидкая и кипящая сера , хлор (свыше 250° С), сероводород в условиях температуры красного каления, горячая царская водка, смесь фтористоводородной и азотной кислот, расплавы нитрата, нитрита, хлората калия, диоксида свинца, нитрита натрия, горячая азотная кислота, фтор, бром , йод . Карбид вольфрама образуется при взаимодействии углерода с вольфрамом при температуре выше 1400° С, оксид – при взаимодействии с водяным паром и диоксидом серы (при температуре красного каления), углекислым газом (выше 1200° С), оксидами алюминия, магния и тория.

Свойства важнейших соединений вольфрама. Среди важнейших соединений вольфрама – его оксид, хлорид, карбид и паравольфрамат аммония.

Оксид вольфрама(VI) WO 3 – кристаллическое вещество светло-желтого цвета, при нагревании становящееся оранжевым, температура плавления 1473° С, кипения – 1800° С. Соответствующая ему вольфрамовая кислота неустойчива, в водном растворе в осадок выпадает дигидрат, теряющий одну молекулу воду при 70–100° С, а вторую – при 180–350° С. При реакции WO 3 со щелочами образуются вольфраматы.

Анионы вольфрамовых кислот склонны к образованию полисоединений. При реакции с концентрированными кислотами образуются смешанные ангидриды:

12WO 3 + H 3 PO 4 (кип ., конц .) = H 3 При взаимодействии оксида вольфрама с металлическим натрием образуется нестехиометрический вольфрамат натрия, носящий название «вольфрамовая бронза»:

WO 3 + x Na = Na x WO 3

При восстановлении оксида вольфрама водородом в момент выделения образуются гидратированные оксиды со смешанной степенью окисления – «вольфрамовые сини» WO 3–n (OH) n , n = 0,5–0,1.

® («синь»), W 2 O 5 (OH) (коричн.)

Оксид вольфрама(VI) полупродукт в производстве вольфрама и его соединений. Является компонентом некоторых промышленно важных катализаторов гидрирования и пигментов для керамики.

Высший хлорид вольфрама WCl 6 образуется при взаимодействии оксида вольфрама (или металлического вольфрама) с хлором (так же как и с фтором) или тетрахлоридом углерода. Он отличается от других соединений вольфрама низкой температурой кипения (347° С). По своей химической природе хлорид является хлорангидридом вольфрамовой кислоты, поэтому при взаимодействии с водой образуются неполные хлорангидриды, при взаимодействии со щелочами – соли. В результате восстановления хлорида вольфрама алюминием в присутствии монооксида углерода образуется карбонил вольфрама:

WCl 6 + 2Al + 6CO =

Ї + 2AlCl 3 (в эфире)

Карбид вольфрама WC получается при взаимодействии порошкового вольфрама с углем в восстановительной атмосфере. Твердость, сравнимая с алмазом, определяет сферу его применения.

Вольфрамат аммония (NH 4) 2 WO 4 устойчив только в аммиачном растворе. В разбавленной соляной кислоте в осадок выпадает паравольфрамат аммония (NH 4) 10 H 2 W 12 O 42 , являющийся основным полупродуктом вольфрама на мировом рынке. Паравольфрамат аммония легко разлагается при нагревании:

(NH 4) 10 H 2 W 12 O 42 = 10NH 3 + 12WO 3 + 6H 2 O (400 – 500° C)

Применение вольфрама. Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5–18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68–86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» – очень твердый сплав, содержащий 80–87% вольфрама, 6–15% кобальта, 5–7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Долгие годы с момента открытия вольфрам оставался лабораторной редкостью, лишь в 1847 Оксланд получил патент на производство вольфрамата натрия, вольфрамовой кислоты и вольфрама из касситерита (оловянного камня). Второй патент, полученный Оксландом в 1857, описывал производство железо-вольфрамовых сплавов, которые составляют основу современных быстрорежущих сталей.

В середине 19 в. предпринимались первые попытки использовать вольфрам в производстве стали, однако долгое время не удавалось внедрить эти разработки в промышленность из-за высокой цены на металл. Возросшая потребность в легированных и высокопрочных сталях привела к запуску производства быстрорежущих сталей на фирме «Вифлеемская Сталь» (Bethlehem Steel). Образцы этих сплавов были впервые представлены в 1900 на Всемирной выставке в Париже.

Технология изготовления вольфрамовых нитей и ее история. Объемы производства вольфрамовой проволоки имеют небольшую долю среди всех отраслей применения вольфрама, но развитие технологии ее получения сыграло ключевую роль в развитии порошковой металлургии тугоплавких соединений.

С 1878, когда Свон продемонстрировал в Ньюкастле изобретенные им восьми- и шестнадцатисвечевые угольные лампы, шел поиск более подходящего материала для изготовления нитей накаливания. Первая угольная лампа обладала эффективностью всего 1 люмен/ватт, которая была увеличена в следующие 20 лет модификацией методов обработки угля в два с половиной раза. К 1898 светоотдача таких лампочек составляла 3 люмен/ватт. Угольные нити в те времена нагревались пропусканием электрического тока в атмосфере паров тяжелых углеводородов. При пиролизе последних образующийся углерод заполнял поры и неровности нити, придавая ей яркий металлический блеск.

В конце 19 в. фон Вельсбах впервые изготовил металлическую нить для ламп накаливания. Он сделал ее из осмия (Т пл = 2700° С). Осмиевые нити обладали эффективностью 6 люмен/ватт, однако, осмий – редкий и чрезвычайно дорогой элемент платиновой группы, поэтому широкого применения в изготовлении бытовых устройств не нашел. Тантал с температурой плавления 2996° С широко использовался в виде вытянутой проволоки с 1903 по 1911 благодаря работам фон Болтона из фирмы Сименс и Хальске. Эффективность танталовых ламп составляла 7 люмен/ватт.

Вольфрам начал применяться в лампах накаливания в 1904 и вытеснил в этом качестве все остальные металлы к 1911. Обычная лампа накаливания с вольфрамовой нитью обладает свечением 12 люмен/ватт, а лампы, работающие под высоким напряжением – 22 люмен/ватт. Современные флуоресцентные лампы с вольфрамовым катодом имеют эффективность порядка 50 люмен/ватт.

В 1904 на фирме «Сименс-Хальске» попытались применить разработанный для тантала процесс волочения проволоки для более тугоплавких металлов, таких как вольфрам и торий. Жесткость и недостаток ковкости вольфрама не позволили гладко провести процесс. Тем не менее, позже, в 1913–1914, было показано, что расплавленный вольфрам может быть раскатан и вытянут с использованием процедуры частичного восстановления. Электрическую дугу пропускали между вольфрамовым стержнем и частично расплавленной вольфрамовой капелькой, помещенной в графитовый тигель, покрытый изнутри вольфрамовым порошком и находящийся в атмосфере водорода. Тем самым были получены небольшие капли расплавленного вольфрама, около 10 мм в диаметре и 20–30 мм в длину. Хотя и с трудом, но с ними уже можно было работать.

В те же годы Юст и Ханнаман запатентовали процесс изготовления вольфрамовых нитей. Тонкий металлический порошок смешивался с органическим связующим, полученная паста пропускалась через фильеры и нагревалась в специальной атмосфере для удаления связующего, при этом получалась тонкая нить чистого вольфрама.

В 1906–1907 был разработан хорошо известный процесс экструзии, применявшийся до начала 1910-х. Черный вольфрамовый порошок очень тонкого помола смешивался с декстрином или крахмалом до образования пластичной массы. Гидравлическим давлением эта масса продавливалась через тонкие алмазные сита. Получающаяся таким образом нить оказывалась достаточно прочной для того, чтобы быть намотанной на катушки и высушенной. Далее нити разрезались на «шпильки», которые нагревались в атмосфере инертного газа до температуры красного каления для удаления остатков влаги и легких углеводородов. Каждая «шпилька» закреплялась в зажиме и нагревалась в атмосфере водорода до яркого свечения пропусканием электрического тока. Это приводило к окончательному удалению нежелательных примесей. При высоких температурах отдельные маленькие частицы вольфрама сплавляются и образуют однородную твердую металлическую нить. Эти нити эластичны, хотя и хрупки.

В начале 20 в. Юст и Ханнаман разработали другой процесс, отличающийся своей оригинальностью. Угольная нить диаметром 0,02 мм покрывалась вольфрамом путем накаливания в атмосфере водорода и паров гексахлорида вольфрама. Покрытая таким образом нить нагревалась до яркого свечения в водороде при пониженном давлении. При этом вольфрамовая оболочка и углеродное ядро полностью сплавлялись друг с другом, образуя карбид вольфрама. Получающаяся нить имела белый цвет и была хрупкой. Далее нить нагревалась в токе водорода, который взаимодействовал с углеродом, оставляя компактную нить из чистого вольфрама. Нити обладали теми же характеристиками, что и полученные в процессе экструзии.

В 1909 американцу Кулиджу удалось получить ковкий вольфрам без применения наполнителей, а лишь с помощью разумной температурной и механической обработки. Основная проблема в получении вольфрамовой проволоки заключалась в быстром окислении вольфрама при высоких температурах и наличии зернистой структуры в получающемся вольфраме, которая приводила к его хрупкости.

Современное производство вольфрамовой проволоки является сложным и точным технологическим процессом. Исходным сырьем служит порошковый вольфрам, получаемый восстановлением паравольфрамата аммония.

Вольфрамовый порошок, применяемый для производства проволоки, должен иметь высокую чистоту. Обычно смешивают порошки вольфрама различного происхождения, чтобы усреднить качество металла. Смешиваются они в мельницах и во избежание окисления нагретого трением металла в камеру пропускают поток азота. Затем порошок прессуется в стальных пресс-формах на гидравлических или пневматических прессах (5–25 кг/мм 2). В случае использования загрязненных порошков, прессовка получается хрупкой, и для устранения этого эффекта добавляется полностью окисляемое органическое связующее. На следующей стадии производится предварительное спекание штабиков. При нагревании и охлаждении прессовок в потоке водорода их механические свойства улучшаются. Прессовки еще остаются достаточно хрупкими, и их плотность составляет 60–70% от плотности вольфрама, поэтому штабики подвергают высокотемпературному спеканию. Штабик зажимается между контактами, охлаждаемыми водой, и в атмосфере сухого водорода через него пропускается ток для нагрева его почти до температуры плавления. За счет нагревания вольфрам спекается и его плотность возрастает до 85–95% от кристаллического, в то же время увеличиваются размеры зерен, растут кристаллы вольфрама. Затем следует ковка при высокой (1200–1500° С) температуре. В специальном аппарате штабики пропускаются через камеру, которая сдавливается молотом. За одно пропускание диаметр штабика уменьшается на 12%. При ковке кристаллы вольфрама удлиняются, создается фибриллярная структура. После ковки следует протяжка проволоки. Стержни смазываются и пропускаются через сита из алмаза или карбида вольфрама. Степень вытяжки зависит от назначения получаемых изделий. Диаметр получаемой проволоки составляет около 13 мкм.

Биологическая роль вольфрама ограничена. Его сосед по группе молибден является незаменимым в ферментах, обеспечивающих связывание атмосферного азота. Ранее вольфрам использовался в биохимических исследованиях только как антагонист молибдена, т.е. замена молибдена на вольфрам в активном центре фермента приводила к его дезактивации. Ферменты, напротив, дезактивирующиеся при замене вольфрама на молибден, обнаружены в термофильных микроорганизмах. Среди них формиатдегидрогеназы, альдегид-ферредоксин-оксидоредуктазы; формальдегид-ферредо-ксин-оксидоредуктаза; ацетиленгидратаза; редуктаза карбоновой кислоты. Структуры некоторых из этих ферментов, например, альдегид-ферредоксин-оксидоредуктазы сейчас определены.

Тяжелые последствия воздействия вольфрама и его соединений на человека не выявлены. При длительном воздействии больших доз вольфрамовой пыли может возникнуть пневмокониоз, заболевание, вызываемое всеми тяжелыми порошками, попадающими в легкие. Наиболее частые симптомы этого синдрома – кашель, нарушения дыхания, атопическая астма, изменения в легких, проявление которых уменьшается после прекращения контакта с металлом.

Материалы в Интернете: http://minerals.usgs.gov/minerals/pubs/commodity/tungsten/

Юрий Крутяков

ЛИТЕРАТУРА Колин Дж. Смителлс Вольфрам , М., Металлургиздат, 1958
Агте К., Вацек И. Вольфрам и молибден , М., Энергия, 1964
Фигуровский Н.А. Открытие элементов и происхождение их назван ий. М., Наука, 1970
Популярная библиотека химических элементов . М., Наука, 1983
US Geological Survey Minerals Yearbook 2002
Львов Н.П., Носиков А.Н., Антипов А.Н. Вольфрамосодержащие ферменты , т. 6, 7. Биохимия , 2002

Химия

Элемент № 74 вольфрам причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности онможет поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» - так называли тогда наиболее распространенные минералы вольфрама - вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в .

Вольфрамовая руда

Очень скоро этот металл получил практическое значение - как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали, элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость - позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые - нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2-7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700-800° С, в то время как обычная сталь начинает размягчаться при нагреве всего до 200° С. Еще большей твердостью обладают «стеллиты» - сплавы
вольфрам а с хромом и кобальтом (без железа) и особенно карбиды вольфрама - его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5-15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000- 1100° С. Резцами из этого сплава можно снимать за минуту до 1500-2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200° С и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды вольфрама

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисыо вольфрама WO 3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeW0 4 *nMnW0 4). Этот раствор - тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше побнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит - коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит - вольфрамат кальция CaW04. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью - способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд теологически связаны с областями распространения гранитов . Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита - большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы - средняя концентрация вольфрама в итоге оказывается в лучшем случае 1-2%. Поэтому извлечь вольфрам из руд очень трудно.


Как получают вольфрам

Первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитиых руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамат натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaW0 4 → H 2 W0 4 или (NH 4) 2 W0 4 → WO 3 , можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.


Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с W0 3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450-600° С) и в «горячих» (750-1100° С) зонах; в «холодных» - до низшего окисла W0 2 , дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура - до 1300-1400° С. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl 6 , который разлагается на вольфрам и хлор при 1600° С. В присутствии водорода этот процесс идет уже при 1000° С.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100-1300° С) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость.

Главные свойства

Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее - в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.


По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410° С, а кипит лишь при 6690° С. Такая температура - на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам - блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок - серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Химическая активность

Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, в атомных реакторах в результате различных ядерных реакций образуются еще 8 радиоактивных изотопов вольфрама с массовыми числами от 176 до 188; все они сравнительно недолговечны: их периоды полураспада - от нескольких часов до нескольких месяцев.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое - они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню -d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспарепные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама).
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим болишинстом элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко - в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400-500° С на поверхности металла образуется устойчивый низший окисел W0 2 ; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W 4 O 11 синего цвета, а затем лимонножелтая трехокись вольфрама W0 3 , которая возгоняется при 923° С.


Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 - вещество, которое плавится при 2,5° С и кипит при 19,5° С. Аналогичное соединение - WCl 6 - получается при реакции с хлором, но лишь при 600° С. Сине-стального цвета кристаллы WCl 6 плавятся при 275° С и кипят при 347° С. С бромом и йодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииоднд.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO) 6 . Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50° С возгоняется, а при 100° С полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO 3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.


Сплавы

Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы пли весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона. Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.


С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) - смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10-15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот - азотной, серной и соляной - даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ – филиал

федерального государственного автономного образовательного учреждения

высшего профессионального образования

«Национальный исследовательский ядерный университет «МИФИ»

Кафедра ХиТМСЭ

ВОЛЬФРАМ

реферат по дисциплине

«Избранные главы по химии элементов»

Студент гр. Д- 143

Андросов В. О.

«____»___________ 2014 г.

Проверил

доцент кафедры ХиТМСЭ

Безрукова С.А.

«____»_________ 2014 г.

Северск 2014

Введение

    История происхождения названия

    Получение

    Физические свойства

    Химические свойства

  1. Применение

    1. Металлический вольфрам

      Соединения вольфрама

  2. Биологическая роль

Заключение

Список литературы

Введение

Вольфра́м - химический элемент с атомным номером 74 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом W (лат. Wolframium). При нормальных условиях представляет собой твёрдый блестящий серебристо-серый переходный металл.

Вольфрам - самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент - углерод. При стандартных условиях химически стоек.

История происхождения названия

Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием «волчья пена» - «Spuma lupi» на латыни, или «Wolf Rahm» по-немецки. Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

В настоящее время в США, Великобритании и Франции для вольфрама используют название «tungsten» (швед. tung sten - «тяжелый камень»).

В 1781 году знаменитый шведский химик Шееле, обрабатывая азотной кислотой минерал шеелит, получил жёлтый «тяжёлый камень» (триоксид вольфрама). В 1783 году испанские химики братья Элюар сообщили о получении из саксонского минерала вольфрамита как растворимой в аммиаке жёлтой окиси нового металла, так и самого металла. При этом один из братьев, Фаусто, был в Швеции в 1781 году и общался с Шееле. Шееле не претендовал на открытие вольфрама, а братья Элюар не настаивали на своём приоритете.

Получение

Сырьём для получения Вольфрама служат вольфрамитовые и шеелитовые концентраты (50-60% WO 3).

Из концентратов непосредственно выплавляют ферровольфрам (сплав железа с 65-80% Вольфрама), используемый в производстве стали; для получения Вольфрама, его сплавов и соединений из концентрата выделяют вольфрамовый ангидрид.

В промышленности применяют несколько способов получения WО 3:

1. Шеелитовые концентраты разлагают в автоклавах раствором соды при 180-200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту):

1. CaWO 4 (тв) +Na 2 CO 3 (ж) = Na 2 WO 4 (ж) + CaCO 3 (тв)

2. CaWO 4 (тв) + 2 НCl(ж) = H 2 WO 4 (тв) +СаCl 2 (р-р).

Вольфрамитовые концентраты разлагают либо спеканием с содой при 800-900°С с последующим выщелачиванием Na 2 WO 4 водой, либо обработкой при нагревании раствором едкого натра. При разложении щелочными агентами (содой или едким натром) образуется раствор Na 2 WO 4 , загрязнённый примесями. После их отделения из раствора выделяют H 2 WO 4 . Для получения более грубых, легко фильтруемых и отмываемых осадков вначале из раствора Na 2 WO 4 осаждают CaWO 4 , который затем разлагают соляной кислотой. Высушенная H 2 WO 4 содержит 0,2 - 0,3% примесей.

Прокаливанием H 2 WO 4 при 700-800°С получают WO 3 , а уже из него - твёрдые сплавы.

2. Для производства металлического Вольфрама H 2 WO 4 дополнительно очищают аммиачным способом - растворением в аммиаке и кристаллизацией паравольфрамата аммония 5(NH 4) 2 O·12WO 3 ·nH 2 O. Прокаливание этой соли даёт чистый WO 3 .

3. Порошок Вольфрама получают восстановлением WO 3 водородом (а в производстве твёрдых сплавов - также и углеродом) в трубчатых электрических печах при 700-850°С. Компактный металл получают из порошка металлокерамическим методом, то есть прессованием в стальных пресс-формах под давлением 3000-5000 (кг*с/см 2)и термической обработкой спрессованных заготовок - штабиков. Последнюю стадию термической обработки - нагрев примерно до 3000°С проводят в специальных аппаратах непосредственно пропусканием электрического тока через штабик в атмосфере водорода. В результате получают Вольфрам, хорошо поддающийся обработке давлением (ковке, волочению, прокатке и т. д.) при нагревании.

Физические свойства

Вольфрам - блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя - время существования сиборгия очень мало). Температура плавления - 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами. Твёрдость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C - 55·10−9 Ом·м, при 2700 °C - 904·10−9 Ом·м. Хорошо поддаётся ковке и может быть вытянут в тонкую нить.

Химические свойства

Имеет валентность II, III и VI. Наиболее устойчив VI валентный вольфрам. II, III валентные соединения вольфрама неустойчивы и практического значения не имеют.

В обычных условиях Вольфрам химически стоек. При 400-500°С окисляется на воздухе до WO 3 . Пары воды интенсивно окисляют его выше 600°С до WO 3 . Галогены, сера, углерод, кремний, бор взаимодействуют с Вольфрамом при высоких температурах (фтор с порошкообразным вольфрамом - при комнатной). С водородом Вольфрам не реагирует вплоть до температуры плавления; с азотом выше 1500°С образует нитрид. При обычных условиях Вольфрам стоек к соляной, серной, азотной и плавиковой кислотам, а также к царской водке; при 100°С слабо взаимодействует с ними; быстро растворяется в смеси плавиковой и азотной кислот.

В растворах щелочей при нагревании Вольфрам растворяется слегка, а в расплавленных щелочах при доступе воздуха или в присутствии окислителей - быстро; при этом образуются вольфраматы.

Вольфрам образует четыре оксида:

    высший - WO 3 (вольфрамовый ангидрид),

    низший - WO 2 и

    два промежуточных W 10 О 29 и W 4 O 11 .

Вольфрамовый ангидрид - кристаллический порошок лимонно-жёлтого цвета, растворяющийся в растворах щелочей с образованием вольфраматов. При его восстановлении водородом последовательно образуются низшие оксиды и вольфрам.

Вольфрамовому ангидриду соответствует вольфрамовая кислота H 2 WO 4 - желтый порошок, практически не растворимый в воде и в кислотах. При ее взаимодействии с растворами щелочей и аммиака образуются растворы вольфраматов. При 188°С Н 2 WО 4 разлагается с образованием WO 3 и воды.

С хлором вольфрам образует ряд хлоридов и оксихлоридов. Наиболее важные из них: WCl 6 (tпл 275°С, tкип 348°C) и WO 2 Cl 2 (tпл 266°С, выше 300°С сублимирует), получаются при действии хлора на вольфрамовый ангидрид в присутствии угля.

С серой вольфрам образует два сульфида WS 2 и WS 3 .

Карбиды вольфрама WC (tпл2900°C) и W 2 C (tпл 2750°С) - твердые тугоплавкие соединения; получаются при взаимодействии Вольфрама с углеродом при 1000-1500°С

Изотопы

Природный вольфрам состоит из пяти изотопов (180 W, 182 W, 183 W, 184 W и 186 W). Искусственно созданы и идентифицированы ещё 30 радионуклидов (таблица 1). В 2003 открыта чрезвычайно слабая радиоактивность природного вольфрама (примерно два распада на грамм элемента в год), обусловленная α-активностью 180 W, имеющего период полураспада 1,8×10 18 лет

Таблица 1.

Символ нуклида

Масса изотопа (а. е. м.)

Период полураспада(T 1/2 )

Спини чётность ядра

Энергия возбуждения

1,2·10 18 лет

стабилен

стабилен

стабилен

стабилен

Применение

Вольфрам долгое время не находил практического применения. И только в конце XIX века замечательные свойства этого металла стали использоваться в промышленности. В настоящее время около 80% добываемого вольфрама применяется в вольфрамовых сталях, около 15% вольфрама используют для производства твёрдых сплавов. Важной областью применения чистого вольфрама и чистых сплавов из него - является электротехническая промышленность, где он используется при изготовлении нитей накаливания электрических ламп, для деталей радиоламп и рентгеновских трубок, автомобильного и тракторного электрооборудования, электродов для контактной, атомно-водородной и аргоно-дуговой сварки, нагревателей для электропечей и др. Соединения вольфрама нашли применение в производстве огнестойких, водоустойчивых и утяжелённых тканей, как катализаторы в химической промышленности.

Металлический вольфрам

Ценность вольфрама особенно повышает его способность образовывать сплавы с различными металлами - железом, никелем, хромом, кобальтом, молибденом, которые в различных количествах входят в состав стали. Вольфрам, добавленный в небольших количествах к стали, вступает в реакции с содержащимися в ней вредными примесями серы, фосфора, мышьяка и нейтрализует их отрицательное влияние. В результате сталь с добавкой вольфрама получает высокую твёрдость, тугоплавкость, упругость и устойчивость против кислот.

Всем известно высокое качество клинков из дамасской стали, в которой содержится несколько процентов примеси вольфрама. Ещё в. 1882 году вольфрам стали использовать при изготовлении пуль. В орудийной стали, бронебойных снарядах также содержится вольфрам.

Сталь с присадкой вольфрама идёт на изготовление прочных рессор автомобилей и железнодорожных вагонов, пружин и ответственных деталей различных механизмов. Рельсы, изготовленные из вольфрамовой стали, выдерживают большие нагрузки, и срок их службы значительно дольше, чем рельсов из обычных сортов стали. Замечательным свойством стали с добавкой 91.8% вольфрама является её способность к самозакаливанию, то есть при увеличении нагрузок и температуры эта сталь становится ещё прочнее. Это свойство явилось основанием для изготовления целой серии инструментов из так называемой «быстрорежущей инструментальной стали». Применение резцов из неё позволило в своё время в несколько раз увеличить скорость обработки деталей на металлорежущих станках.

И все же инструменты, изготовленные из быстрорежущей стали, по скорости резания в 35 раз уступают инструментам из твёрдых сплавов. К их числу относятся соединения вольфрама с углеродом (карбиды) и бором (бориды). Эти сплавы по твёрдости близки к алмазам. Если условная твёрдость самого твёрдого из всех веществ – алмаза, выражается 10 баллами (по шкале Мооса), то твёрдость карбида вольфрама - 9,8. К числу сверхтвёрдых сплавов относится и широко известный сплав углерода с вольфрамом и добавкой кобальта - победит. Сам победит вышел из употребления, но это название сохранилось применительно к целой группе твёрдых сплавов. В машиностроительной промышленности из твёрдых сплавов изготавливают также штампы для кузнечных прессов. Они изнашиваются примерно в тысячу раз медленнее стальных.

Особенно важной и интересной областью применения вольфрама является изготовление элементов накала (нитей) электрических ламп накаливания. Для изготовления нитей электроламп используют чистый вольфрам. Свет, излучаемый раскалённой нитью вольфрама, близок к дневному. А количество света, излучаемое лампой с вольфрамовой нитью, в несколько раз превышает излучение ламп из нитей, изготовленных из других металлов (осмия, тантала). Световое излучение (световая отдача) электроламп с вольфрамовой нитью в 10 раз выше, чем у ранее применявшихся ламп с угольной нитью. Яркость свечения, долговечность, экономичность в потреблении электроэнергии, небольшие затраты металла и простота изготовления электрических ламп с вольфрамовой нитью обеспечили им самое широкое применение при освещении.

Широкие возможности применения вольфрама обнаружились в результате открытия, сделанного известным американским физиком Робертом Уильямсом Вудом. В одном из опытов Р. Вуд обратил внимание на то, что свечение вольфрамовой нити с торцовой части катодной трубки его конструкции продолжается и после отключения электродов от аккумулятора. Это настолько поразило его современников, что Р. Вуда стали называть чародеем. Исследования показали, что вокруг нагретой вольфрамовой нити происходит термическая диссоциация молекул водорода они распадаются на отдельные атомы. После отключения энергии атомы водорода снова соединяются в молекулы, и при этом выделяется большое количество тепловой энергии, достаточное, чтобы раскалить тонкую вольфрамовую нить и вызвать её свечение. На этом эффекте разработан новый вид сварки металлов - атомно-водородный, давший возможность сваривать различные стали, алюминий, медь и латунь в тонких листах с получением чистого и ровного шва. Металлический вольфрам при этом используется в качестве электродов. Вольфрамовые электроды применяются также и при более широко распространённой аргоно-дуговой сварке.

В химической промышленности вольфрамовая проволока, очень стойкая против кислот и щелочей, применяется для изготовления сеток различных фильтров. Вольфрам нашёл применение также как катализатор, с его помощью изменяют скорость химических реакций в технологическом процессе. Группа вольфрамовых соединений в промышленности и лабораторных условиях используется как реактивы для определения белка и других органических и неорганических соединений.

Соединения вольфрама

Триоксид вольфрама (WO 3) применяется для получения карбидов и галогенидов вольфрама, как жёлтый пигмент при окраске изделий из стекла и керамики. Является катализатором гидрогенизации и крекинга углеводородов.

Вольфрамовая кислота (H 2 WO 4) применяется как протрава и краситель в текстильной промышленности. Вольфрамовая кислота является промежуточным продуктом в производстве вольфрама.

Карбид вольфрама (WC) активно применяется в технике для изготовления инструментов, требующих высокой твёрдости и коррозионной стойкости, а также для износостойкой наплавки деталей, работающих в условиях интенсивного абразивного изнашивания с умеренными ударными нагрузками. Этот материал находит применение в изготовлении различных резцов, абразивных дисков, свёрл, фрез, долот для бурения и другого режущего инструмента. Марка твёрдого сплава, известная как «победит», на 90% состоит из карбида вольфрама.

Вольфрам - самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент - углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

Смотрите так же:

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам - блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя - время существования сиборгия очень мало). Температура плавления - 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C - 55·10−9 Ом·м, при 2700 °C - 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных - 0,1, основных - 0,7, средних - 1,2, кислых - 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO 3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200-1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO 3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO 4 * mMnWO 4 - соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO 4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1-2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49-50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам - важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки - ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. (Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS 2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe 2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

КЛАССИФИКАЦИЯ

Nickel-Strunz (10-ое издание) 1.AE.05
Dana (7-ое издание) 1.1.38.1