Все вопросы

Какие металлы называются щелочными. Щелочные металлы

К щелочным металлам относятся металлы IA группы Периодической системы Д.И. Менделеева – литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs) и франций (Fr). На внешнем энергетическом уровне щелочных металлов находится один валентный электрон. Электронная конфигурация внешнего энергетического уровня щелочных металлов – ns 1 . В своих соединениях они проявляют единственную степень окисления равную +1. В ОВР являются восстановителями, т.е. отдают электрон.

Физические свойства щелочных металлов

Все щелочные металлы легкие (обладают небольшой плотностью), очень мягкие (за исключением Li легко режутся ножом и могут быть раскатаны в фольгу), имеют низкие температуры кипения и плавления (с ростом заряда ядра атома щелочного металла происходит понижение температуры плавления).

В свободном состоянии Li, Na, K и Rb – серебристо-белые металлы, Cs – металл золотисто-желтого цвета.

Щелочные металлы хранят в запаянных ампулах под слоем керосина или вазелинового масла, поскольку они обладают высокой химической активностью.

Щелочные металлы обладают высокой тепло- и электропроводностью, что обусловлено наличием металлической связи и объемоцентрированной кристаллической решетки

Получение щелочных металлов

Все щелочные металлы возможно получить электролизом расплава их солей, однако на практике таким способом получают только Li и Na, что связано с высокой химической активностью K, Rb, Cs:

2LiCl = 2Li + Cl 2

2NaCl = 2Na + Cl 2

Любой щелочной металл можно получить восстановлением соответствующего галогенида (хлорида или бромида), применяя в качестве восстановителей Ca, Mg или Si. Реакции проводят при нагревании (600 – 900С) и под вакуумом. Уравнение получения щелочных металлов таким способом в общем виде:

2MeCl + Ca = 2Mе + CaCl 2 ,

где Ме – металл.

Известен способ получения лития из его оксида. Реакцию проводят при нагревании до 300°С и под вакуумом:

2Li 2 O + Si + 2CaO = 4Li + Ca 2 SiO 4

Получение калия возможно по реакции между расплавленным гидроксидом калия и жидким натрием. Реакцию проводят при нагревании до 440°С:

KOH + Na = K + NaOH

Химические свойства щелочных металлов

Все щелочные металлы активно взаимодействуют с водой образуя гидроксиды. Из-за высокой химической активности щелочных металлов протекание реакции взаимодействия с водой может сопровождаться взрывом. Наиболее спокойно с водой реагирует литий. Уравнение реакции в общем виде:

2Me + H 2 O = 2MeOH + H 2

где Ме – металл.

Щелочные металлы взаимодействуют с кислородом воздуха образую ряд различных соединений – оксиды (Li), пероксиды (Na), надпероксиды (K, Rb, Cs):

4Li + O 2 = 2Li 2 O

2Na + O 2 =Na 2 O 2

Все щелочные металлы при нагревании реагируют с неметаллами (галогенами, азотом, серой, фосфором, водородом и др.). Например:

2Na + Cl 2 =2NaCl

6Li + N 2 = 2Li 3 N

2Li +2C = Li 2 C 2

2Na + H 2 = 2NaH

Щелочные металлы способны взаимодействовать со сложными веществами (растворы кислот, аммиак, соли). Так, при взаимодействии щелочных металлов с аммиаком происходит образование амидов:

2Li + 2NH 3 = 2LiNH 2 + H 2

Взаимодействие щелочных металлов с солями происходит по следующему принципу –вытесняют менее активные металлы (см. ряд активности металлов) из их солей:

3Na + AlCl 3 = 3NaCl + Al

Взаимодействие щелочных металлов с кислотами неоднозначно, поскольку при протекании таких реакций металл первоначально будет реагировать с водой раствора кислоты, а образующаяся в результате этого взаимодействия щелочь будет реагировать с кислотой.

Щелочные металлы реагируют с органическими веществами, такими, как спирты, фенолы, карбоновые кислоты:

2Na + 2C 2 H 5 OH = 2C 2 H 5 ONa + H 2

2K + 2C 6 H 5 OH = 2C 6 H 5 OK + H 2

2Na + 2CH 3 COOH = 2CH 3 COONa + H 2

Качественные реакции

Качественной реакцией на щелочные металлы является окрашивание пламени их катионами: Li + окрашивает пламя в красный цвет, Na + — в желтый, а K + , Rb + , Cs + — в фиолетовый.

Примеры решения задач

ПРИМЕР 1

Задание Осуществите химические превращения Na→Na 2 O→NaOH→Na 2 SO 4
Решение 4Na + O 2 →2Na 2 O

Щелочные металлы — группа неорганических веществ, простых элементов таблицы Менделеева. Все они обладают похожим атомным строением и соответственно, похожими свойствами. В группу входят калий, натрий, литий, цезий, рубидий, франций и теоретически описанный, но еще не синтезированный элемент унуне́нний. Первые пять веществ существуют в природе, франций — искусственно созданный, радиоактивный элемент. Свое название щелочные металлы получили из-за способности образовывать щелочи в реакции с водой.

Вся элементы группы химически активны, поэтому на Земле встречаются только в составе различных минералов, например, каменной, калийной, поваренной соли, буры, полевого шпата, морской воды, подземных рассолов, чилийской селитры . Франций часто сопутствует урановым рудам; рубидий и цезий — минералам с натрием и калием.

Свойства

Все представители группы — мягкие металлы, их можно резать ножом, сгибать руками. Внешне — блестящие, белого цвета (кроме цезия). Цезий отливает золотистым блеском. Легкие: натрий и калий легче воды, литий всплывает даже в керосине. Классические металлы с хорошей электро- и теплопроводностью. Горят, придают пламени характерный цвет, являющийся одним из аналитических способов определить тип металла. Легкоплавкие, самым «тугоплавким» является литий (+180,5 °С). Цезий тает прямо в руках при температуре +28,4 °С.

Активность в группе увеличивается по мере роста атомной массы: Li →Cs. Обладают восстановительными свойствами, в том числе в реакции с водородом. Проявляют валентность -1. Бурно реагируют с водой (все кроме лития — со взрывом); с кислотами, кислородом. Взаимодействуют с неметаллами, спиртами, водным аммиаком и его производными, карбоновыми кислотами, многими металлами.

Калий и натрий являются биогенными элементами, участвуют в водно-солевом и кислотно-щелочном балансе человеческого организма, необходимы для нормальной циркуляции крови и функционирования многих энзимов. Калий важен для растений.

В нашем организме есть и рубидий. Его нашли в крови, костях, головном мозге, легких. Он оказывает противовоспалительное, противоаллергическое действие, притормаживает реакции нервной системы, усиливает иммунитет, положительно влияет на состав крови.

Меры предосторожности

Щелочные металлы очень опасны, способны воспламеняться и взрываться просто от контакта с водой или воздухом. Многие реакции протекают бурно, поэтому работать с ними допускается только после тщательного инструктажа, с применением всех мер предосторожностей, в защитной маске и защитных очках.

Растворы калия, натрия и лития в воде являются сильными щелочами (гидроксиды калия , натрия, лития); контакт с кожей приводит к глубоким болезненным ожогам. Попадание щелочей, даже низкой концентрации, в глаза может привести к слепоте. Реакции с кислотами, аммиаком, спиртами проходят с выделением пожаро- и взрывоопасного водорода.

Щелочные металлы хранят под слоем керосина или вазелина в герметичных емкостях. Манипуляции с чистыми реактивами проводят в аргоновой атмосфере.

Следует тщательно следить за утилизацией остатков после опытов со щелочными металлами. Все остатки металлов предварительно должны быть нейтрализованы.

Применение

Хим. элементы (щелочные элементы), составляющие гл. подгруппу 1 группы периодич. системы элементов, а также отвечающие им простые вещества металлы. К Щ. м. относятся литий Li (ат. номер 3), натрий Na (11), калий К (19), рубидий Rb (37), це … Физическая энциклопедия

ЩЕЛОЧНЫЕ МЕТАЛЛЫ - ЩЕЛОЧНЫЕ МЕТАЛЛЫ, одновалентные металлы, составляющие первую группу периодической таблицы: литий, НАТРИЙ, РУБИДИЙ, ЦЕЗИЙ и ФРАНЦИЙ. Это мягкие серебристо белые металлы, которые быстро окисляются на воздухе и дают бурную реакцию с водой, при… … Научно-технический энциклопедический словарь

Щелочные металлы - ЩЕЛОЧНЫЕ МЕТАЛЛЫ: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr. Мягкие металлы, легко режутся (кроме Li), Rb, Cs и Fr почти пастообразны при обычных условиях; Li самый лёгкий из всех металлов, Na и K легче воды. Химически очень… … Иллюстрированный энциклопедический словарь

ЩЕЛОЧНЫЕ МЕТАЛЛЫ - химические элементы Li, Na, K, Rb, Cs, Fr. Название от щелочей гидроксидов щелочных металлов … Большой Энциклопедический словарь

ЩЕЛОЧНЫЕ МЕТАЛЛЫ - элементы I группы периодической системы: литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr); очень мягкие, пластичные, легкоплавкие и легкие, как правило, серебристо белого цвета; химически очень активны; бурно реагируют с … Российская энциклопедия по охране труда

щелочные металлы - Группа, включ. Li, Na, К, Rb, Cs, Fr. Тематики металлургия в целом EN alkali metals … Справочник технического переводчика

ЩЕЛОЧНЫЕ МЕТАЛЛЫ - ПОДГРУППА IА. ЩЕЛОЧНЫЕ МЕТАЛЛЫ ЛИТИЙ, НАТРИЙ, КАЛИЙ, РУБИДИЙ, ЦЕЗИЙ, ФРАНЦИЙ Электронное строение щелочных металлов характеризуется наличием на внешней электронной оболочке одного электрона, относительно слабо связанного с ядром. С каждого… … Энциклопедия Кольера

Щелочные металлы - Alkali metals Щелочные металлы. Металлы первой группы Периодической системы, а именно: литий, натрий, калий, рубидий, цезий и франций. Они образуют строго щелочные гидроксиды, отсюда и их название. (Источник: «Металлы и сплавы. Справочник.» Под… … Словарь металлургических терминов

Щелочные металлы Энциклопедический словарь по металлургии

ЩЕЛОЧНЫЕ МЕТАЛЛЫ - химические элементы Li, Na, К, Rb, Cs, Fr. Названы так потому, что их гидрооксиды наиболее сильные щелочи. Химически щелочные металлы наиболее активные металлы. Их активность возрастает от Li к Fr … Металлургический словарь

Книги

  • Комплект таблиц. Химия. Металлы (12 таблиц) , . Учебный альбом из 12 листов. Арт. 5-8683-012 Щелочные металлы. Химия щелочных металлов. Элементы II А - группы. Жесткость воды. Алюминий. Применение алюминия. Железо. Виды коррозии. Методы…

Из всей периодической системы большая часть элементов представляет группу металлов. амфотерные, переходные, радиоактивные - их очень много. Все металлы играют огромную роль не только в природе и биологической жизни человека, но и в различных отраслях промышленности. Не зря ведь XX век был назван "железным".

Металлы: общая характеристика

Все металлы объединяются общими химическими и физическими свойствами, по которым их легко отличить от неметаллических веществ. Так, например, строение кристаллической решетки позволяет им быть:

  • проводниками электрического тока;
  • хорошими теплопроводниками;
  • ковкими и пластичными;
  • прочными и блестящими.

Конечно, среди них есть и различия. Одни металлы блестят серебристым цветом, другие - более матовым белым, третьи - вообще красным и желтым. Также отличия есть и в показателях тепло- и электропроводности. Однако все равно эти параметры - общие для всех металлов, в то время как у неметаллов больше различий, нежели схожести.

По химической природе все металлы - восстановители. В зависимости от условий реакции и конкретных веществ могут выступать и в роли окислителей, однако редко. Способны образовывать многочисленные вещества. Химические соединения металлов встречаются в природе в огромном количестве в составе руды или полезных ископаемых, минералов и прочих пород. Степень всегда положительная, может быть постоянной (алюминий, натрий, кальций) или переменной (хром, железо, медь, марганец).

Многие из них получили широкое распространение в качестве строительных материалов, используются в самых разных отраслях науки и техники.

Химические соединения металлов

Среди таковых следует назвать несколько основных классов веществ, которые являются продуктами взаимодействия металлов с другими элементами и веществами.

  1. Оксиды, гидриды, нитриды, силициды, фосфиды, озониды, карбиды, сульфиды и прочие - бинарные соединения с неметаллами, чаще всего относятся к классу солей (кроме оксидов).
  2. Гидроксиды - общая формула Ме +х (ОН) х.
  3. Соли. Соединения металлов с кислотными остатками. Могут быть разными:
  • средние;
  • кислые;
  • двойные;
  • основные;
  • комплексные.

4. Соединения металлов с органическими веществами - металлорганические структуры.

5. Соединения металлов друг с другом - сплавы, которые получаются разными способами.

Варианты соединения металлов

Вещества, в которых одновременно могут находиться два разных металла и более, подразделяются на:

  • сплавы;
  • двойные соли;
  • комплексные соединения;
  • интерметаллиды.

Способы соединения металлов между собой также варьируются. Например, для получения сплавов используют метод расплавления, смешения и затвердевания полученного продукта.

Интерметаллиды образуются в результате прямых химических реакций между металлами, нередко происходящих со взрывом (например, цинк и никель). Для таких процессов нужны особые условия: температура очень высокая, давление, вакуумность, отсутствие кислорода и прочие.

Сода, соль, каустик - все это соединения щелочных металлов в природе. Они существуют в чистом виде, формируя залежи, либо входят в состав продуктов сгорания тех или иных веществ. Иногда их получают лабораторным способом. Но всегда эти вещества важны и ценны, так как окружают человека и формируют его быт.

Соединения щелочных металлов и их применение не ограничиваются только натрием. Также распространены и популярны в отраслях хозяйства такие соли, как:

  • хлорид калия;
  • (нитрат калия);
  • карбонат калия;
  • сульфат.

Все они являются ценными минеральными удобрениями, используемыми в сельском хозяйстве.

Щелочноземельные металлы - соединения и их применение

К данной категории относятся элементы второй группы главной подгруппы системы химических элементов. Их постоянная степень окисления +2. Это активные восстановители, легко вступающие в химические реакции с большинством соединений и простых веществ. Проявляют все типичные свойства металлов: блеск, ковкость, тепло и электропроводность.

Самыми важными и распространенными из них являются магний и кальций. Бериллий проявляет амфотерность, барий и радий относятся к редким элементам. Все они способны формировать следующие типы соединений:

  • интерметаллические;
  • оксиды;
  • гидриды;
  • бинарные соли (соединения с неметаллами);
  • гидроксиды;
  • соли (двойные, комплексные, кислые, основные, средние).

Рассмотрим самые важные соединения с практической точки зрения и их области применения.

Соли магния и кальция

Такие соединения щелочноземельных металлов, как соли, имеют важное значение для живых организмов. Ведь именно соли кальция являются источником этого элемента в организме. А без него невозможно нормальное формирование скелета, зубов, рогов у животных, копыт, волос и шерстного покрова и так далее.

Так, самой распространенной солью щелочноземельного металла кальция является карбонат. Его другие названия:

  • мрамор;
  • известняк;
  • доломит.

Используется не только как поставщик ионов кальция в живой организм, но и как стройматериал, сырье для химических производств, в косметической промышленности, стекольной и так далее.

Такие соединения щелочноземельных металлов, как сульфаты, тоже имеют важное значение. Например, сульфат бария (медицинское название "баритовая каша") используется в рентгенодиагностике. Сульфат кальция в виде кристаллогидрата - это гипс, который содержится в природе. Он используется в медицине, строительстве, штамповке слепков.

Фосфоры из щелочноземельных металлов

Эти вещества известны еще со Средних веков. Раньше их называли люминофорами. Это название встречается и сейчас. По своей природе данные соединения - это сульфиды магния, стронция, бария, кальция.

При определенной обработке они способны проявлять фосфоресцирующие свойства, причем свечение очень красивое, от красного до ярко-фиолетового. Это применяется при изготовлении дорожных знаков, спецодежды и прочих вещей.

Комплексные соединения

Вещества, которые включают в себя два и более разных элементов металлической природы, - комплексные соединения металлов. Чаще всего они представляют собой жидкости, обладающие красивыми и разноцветными окрасками. Используются в аналитической химии для качественного определения ионов.

Такие вещества способны образовывать не только щелочные и щелочноземельные металлы, но и все остальные. Бывают гидроксокомплексы, аквакомплексы и другие.

«Литий есть самый легкий металл; он имеет удельный вес 0,59, вследствие чего плавает даже на нефти; плавится около 185°, но не улетучивается при краснокалильном жаре. Цветом он напоминает натрий и, подобно ему, имеет желтый оттенок.»

Д. И. Менделеев. Основы химии.

Когда в 1817 г. 25-летний шведский химик Юхан Август Арфведсон (1792-1841) вы-делил из минерала петалита новую «огнепостоянную щелочь до сих пор неизвестной природы» (это был гидроксид лития), его учитель, знаменитый шведский химик Йенс Якоб Берцелиус (1779-1848), предложил назвать ее литионом, от греч. lithos - камень.

Эта щелочь, в отличие от уже известных натриевой и калиевой, впервые была обнаружена в «царстве» камней. В 1818 г. английский химик Гемфри Дэви (1778-1829) получил из «литиона» новый металл, который назвал литием. Этот же греческий корень - в словах «литосфера», «литография» (оттиск с каменной формы) и др.

Литий - самый легкий из твердых веществ: его плотность всего 0,53 г/см3 (вдвое меньше, чем у воды). Получают литий электролизом расплава хлорида лития. Редкое свойство металлического лития - реакция с азотом при обычных условиях с образованием нитрида лития.

Литий все шире применяется в производстве литий-ионных аккумуляторов. В результате мировое производство лития в 2012 г. составило 37 тысяч тонн - в пять раз больше, чем в 2005 г.

Соединения лития находят применение в стекольной и керамической промышленности. Гидроксид лития - поглотитель избытка углекислого газа в кабинах космических кораблей и подводных лодок. Карбонат лития применяется в психиатрии для лечения некоторых расстройств. В среднем человеке содержится менее 1 мг лития.

Натрий

«Получение металлического натрия относится к важнейшим открытиям в химии не потому одному, что чрез то расширилось и стало более правильным понятие о простых телах, но потому особенно, что в натрии видны химические свойства, лишь слабо выраженные в других общеизвестных металлах.»

Д. И. Менделеев. Основы химии.

Русское название «натрий» (оно есть также в шведском и немецком языках) происходит от слова «натрон»: так древние египтяне называли сухую соду, которую использовали в процессе мумификации. В XVIII веке название «натрон» закрепилось за «минеральной щелочью» - едким натром. Сейчас натронной известью называют смесь едкого натра и оксида кальция (по-английски soda lime), а натрий по-английски (и во многих других языках - sodium). Слово «сода» произошло от латинского названия растения солянка (sodanum). Это прибрежное морское растение, золу которого в древности использовали при изготовлении стекла. В этой золе содержится карбонат натрия, который назвали содой. И сейчас сода - важнейшая составная часть шихты для производства большинства стекол, в том числе оконных.


Галит - основной минерал натрия

Первым из людей, который увидел, как выглядит металлический натрий, был Г. Дэви, выделивший новый металл с помощью электролиза. Он же предложил название новому элементу - sodium.

Натрий - очень активный металл, он быстро окисляется на воздухе, покрываясь толстой коркой продуктов реакций с кислородом и водяными парами. Известен лекционный опыт: если маленький кусочек натрия бросить в воду, он начнет реагировать с ней, выделяя водород. В реакции выделяется много теплоты, которая расплавляет натрий, и его шарик бегает по поверхности. Вода охлаждает натрий и не дает водороду вспыхнуть, но если кусок натрия будет большим, возможно возгорание и даже взрыв.

Металлический натрий широко применяется для различных синтезов как восстановитель, а также как осушитель неводных жидкостей. Он присутствует в обладающих высокой емкостью натриево-серных аккумуляторах. Легкоплавкий сплав натрия с кали-ем, жидкий при комнатной температуре, работает теплоносителем, отводящим избыточную тепловую энергию от ядерных реакторов. Всем известен желтый цвет пламени в присутствии натрия: именно так окрашивается пламя газовой конфорки, если в него попадет мельчайшая капля соленого супа. Пары натрия светятся желтым светом в экономичных газоразрядных лампах, освещающих улицы.

Многие столетия соль была единственным средством консервации пищевых продуктов. Без поваренной соли были бы невозможны дальние морские плавания, кругосветные экспедиции и великие географические открытия. История России знает грандиозное восстание, получившее название Соляной бунт, которое началось в 1648 г. и прокатилось по всей стране. Одна из причин восстания - повышение на-лога на соль.

Когда-то натрий получали сотнями тысяч тонн в год: его использовали для получения тетраэтилсвинца, повышающего октановое число бензина. Запрет на этилированный бензин во многих странах привел к снижению производства натрия. Сейчас мировое производство натрия - около 100 тысяч тонн в год.

Минерал галит (хлорид натрия) образует громадные залежи каменной соли. Толь-ко в России ее запасы исчисляются десятками миллиардов тонн. Галит обычно содержит до 8% других солей, в основном магния и кальция. Ежегодно добывается более 280 млн тонн хлорида натрия, это одно из самых крупномасштабных производств. Когда-то в больших количествах добывали в Чили нитрат натрия, отсюда его название - чилийская селитра.

Применение находят и другие соли натрия, которых в настоящее время известно множество. Одна из самых известных - сульфат натрия. Если эта соль содержит воду, она называется глауберовой. Огромные ее количества образуются при испарении воды в заливе Кара-Богаз-Гол Каспийского моря (Туркмения), а также в некоторых соляных озерах. В настоящее время растворы сульфата натрия используются в качестве аккумулятора тепла в устройствах, сохраняющих солнечную энергию, в производстве стекла, бумаги, тканей.

Соль поваренная

Натрий - жизненно важный элемент. Ионы натрия находятся в основном во внеклеточной жидкости и участвуют в механизме мышечных сокращений (недостаток натрия вызывает судороги), в поддержании водно-солевого (ионы натрия задерживают воду в организме) и кислотно-щелочного баланса (поддержание постоянного значении рН крови). Из хлорида натрия в желудке вырабатывается соляная кислота, без которой невозможно переваривание пищи. Содержание натрия в теле среднего человека - около 100 г. Натрий поступает в организм в основном в виде поваренной соли, ее суточная доза составляет 3-6 г. Одно-кратная доза более 30 г опасна для жизни.

Калий

По-арабски al-qili - зола, а также нечто прокаленное. Так же стали называть продукт, получаемый из золы растений, т. е. карбонат калия. В золе подсолнечника калия больше 30%. Без арабского артикля это слово в русском языке превратилось в «калий». Кроме русского языка и латыни (kalium), этот термин сохранился во многих европейских языках: немецком, голландском, датском, норвежском, шведском (с латинским окончанием -um), в греческом (κάλιο), а также в ряде славянских языков: сербском (калијум), македонском (калиум), словенском (kalij).

Калий - один из самых распространенных элементов в земной коре. Основные его минералы - сильвин (хлорид калия), сильвинит (смешанный хлорид калия и натрия) и карналлит (смешанный хлорид калия и магния). Сильвин, а также и нитрат калия (калийная, она же индийская селитра) в огромных количествах используются как калийные удобрения. Вместе с азотом и фосфором калий - один из трех важнейших для питания растений элементов.


Сильвин - один из основных минералов калия (наряду с сильвинитом и карналлитом).

Английское название элемента (potassium), как и русское название карбоната калия (поташ), заимствовано из языков германской группы; в английском, немецком и голландском ash - зола, pot - горшок, т. е. поташ - это «зола из горшка». Раньше карбонат калия получали, выпаривая в чанах вытяжку из золы; ее использовали для получения мыла. Калиевое мыло, в отличие от натриевого, жидкое. От арабского названия золы произошло название щелочи во многих европейских языках: англ. и голл. alkali, нем. Аlkali, франц. и итал. alcali и т.п. Тот же корень присутствует в слове «алкалоиды» то есть «подобные щелочи»).

Калий был первым элементом, который открыл Г. Дэви (он впервые получил также литий, барий, кальций, стронций, магний и бор). Дэви подверг электролизу влажный ку-сок гидроксида калия. При этом на его поверхности, по словам Дэви, «появлялись маленькие шарики с сильным металлическим блеском, внешне не отличавшиеся от ртути. Некоторые из них сейчас же после своего образования сгорали со взрывом и с появлением яркого пламени, другие же не сгорали, а только тускнели, и поверхность их покрывалась белой пленкой». Калий - очень активный металл. Его маленький кусочек, внесенный в воду, взрывается.

Калий - важный биоэлемент, в организме человека содержится от 160 до 250 г калия, больше, чем натрия. Ионы калия участвуют в прохождении нервных импульсов. Много калия содержат фрукты и овощи.

Гидроксид калия используется для получения мыла. Он служит электролитом в щелочных аккумуляторах - железо-никелевых, никель-металлогидридных. Раньше нитрат калия (калиевая селитра) в огромных количествах расходовался для производства черного пороха; сейчас он используется как удобрение.

Природный калий содержит 0,0117% долгоживущего радионуклида 40К с периодом полураспада 1,26 млрд лет. Этим объясняется тот факт, что калий-40 «дожил» до нашего времени с момента его синтеза в ядерных реакциях в звездах. Однако с момента образования Земли 4,5 млрд лет назад содержание 40К на планете из-за его распада снизилось в 12,5 раз! В теле человека массой 70 кг содержится примерно 20 мг 40К, или 3 · 1020 атомов, из которых каждую секунду распадается более 5000 атомов! Не исключено, что такое «внутреннее» облучение (усиленное распадом углерода-14) было одной из причин мутаций в ходе эволюции живой природы. Мировое производство металлического калия невелико: около 200 тонн в год.

Рубидий и цезий

Рубидий и цезий - первые химические элементы, от-крытые с помощью спектрального анализа. Этот метод разработали немецкие ученые и друзья - физик Густав Роберт Кирхгоф (1824-1887) и химик Роберт Вильгельм Бунзен (1811-1899), работавшие в Гейдельбергском университете. С помощью этого исключительно чувствительного метода они анализировали все попадавшиеся им вещества в надежде найти что-то новое. И в начале 1860-х гг. открыли два новых элемента. Это произошло, когда анализу подвергли сухой остаток, полученный выпариванием воды из минеральных источников курорта Бад-Дюркхайм, в 30 км от Гейдельберга. В спектре этого вещества, помимо уже известных им линий натрия, калия и лития, Кирхгоф и Бунзен заметили две слабые голубые линии. Они поняли, что эти линии принадлежат неизвестному химическому элементу, который присутствует в воде в очень малых количествах. По свету спектральных линий новый элемент

Продолжив исследования, Кирхгоф и Бунзен обнаружили в присланном им из Саксонии алюмосиликатном минерале лепидо (литиевой слюде) еще один элемент, в спектре которого выделялись темно-красные линии. Его назвали рубидием: от лат. rubidus - красный. Этот же элемент был обнаружен в минеральной воде, откуда химику Бунзену удалось его выделить. Достойно упоминания что для получения нескольких граммов соли рубидия пришлось переработать 44 тонны минеральной воды и свыше 180 кг лепидолита.

Кристаллы цезия можно хранить в запаянной ампуле.

И как в конце XIX века в не менее титанической работе по выделению соли радия «компасом» для Марии Кюри служила радиоактивность, аналогичным «компасом» для Кирхгофа и Бунзена был спектроскоп.

Рубидий и цезий - типичные щелочные металлы. Это подтвердилось, когда химик Бунзен восстановлением соли рубидия получил этот элемент в виде металла. Более активный цезий удалось получить в чистом виде только в 1881 г. шведскому химику Карлу Теодору Сеттербергу (1853-1941) путем электролиза расплавленного цианида цезия. Цезий - один из самых легкоплавких металлов. В чистом виде он имеет золотистый цвет. Но получить чистый цезий непросто: на воздухе он мгновенно самовоспламеняется. Чистый рубидий плавится всего при 39,3 °С, цезий - на 10 градусов ниже, и в очень жаркий летний день образцы этих металлов в ампулах становятся жидкими.

Мировое производство металлического рубидия невелико - около 3 тонн в год. В медицине используется рубидий-87: его атомы поглощаются клетками крови, и по излучению ими быстрых электронов с помощью специального оборудования можно увидеть «узкие места» в кровеносных сосудах. Используется рубидий в элементах солнечных батарей.

Густав Кирхгоф (слева) и Роберт Бунзен обнаружили рубидий благодаря спектроскопу. В спектре лепидолита они обнаружили темно-красные линии и дали имя новому элементу - рубидий.

В организме человека среднего возраста содержится примерно 0,7 г рубидия, а цезия - всего 0,04 мг.

Электронные переходы в атомах цезия используются в исключительно точных «атомных часах». Во всем мире сейчас более 70 таких точнейших часов - эталонов времени: ошибка составляет менее секунды за 100 миллионов лет. По цезиевым часам определена единица времени - секунда.

Было предложено использовать ионы цезия для разгона ракеты с помощью электро-реактивного двигателя. В нем ионы ускоряются в сильном электростатическом поле и выбрасываются через сопло.

Электрические ракетные двигатели при малой тяге способны работать длительное время и осуществлять полеты на большие расстояния.

Франций

Этот элемент открыла (по его радиоактивности) в 1939 г. сотрудница Института радия в Париже Маргарита Перей (1909-1975), а название ему она дала в честь своей родины в 1946 г.

Франций - сосед цезия по Периодический системе элементов. Д. И. Менделеев так и назвал не открытый тогда еще элемент - экацезием. Этот последний и самый тяжелый щелочной металл разительно отличается от всех других в его группе. Во-первых, никто никогда не видел и не увидит даже мельчайший кусочек франция. Во-вторых, у франция нет таких физических свойств, как плотность, температура плавления и кипения. Так что термин «самый тяжелый металл» можно отнести только к его атомам, но не к простому веществу. И все по-тому, что франций - искусственно полученный сильно радиоактивный элемент, самый долгоживущий его изотоп 223 Fr имеет период полураспада всего 22 минуты. А чтобы изучить физические свойства вещества, нужно иметь его в виде хотя бы самого маленького кусочка. Но для франция это невозможно.

Маргарита Перей - первая женщина, избранная (в 1962 г.) во Французскую академию наук.

Франций получают искусственно. И по мере синтеза его атомы быстро распадаются. Причем чем больше накоплено атомов, тем больше их распадается в единицу времени. Значит, чтобы просто поддерживать число атомов франция постоянным, их нужно синтезировать со скоростью не меньшей, чем скорость их распада. При синтезе франция в Дубне путем облучения урана мощным пучком протонов каждую секунду получался примерно миллион атомов этого элемента. При такой скорости синтеза скорость распада образца становится равной скорости его образования, когда число его атомов равно двум миллиардам. Это совершенно ничтожное количество вещества, его даже в микроскоп не видно.

Кроме того, эти атомы не собраны в кусочек металла, а распределены по поверхности урановой мишени. Так что неудивительно, что во всем земном шаре в любой момент наберется не более двух-трех десятков граммов франция, рассеянных поодиночке в радиоактивных горных породах.