Интернет

Как работает электричество. Производство и использование электрической энергии

Или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением.. Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира - Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.

Электричество – это чрезвычайно полезная форма энергии. Оно легко превращается в другие формы, например в свет или тепло. Его можно без труда передавать по проводам. Слово «электричество» происходит от греческого слова «электрон» — «янтарь». При трении янтарь приобретает электрический заряд и начинает притягивать кусочки бумаги. Статическое электричество известно с древнейших времен, но лишь 200 лет назад люди научились создавать электрический ток. Электричество приносит нам тепло и свет, на нем работают разнообразные машины, в том числе ЭВМ и калькуляторы.

Что такое электричество

Электричество существует благодаря частицам, имеющим электрические заряды. Заряды есть во всяком веществе - ведь атомные ядра имеют положительный заряд, а вокруг них обращаются отрицательно заряженные электроны (см. статью « «). Обычно атом электрически нейтрален, но когда он отдает свои электроны другим атомам, он обретает положительный заряд, а атом, получивший дополнительные электроны, заряжен отрицательно. можно сообщить некоторым предметам электрический заряд, называемый статическим электричеством . Если потереть воздушный шар о шерстяной джемпер, часть электронов перейдет с джемпера на шар, и тот приобретет положительный заряд. Джемпер теперь заряжен положительно, и шарик прилипает к нему, так как противоположные заряды притягиваются друг к другу. Между заряженными телами действуют электрические силы, и тела с противоположными (положительными и отрицательными) зарядами притягивают друг друга. Предметы с одинаковыми зарядами, напротив, отталкиваются. В генераторе Ван-де-Граафа при трении резиновой ленты о валик возникает значительный статический заряд. Если человек дотронется до купола, его волосы встанут дыбом.

В некоторых веществах, например в , электроны могут свободно передвигаться. Когда что-то приводит их в движение, возникает поток электрических зарядов, называемый током . Проводники - это вещества, способные проводить, электрический ток. Если вещество не проводит ток, его называют изолятором . Дерево и пластмасса - изоляторы. В целях изоляции электрический выключатель помещают в пластмассовый корпус. Провода, как правило, делают из меди и покрывают пластиком для изоляции.

Впервые статическое электричество обнаружили древние греки более 2000 лет назад. Сейчас статическое электричество используется для получения фотокопий, факсов, распечаток на лазерных принтерах. Отраженный зеркалом лазерный луч создает на барабане лазерного принтера точечные статические заряды. Тонер притягивается к этим точкам и прижимается к бумаге.

Молния

Молнию вызывает статическое электричество, накапливающееся в грозовой туче в результате трения капелек воды и кристалликов льда, друг о друга. При трении друг о друга и о воздух капли и кристаллики льда приобретают заряд. Положительно заряженные капли собираются в верхней части тучи, а внизу накапливается отрицательный заряд. Большая искра, называемая лидером молнии, устремляется к земле, к точке, имеющей противоположный заряд. Перед возникновением лидера разность потенциалов в верхней и нижней областях тучи может составить до 100 млн. вольт. Лидер вызывает ответный разряд, устремляющийся тем же путем от к туче. внутри этого разряда в пять раз горячее поверхности Солнца - он нагревается до 33 000 °С. Разогретый разрядами молнии воздух быстро расширяется, создавая воздушную волну. Мы воспринимаем ее как гром.

Электрический ток

Электрический ток - это поток заряженных частиц, перемещающихся из области высокого электрического потенциала в область низкого потенциала. Частицы приводит в разность потенциалов, которая измеряется в вольтах . Для протекания тока между двумя точками необходима непрерывная «дорога» - цепь. Между двумя полюсами батарейки существует разность потенциалов. Если соединить их в цепь, возникнет ток. Сила тока зависит от разности потенциалов и сопротивления элементов цепи. Все вещества, даже проводники, оказывают току некоторое сопротивление и ослабляют его. Единица силы тока названа ампером (А) в честь французского ученого Андре-Мари Ампера (1775 - 1836).

Для разных устройств нужен ток разной . Электроприборы, например лампочки, превращают электрическую тока в другие формы энергии, в тепло и свет. Эти устройства могут быть включены в цепь двумя способами: последовательно и параллельно. В последовательной цепи ток проходит по всем компонентам по очереди. Если один из компонентов перегорает, цепь размыкается и ток пропадает. В параллельной цепи ток идет по нескольким путям. Если один компонент цепи выходит из строя, по другой ветви ток идет по-прежнему.

Батареи

Батарея - это хранилище химической энергии, которую можно превратить в электричество. Наиболее типичная батарея, используемая в обиходе, называется сухим элементом . В ней находится электролит (вещество, содержащее способные двигаться заряженные частицы). В результате противоположные заряды разделяются и двигаются к противоположным полюсам батарейки. Ученые обнаружили, что жидкость в теле мертвой лягушки действует как электролит и проводит электрический ток.

Алессандро Вольта (1745-1827) создал первую в мире батарею из стопки картонных дисков, пропитанных кислотой, и пропитанных кислотой, и проложенных между ними цинковых и медных дисков. В его честь единица напряжение названа вольтом . Батарейка в 1,5 В называется элементом. Большие батареи состоят из нескольких элементов. Батарея в 9 В содержит 6 элементов. Сухие называют первичными элементами . Когда компоненты электролита израсходуются, срок службы батарейки заканчивается. Вторичные элементы - это батареи, которые можно перезаряжать. Автомобильный аккумулятор - вторичный элемент. Он подзаряжается током, произведенным внутри машины. Солнечная батарея превращает энергию Солнца в электрическую. При освещении солнечным светом слоев кремния электроны в них начинают двигаться, создавая разность потенциалов между слоями.

Электричество у нас дома

Напряжение в электросети в одних странах составляет 240 В, в других 110 В. Это высокое напряжение, и удар током может быть смертельным. Параллельные цепи подводят электричество в различные части дома. Все электронные приборы снабжены предохранителями. Внутри них находятся очень тонкие проволочки, которые плавятся и разрывают цепь, если сила тока чересчур велика. Каждая параллельная цепь обычно имеет три провода: под напряжением и заземляющий. По первым двум идет ток, а заземляющий провод нужен для безопасности. Он отведет электрический ток в землю в случае пробоя изоляции. Когда вилку включают в розетку, разъёмы соединяются с проводом под напряжением и нейтральным проводом, замыкая цепь. В некоторых странах используют вилки с двумя разъёмами, без заземления (см. рис.).

Многие пользуются электричеством, но далеко не многие знают в чём заключается его суть. Электричество, как явление природы, было и будет всегда. Но люди, в силу своих познавательных способностей, могут лишь отрывать те или иные явления. И в силу своих человеческих особенностей могут порой забывать, терять, скрывать знания о них. Суть электричества в наше время раскрывается в научных теориях тех учёных, которые в своё время вели усердную работу над познанием этой невидимой силы. В разные периоды были сделаны определённые открытия, в последствии порождающие новые вопросы, на которые были очередные попытки на них ответить.

Итак, суть электричества заключается в том, что существуют так называемые элементарные частицы такие как электроны и протоны, входящие в состав атомов и молекул различных веществ. Напомню, модель атома следующая (похожая на солнечную систему): внутри располагается ядро, состоящее из протонов и нейтронов.

Протоны имеют положительный заряд, который проявляет себя в виде силы (по средствам существующего поля вокруг частиц), действующие на другой заряд другой частицы отталкивая её или притягивая. Нейроны, как бы, нейтральны, с точки зрения зарядов. Электроны вращаются на очень большой скорости вокруг ядра атома, и имеют отрицательный заряд. Количество элементарных частиц в атоме может быть разным в зависимости от конкретного вещества.

Именно эти заряды (полевые силы, действующие друг на друга) и являются основой, сутью электричества, поскольку именно эта сила и порождает различные явления, связанные с проявлением электричества в мире. Когда суммарное количество положительного заряда протонов равно отрицательному заряду электронов, входящих в состав атома вещества, то в целом атом будет электрически нейтральным, по отношению к другим атомам. Но вот если в силу тех или иных причин в атоме начнёт преобладать тот или иной вид заряда, то тут уже появятся силы, которые будут стремиться выровнять этот дисбаланс электрического заряда.

Но различные вещества по разному ведут себя, с точки зрения перераспределения электрических зарядов. У одних электроны настолько сильно притягиваются к своим ядрам атома, что не в силах сорваться со своей орбиты вращения. У других же веществ эти электроны достаточно легко отрываютя от атомов и начинают блуждать по соседним атомам данного вещества. В первом случае вещества называют диэлектриками, в другом же случае (где электроны свободно блуждают) вещества называют проводниками электричества. То есть, эти электрические заряды перетекают из одного места в другое, тем самым образуя электрический ток.

Дальнейшая суть электричества уже связана именно с различными движениями этих электронов в различных средах, в различных материалах и различных условиях. В итоге и получаем всё то разнообразие электрических явлений, процессов и взаимодействий. К примеру, обычная батарейка. В ней находятся различные химические вещества, которые взаимодействуя друг с другом с одного своего состояния переходят в другое, а сопутствующим процессом будет перераспределение электронов между изменяющимися веществами внутри. Если есть дисбаланс электрических зарядов, значит есть и сила, стремящаяся выровнять его. Эту самую силу и используют в батарейке для питания различных электрических устройств.

Металлы служат проводником этих самых электронов (заряженных частиц). Они легко перетекают по проводнику с одного участка в другой. Пока же совершается движение электронов, происходят параллельные физические явления. К примеру, когда много электронов упорядоченно движутся через тонкий проводник, они сталкиваются с атомами, неподвижно стоящих на своих местах в кристаллической решётки вещества. В результате таких столкновений энергия движения электронов переходит в энергию тепла атома, с которым было столкновение. То есть, энергия движения электронов частично перешла в энергию тепла, произведя нагрев данного вещества.

Другим примером, проявляющим суть электричества, может служить взаимодействие электромагнитных полей. Напомню, что вокруг неподвижных заряженных частиц существует электрическое поле, а вокруг движущихся электрических частиц ещё возникает и магнитное поле. В итоге, когда заряженные частицы движутся вокруг них образуется общее электромагнитное поле, способное действовать на другие такие же поля других заряженных частиц. Так работает электродвигатель. Именно магнитные поля заставляют вращаться электрический мотор, когда по его обмоткам совершается перетекание электрических зарядов с одного полюса на другой.

P.S. - вот мы и разобрались в общих чертах о сути электричества и его явлениях. Для лучшего понимания просто представляйте, как очень маленькие частички очень быстро перетекают с одного места на другое по своей электрической цепи. Если есть разность потенциалов (в одном месте возникло скопление одного вида зарядов, а в другом, противоположного вида), то при появлении пути (соединение цепи) начинается процесс выравнивания этих самых потенциалов. Бежит электрический ток. Вот и всё.


Warning : strtotime(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in on line 56

Warning : date(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in /var/www/vhosts/сайт/htdocs/libraries/joomla/utilities/date.php on line 198

Каждый из нас ещё из школьного курса помнит, что электрический ток – направленное движение электрических частиц под воздействием электрического поля. Такими частицами могут быть электроны, ионы и т. д. Тем не менее, несмотря на простую формулировку, многие признаются, что не до конца знают, что же такое электричество, из чего оно состоит, как и, вообще, почему работает вся электротехника.

Для начала стоит обратиться к истории этого вопроса. Впервые термин «электричество» появился ещё в 1600 году в сочинениях английского естествоиспытателя Уильяма Гилберта. Он изучал магнитные свойства тел, в своих сочинениях затрагивая магнитные полюса нашей планеты, описывал несколько опытов с наэлектризованными телами, которые сам провёл.

Об этом можно прочитать в его труде «О магните, магнитных телах и о большом магните - Земле». Главным выводом его работы был такой, что многие тела и вещества могут наэлектризоваться, из-за чего у них появляются магнитные свойства. Его исследования применялись при создании компасов и во многих других областях.

Но Ульям Гилберт отнюдь не является первым, кто обнаружил подобные свойства тел, он просто первый, кто стал изучать их. Ещё в 7 веке до нашей эры греческий философ Фалес заметил, что янтарь, потёртый о шерсть, приобретает удивительные свойства – он начинает притягивать к себе предметы. Знания об электричестве ещё на протяжении нескольких веков так и оставались на этом уровне.

Такое положение оставалось вплоть до 17-18 веков. Это время можно назвать рассветом науки об электричестве. Ульям Гилберт был первым, после него этим вопросом занимались множество других учёных со всего мира: Франклин, Кулон, Гальвани, Вольт, Фарадей, Ампер, а также, русский учёный Василий Петров, открывший в 1802 году вольтову дугу.

Все эти учёные сделали выдающиеся открытия в области электричества, которые положили основу для последующего изучения этого вопроса. С тех пор электричество перестало быть чем-то загадочным, но, несмотря на большие достижения в этом вопросе, загадок и неясностей оставалось ещё очень много.

Самым главным вопросов, как и всегда, был: как же использовать все эти достижения на благо человечества? Потому что, несмотря на значительные успехи в области изучения природы электричества, до внедрения его в жизнь было ещё далеко. Оно всё ещё казалось чем-то загадочным и недостижимым.

Это можно сравнить с тем, как сейчас учёные всего мира изучают космос и ближайшую планету Марс. Уже получено множество сведений, установлено, что до него можно долететь и даже высадиться на поверхность и прочее, но до реального достижения подобных целей пока ещё очень много работы.

Говоря о природе электричества, нельзя не упомянуть о самом главном проявлении его в природе. Ведь именно там человек столкнулся с ним впервые, именно в природе он начал его изучать и старался понять, и делал первые попытки приручить и извлечь пользу для себя.

Конечно, когда мы говорим о природном проявлении электричества, то каждому на ум приходят молнии. Хотя сначала ещё было не понятно, что они собой представляют, а их электрическая природа была установлена только в 18 веке, когда началось активное изучение этого феномена в совокупности с ранее полученными знаниями. Кстати, по одной из версий, именно молнии повлияли на появления жизни на Земле, потому что без них бы не начался бы синтез аминокислот.

Внутри тела человека также есть электричество, без него бы не работала нервная система, а нервный импульс возникает в результате кратковременного напряжения. В океанах и морях живёт множество рыб, которые используют электричество для охоты и защиты. К примеру, электрический угорь может достигать напряжения до 500 Вольт, а у ската мощность разрядов составляет примерно 0,5 киловатт.

Некоторые виды рыб создают вокруг себя легкое электрическое поле, которое искажается от всех предметов в воде, так они могут с лёгкостью ориентироваться даже в очень мутной воде и имеют преимущества перед другими рыбами.

Так что с древних времён электричество часто встречалось в природе, без него невозможно было бы появление человека, а многие животные используют его для нахождения пропитания. Впервые человек столкнулся с этими явлениями именно в природном проявлении, это и подталкивало его на дальнейшие изучения.

Практическое применение электричества

Со временем человек продолжал накапливать знания об этом удивительном феномене. Электричество нехотя раскрывало свои тайны перед ним. Примерно с середины 19 века электричество начало проникать в жизнь человеческой цивилизации. В первую очередь оно стало использоваться для освещения, когда была изобретена лампочка. С его помощью стали передавать информацию на большие расстояния: появилось радио, телевидение, телеграф и т.д.

Но отдельное внимание заслуживает появление различных механизмов и устройств, которые приводились в движение с помощью электричества. И по сей день трудно представить работу какого-либо прибора или машины без электричества. Вся бытовая техника в современном доме работает только на электричестве.

Большим прорывом были и достижения в области добывания электричества, так начали создаваться всё более мощные электростанции, генераторы; для хранения были придуманы аккумуляторные батареи.

Электричество помогло сделать множество других открытий, оно помогает в науке и при исследовании новых вопросов. Некоторые технологии работают на основе электрических свойств, они используются в медицине, промышленности и, конечно, в быту.

Так что же такое электричество?

Как бы странно это не звучало, но повсеместное использование электричества не делает его более понятным. Все знают основные принципы работы, техники безопасности и всё. Одни люди признаются, что вообще не представляют, что такое электричество, другие не знают, почему оно работает именно так, а не иначе, третьи не понимают разницы между напряжением, мощностью и сопротивлением и подобных примеров множество.

Проще всего понять природу электричества на молекулярном уровне. Все вещества состоят из молекул, все молекулы состоят из атомов, а каждый атом же, состоит из ядра, вокруг которого вращаются электроны.

Электроны и являются «переносчиками» электричества, а электрический ток – это непрерывное перемещение большого количества таких электронов.

Электротехника достигла больших успехов за время своего развития, однако, по-прежнему изучение её природы требует больших усилий, ведь многие задачи до сих пор остаются нерешёнными или те решения, которые найдены, не столь эффективны, как могли бы быть. В основе всего лежит превращение сил. Электрическую энергию сегодня можно легко преобразовать в световую, используя для освещения, с её помощью можно двигать различные механизмы и прочее.

Другой особенностью и главным преимуществом электрической перед другими видами энергии является её распространённость, неограниченность в пространстве. Электричество непрерывно сопровождает человека во всех сферах его жизни, считается примером эволюции и взглядов в будущее, а процесс развития техники непрерывно связан с развитием науки и новыми достижениями.

Это расширяет возможности человека, совершенствует его инструменты и гарантирует ему постоянное развитие и движение вперёд в будущее, а многие задачи со временем уже перестают казаться невыполнимыми.


Warning : strftime(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in /var/www/vhosts/сайт/htdocs/libraries/joomla/utilities/date.php on line 250

Сегодня я хочу рассказать Вам вкратце, что такое электричество.

А то все изучаем темы по электричеству, а про основы и внутренние процессы его возникновения даже не задумываемся.

Сильно углубляться в изучение происхождения и возникновения электричества мы не будем, т.к. это очень трудоемко и время затратно, а вот рассмотреть основы я считаю нужно.

Как Вы все знаете из курса школьной физики, а может и не знаете, все тела состоят из следующих мельчайших частиц:

  • молекула
  • молекула в свою очередь состоит из атомов
  • атом состоит из протонов, нейтронов и электронов

Так вот каждая из перечисленных частиц обладает своим электрическим зарядом.

Заряд бывает положительным, либо отрицательным. Соответственно, тело с положительным зарядом всегда притягивается к телу с отрицательным зарядом. А два тела с положительными зарядами, либо отрицательными, всегда отталкиваются друг от друга.

Разноименные заряженные тела притягиваются, а одноименные — отталкиваются, т.е. в этот момент можно наблюдать тенденцию движения этих тел.

Интенсивность и скорость движения мельчайших частиц в телах зависит от множества следующих факторов:

  • температура
  • деформация
  • трение
  • химические реакции

Происхождение и возникновение электричества

Чуть выше я упоминал, что атом состоит из протонов, нейтронов и электронов. Так вот протоны (положительно заряженные) и нейтроны (нейтрально заряженные) это и есть само ядро атома. На изображении ниже смотрите из чего состоит атом.

Ядро атома всегда имеет положительный заряд. Нейтрон (показаны красным цветом) не обладает электрическим зарядом. Протон (показаны голубым цветом) обладает всегда положительным зарядом.

Вокруг этого ядра вращаются отрицательно заряженные электроны (изображены синим цветом), которые могут находиться от ядра на различном расстоянии, в зависимости от материала вещества. Расстояние, а точнее, энергетический уровень электрона, зависит от энергии, которую электрон может поглощать из вне (обычно от фотонов) и излучать. Этим занимаются электроны внешних электронных оболочек (самые удалённые от ядра). Если электрон «захапает» слишком много энергии, то может покинуть атом, о чём и говорится чуть ниже. Т.е. взаимодействие атома с другими атомами и прочими частицами происходит благодаря внешним электронам.

Заряд электрона в точности равен заряду протона по величине и противоположен по знаку. Поэтому в целом атом нейтрален.

Взаимодействие положительных протонов ядра с отрицательными электронами не всегда постоянно, и по мере удаления электронов от ядра оно уменьшается.

Т.е. получается, что количество электронов в атомах мы можем изменить.

Способы воздействия и факторы, воздействующие на тела я упоминал выше — это свет, температура, деформация, трение и различные химические реакции. А теперь о каждом воздействии поговорим подробнее.

Свет

Например, под воздействием светового излучения на вещество, из него могут вылететь электроны, которые в свою очередь заряжаются положительным зарядом. Такое явление в физике названо фотоэффектом . О нем мы поговорим в следующих статьях. Чтобы не пропустить новые статьи — подпишитесь на получение уведомления о выходе новых статей на сайте.

На явлении фотоэффекта основан принцип действия фотоэлементов.

Температура

При воздействии на вещество (тело) высокой температурой, удаленные от ядра электроны увеличивают свою скорость вращения вокруг ядра и в один прекрасный момент им хватает кинетической энергии, чтобы оторваться от ядра. В этом случае электроны становятся свободными частицами с отрицательными зарядами.

Такое явление в физике называется термоэлектронной эмиссией . Применяется это явление достаточно обширно. Но об этом в следующих статьях. Следите за обновлениями на сайте.

Химическая реакция

При химических реакциях в результате переноса зарядов образуются положительные и отрицательные полюсы. На этом основано устройство аккумуляторов.

Трение и деформация

При воздействии на некоторые тела трением, сжатием, растяжением или же просто деформировать их, то на их поверхности могут появиться электрические заряды. Такое явление физики называют пьезоэлектрическим эффектом, или сокращенно, пьезоэффектом .

Электродвижущая сила

При каждом способе воздействия на тело, в результате появляются небольшие источники двух полярностей: положительной и отрицательной. Каждая из этих полярностей имеет свою величину, которая называется потенциалом. Все Вы наверное слышали такое выражение.

Потенциал — это запасенная потенциальная энергия единицы количества электричества, находящейся в определенной точке электрического поля.

Так вот, чем больше потенциал, тем больше разница между положительным и отрицательным полюсами. Эта вот самая разница потенциалов и есть электродвижущая сила (ЭДС).

Если цепь замкнуть, то под действием ЭДС источника в цепи появится электрический ток.

Единицей измерения разницы потенциалов является вольт. Измерить разницу потенциалов можно вольтметром, или .

P.S. Все перечисленные способы получения электричества являются лишь небольшими примерами. Человек же создал на их основе более крупные источники энергии, такие как генераторы, аккумуляторы и прочее.