Психология

Математическая логика кратко. Булева алгебра

МАТЕМАТИЧЕСКАЯ ЛОГИКА

теоретическая логика, символическая логика,- раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики.

Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе такого языка математич. доказательств выдвигалась в 17 в. Г. Лейбницем (G. Leibniz). Но только в сер. 19 в. появились первые научные работы по алгебраизации аристотелевод логики [Дж. Буль (G. Boole, 1847) и О. де Морган (A. de Morgan, 1858)]. После того как Г. Фреге (G. Frege, 1879) и Ч. Пирс (С. Peirce, 1885) ввели в язык алгебры логики предикаты, предметные переменные и кванторы, возникла реальная возможность применить этот язык к вопросам оснований математики.

С другой стороны, создание в 19 в. неевклидовой геометрии сильно поколебало уверенность математиков в абсолютной надежности геометрич. интуиции, на к-рой была основана . Сомнениям в надежности геометрич. интуиции способствовало также то, что в результате развития исчисления бесконечно малых математики натолкнулись на неожиданные примеры всюду непрерывных функций без производных. Появилась потребность отделить понятие действительного числа от неясного понятия "величины", к-рое было основано на геометрич. интуиции. Эта задача была решена разными путями в работах К. Вейерштрасса (К. Weierstrab, P. Дедекинда (R. Dedekind) и Г. Кантора (G. Cantor). Они показали возможность "арифметизации" анализа и теории функций, в результате чего в качестве фундамента всей классич. математики стала рассматриваться целых чисел. Затем была предпринята аксиоматизация арифметики [Р. Дедекинд (1888) и Дж. Пеано (G. Реаnо, 1891)]. При этом Дж. Пеано создал более удобную символику для логич. языка. Пвзже этот язык был усовершенствован в совместном труде Б. Рассела (В. Russell) и А. Уайтхеда (A. Whitehead) "Принципы математики" (1910), где была предпринята попытка сведения всей математики к логике. Но эта попытка не увенчалась успехом, т. к. оказалось невозможным вывести из чисто логич. аксиом существование бесконечных множеств. Хотя логистич. Фреге - Рассела в основаниях математики так и не достигла своей главной цели - сведения математики к логике, в их работах был создан богатый логич. аппарат, без к-рого оформление М. л. как полноценной математич. дисциплины было бы невозможно.

На рубеже 19-20 вв. были обнаружены антиномии, связанные с основными понятиями теории множеств. Наиболее сильное впечатление на современников произвела опубликованная в 1903 Рассела. Пусть Месть всех таких множеств, каждое из к-рых не является своим собственным элементом. Легко убедиться, что Мявляется своим элементом тогда и только тогда, когда Мне является своим элементом. Конечно, можно пытаться выйти из создавшегося противоречия, сделав заключение, что такого множества Мне бывает. Однако, если не может существовать множество, состоящее в точности из всех элементов, удовлетворяющих такому четко определенному условию, к-рое мы имеем в приведенном выше определении множества М, то где гарантия того, что в нашей повседневной работе мы не столкнемся с множествами, к-рые также не могут существовать? И каким, вообще, условиям должно удовлетворять определение множества для того, чтобы оно существовало? Ясно было одно: нужно как-то ограничить канторовскую теорию множеств.

Л. Брауэр (L. Brouwer, 1908) выступил против применения правил классич. логики к бесконечным множествам. В выдвинутой им интуиционистской программе предлагалось отказаться от рассмотрения абстракции актуальной бесконечности, т. е. бесконечных множеств как завершенных совокупностей! Допуская существование сколь угодно больших натуральных чисел, интуиционисты выступают против рассмотрения натурального ряда как завершенного множества. Они считают, что в математике всякое существования того или иного объекта должно быть конструктивным, т. е. должно сопровождаться построением этого объекта. Если предположение о том, что искомый не существует, приведено к противоречию, то это, по мнению интуиционистов, не может рассматриваться как доказательство существования. Особой критике со стороны интупционистов подвергся исключенного третьего закон. Ввиду того, что этот закон первоначально рассматривался применительно к конечным множествам и, учитывая, что многие свойства конечных множеств не выполняются для бесконечных множеств (напр., что всякая собственная часть меньше целого), интуиционисты считают неправомерным применение этого закона к бесконечным множествам. Так, напр., чтобы утверждать, что проблема Ферма имеет положительное или имеет отрицательное решение, интуиционист должен указать соответствующее решение этой проблемы. А пока проблема Ферма не решена, эта считается неправомерной. Такое же требование предъявляется к пониманию всякой дизъюнкции. Это требование интуиционистов может создать затруднения и в случае рассмотрения задач, связанных с конечными множествами. Представим себе, что кто-то, закрыв глаза, достает из урны, в к-рой имеются три черных и три белых шара, и тут же бросает этот шар обратно. Если никто не видел этот шар, то мы не имеем возможности узнать, какого он был цвета. Однако вряд ли можно всерьез оспаривать утверждения, что этот шар был либо черного, либо белого цвета.

Интуиционисты построили свою математику, имеющую интересные своеобразные особенности. Но она оказалась более сложной и громоздкой, чем классич. . Положительный вклад интуиционистов в исследование вопросов оснований математики выразился в том, что они еще раз решительным образом подчеркнули различие между конструктивным и неконструктивным в математике, они провели тщательный анализ многих трудностей, с к-рыми столкнулась математика в своем развитии, и тем самым способствовали их преодолению.

Д. Гильберт (D. Hilbert, см. добавления VII-X в ) наметил другой преодоления трудностей, возникших в основаниях математики на рубеже 19-20 вв. Этот путь, основанный на применении аксиоматич. метода рассмотрения формальных моделей, содержательной математики и на исследовании вопросов непротиворечивости таких моделей надежными финитными средствами, получил в математике название финитизма Гильберта. Признавая ненадежность геометрич. интуиции, Д. Гильберт прежде всего предпринимает тщательный пересмотр евклидовой геометрии, освобождая ее от обращения к интуиции. Результатом такой переработки явились его "Основания геометрии" (1899).

Вопросы непротиворечивости различных теорий по существу рассматривались и до Д. Гильберта. Так, построенная Ф. Клейном (F. Klein, 1871) проективная неевклидовой геометрии Лобачевского сводит вопрос о непротиворечивости геометрии Лобачевского к непротиворечивости евклидовой геометрии. Непротиворечивость евклидовой геометрии аналогично можно свести к непротиворечивости анализа, т. е. теории действительных чисел. Однако не видно было, какими средствами можно строить модели анализа и арифметики для доказательства их непротиворечивости. Заслуга Д. Гильберта состоит в том, что он указал прямой путь для исследования этого вопроса. Непротиворечивость данной теории означает, что в ней не может быть получено , т. е. не может быть доказано нек-рое утверждение Аи его Д. Гильберт предложил представить рассматриваемую теорию в виде формальной аксиоматич. системы, в к-рой будут выводимы все те и только те утверждения, к-рые являются теоремами нашей теории. Тогда для доказательства непротиворечивости достаточно установить невыводимость в рассматриваемой теории нек-рых утверждений. Таким образом, математич. , непротиворечивость к-рой мы хотим доказать, становится предметом изучения нек-рой математич. науки, к-рую Д. Гильберт назвал метаматематикой, или теорией доказательств.

Д. Гильберт писал, что парадоксы теории множеств вызваны не законом исключенного третьего, а "скорее тем, что математики пользуются недопустимыми и бессмысленными образованиями понятий, к-рые в моей теории доказательств исключаются сами собой. ...Отнять у математиков закон исключенного третьего - это то же, что забрать у астрономов телескоп или запретить боксерам использовать кулаки" (см. с. 383). Д. Гильберт предлагает различать "действительные" и "идеальные" предложения классич. математики. Первые имеют содержательный смысл, а вторые не обязаны иметь содержательный смысл. Предложения, соответствующие употреблению актуальной бесконечности, идеальны. Идеальные предложения присоединяются к действительным для того, чтобы простые правила логики были применимы и к рассуждениям о бесконечных множествах. Это существенно упрощает структуру всей теории подобно тому, как при рассмотрении проективной геометрии на плоскости добавляется бесконечно удаленная , пересекающая любые две в нек-рой точке.

Выдвинутая Д. Гильбертом программа обоснования математики и его энтузиазм вдохновили современников на интенсивную разработку аксиоматического метода. Именно с предпринятой в начале 20 в. Д. Гильбертом и его последователями разработкой теории доказательств на базе развитого в работах Г. Фреге, Дж. Пеано и Б. Рассела логич. языка следует связывать становление М. л. как самостоятельной математич. дисциплины.

Предмет и основные разделы математической логики, связь с другими областями математики. Предмет современной М. л. разнообразен. Прежде всего следует отметить исследование логич. и логико-математич. исчислений, из к-рых основным является классич. предикатов. Еще в 1930 К. Гёдель (К. Godel) доказал теорему о полноте исчисления предикатов, согласно к-рой множество всех чисто логич. утверждений математики совпадает с множеством всех выводимых в исчислении предикатов формул (см. Гёделя о полноте ). Эта теорема показала, что исчисление предикатов является той логич. системой, на базе к-рой можно формализовать математику. На базе исчисления предикатов строятся различные логико-математич. теории (см. Логико-математические исчисления ), представляющие собой формализацию содержательных математич. теорий - арифметики, анализа, теории множеств, теории групп и др. Наряду с элементарными теориями рассматриваются также теории высших порядков, в к-рых допускаются также кванторы по предикатам, предикаты от предикатов и т. д. Традиционными вопросами, к-рые исследуются для тех или иных формальных логич. систем, являются исследования структуры выводов в этих системах, тех или иных формул, вопросы непротиворечивости и полноты рассматриваемых систем.

Доказанная в 1931 Гёделя теорема о неполноте арифметики поколебала оптимистич. надежды Д. Гильберта на полное решение вопросов оснований математики на указанном пути. Согласно этой теореме, если , содержащая арифметику, непротиворечива, то утверждение о ее непротиворечивости, выразимое в этой системе, не может быть доказано средствами, формализуемыми в ней. Это означает, что с вопросами оснований математики дело обстоит не так просто, как хотелось или казалось Д. Гильберту вначале. Но уже К. Гёдель заметил, что непротиворечивость арифметики можно доказывать, пользуясь достаточно надежными конструктивными средствами, хотя и выходящими за рамки средств, формализуемых в арифметике. Аналогичные доказательства непротиворечивости арифметики были получены Г. Генценом (G. Gentzen, 1936) и П. С. Новиковым (1943).

В результате анализа канторовской теории множеств и связанных с ней парадоксов были построены различные системы аксиоматической теории множеств, в к-рых принимается то или иное ограничение на образование множеств, чтобы исключить возникновение известных антиномий. В этих аксиоматич. системах могут быть развиты довольно обширные разделы математики. Вопрос о непротиворечивости достаточно богатых аксиоматич. систем теории множеств остается открытым. Из наиболее значительных результатов, полученных в аксиоматич. теории множеств, следует отметить результат К. Гёделя о непротиворечивости континуум-гипотезы и выбора аксиомы в системе Бернайса - Гёделя (1939) и результат П. Коэна (P. Cohen, 1963) о независимости этих аксиом от аксиом системы Цермело-Френкеля ZF. Отметим, что эти две системы аксиом и ZF равнонепротиворечивы. Для доказательства своих результатов К. Гёдель ввел важное понятие конструктивного множества (см. Конструктивное по Гёдeлю множество ).и показал существование модели системы состоящей из таких множеств. Метод К. Гёделя был использован П. С. Новиковым для доказательства непротиворечивости нек-рых других утверждений дескриптивной теории множеств (1951). Для построения моделей теории множеств ZF, в к-рых выполняются отрицания континуум-гипотезы или аксиомы выбора, П. Коэн ввел так наз. вынуждения метод, к-рый впоследствии был усовершенствован и стал основным методом построения моделей теории множеств, удовлетворяющих тем или иным свойствам.

Одним из наиболее замечательных достижений М. л. явилась разработка понятия общерекурсивной функции и формулировка Чёрча тезиса, утверждающего, что понятие общерекурсивной функции является уточнением интуитивного понятия алгоритма. Из других эквивалентных уточнений понятия алгоритма наибольшее распространение получили понятия Тьюринга машины и нормального алгорифма Маркова. По существу вся математика связана с теми или иными алгоритмами. Но только после уточнения понятия алгоритма появилась возможность обнаружить существование неразрешимых алгоритмических проблем в математике. Неразрешимые алгоритмич. проблемы были обнаружены во многих разделах математики ( , теория чисел, теория вероятностей и др.), причем оказалось, что они могут быть связаны с очень распространенными и фундаментальными понятиями математики. Исследование алгоритмич. проблем в той или иной области математики, как правило, сопровождается проникновением идей и методов М. л. в эту , что приводит к решению также и других проблем, уже не имеющих алгоритмич. характера.

Разработка точного понятия алгоритма дала возможность уточнить понятие эффективности и развивать на базе такого уточнения конструктивное в математике (см. Конструктивная математика ), воплотившее в себе нек-рые черты интуиционистского направления, но существенно отличающееся от последнего. Были созданы основы конструктивного анализа, конструктивной топологии, конструктивной теории вероятностей и др.

В самой теории алгоритмов можно выделить исследования в области рекурсивной арифметики, куда входят различные классификации рекурсивных и рекурсивно-перечислимых множеств, степени неразрешимости рекурсивно-перечислимых множеств, исследования сложности записи алгоритмов и сложности алгоритмич. вычислений (по времени и по зоне, см. Алгоритма слож ность ). Обширным развивающимся разделом теории алгоритмов является теория нумераций.

Как отмечалось выше, аксиоматич. метод оказал большое влияние на развитие многих разделов математики. Особенно значительным было проникновение этого метода в алгебру. Так, на стыке М. л. и алгебры возникла общая теория алгебраических систем, или моделей теория. Это направление было заложено в работах А. И. Мальцева, А. Тарского (A. Tarski) и их учеников. Здесь можно отметить исследования по элементарным теориям классов моделей, в частности вопросы разрешимости этих теорий, аксиоматизируемость классов моделей, моделей, вопросы категоричности и полноты классов моделей.

Важное место в теории моделей занимает исследование нестандартных моделей арифметики и анализа. Еще на заре развития дифференциального исчисления в работах Г. Лейбница (G. Leibniz) и И. Ньютона (I. Newton) бесконечно малые и бесконечно большие величины рассматривались как числа. Позже появилось понятие переменной величины, и математики отказались от употребления бесконечно малых чисел, к-рых отличен от нуля и меньше любого положительного действительного числа, т. к. их употребление потребовало бы отказа от аксиомы Архимеда. И только через три столетия в результате развития методов М. л. удалось установить, что (нестандартный) анализ с бесконечно малыми и бесконечно большими числами непротиворечив относительно обычного (стандартного) анализа действительных чисел.

Не обошлась без влияния аксиоматич. метода и интуиционистская математика. Так, еще в 1930 А. Рейтинг (A. Heyting) ввел в рассмотрение формальные системы интуиционистской логики высказываний и предикатов (конструктивные исчисления высказываний и предикатов). Позже были введены формальные системы интуиционистского анализа (см., напр., ). Многие исследования по интуиционистской логике и математике имеют дело с формальными системами. Подвергались специальному изучению также так наз. промежуточные логики (или суперинтуиционистские), т. е. логики, лежащие между классической и интуиционистской логиками. Понятие реализуемости формул по Клини представляет одну из попыток интерпретировать понятие интуиционистской истинности с точки зрения классич. математики. Однако оказалось, что не всякая реализуемая исчисления высказываний выводима в интуиционистском (конструктивном) исчислении высказываний.

Подверглась формализации также и модальная логика. Однако, несмотря на наличие большого числа работ по формальным системам модальной логики и по их семантике (Крипке модели ), можно сказать, что здесь происходит процесс накопления пока еще разрозненных фактов.

М. л. имеет большое прикладное значение; с каждым годом растет глубокое проникновение идей и методов М. л. в кибернетику, в вычислительную математику, в структурную лингвистику.

Лит. : Гильберт Д., Б е р н а й с П., Основания математики. Логические исчисления и формализация арифметики, пер. с нем., М., 1979; К л и н и С. К., Введение в метаматематику, пер. с англ., М., 1957; Мендельсон Э., Введение в математическую логику, пер. сангл., 2 изд., М., 1976; Новиков П. С., Элементы математической логики, 2 изд., М., 1973; Е р ш о в Ю. Л., Палютин Е. А., Математическая логика, М., 1979; Ш е н ф и л д Д. Р., Математическая логика, пер. с англ., М., 1975; Н о в и к о в П. С., Конструктивная математическая логика с точки зрения классической, М., 1977; К л и н и С. К., В е с л и Р., Основания интуиционистской математики с точки зрения теории рекурсивных функций, пер. с англ., М., 1978; Гильберт Д., Основания геометрик, пер. с нем., М., 1948; Френкель А.-А., Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966; Математика XIX века. Математическая логика. Алгебра. Теория чисел. Теория вероятностей, М., 1978; Mostowski A., Thirty years of foundational studies, Hels., 1965.

См. также лит. при статьях об отдельных разделах М. л.

С. И. Адян.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Синонимы :

Смотреть что такое "МАТЕМАТИЧЕСКАЯ ЛОГИКА" в других словарях:

    Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

Введение

Тема контрольной работы «Математическая логика».

БУЛЬ или БУЛ, а также БУУЛ, Джордж (1815-1864) – английский математик, который считается основоположником математической логики.

Математическая логика – это раздел математики, посвященный анализу методов рассуждений, при этом в первую очередь исследуются формы рассуждений, а не их содержание, т.е. исследуется формализация рассуждений.

Формализация рассуждений восходит к Аристотелю. Современный вид аристотелева (формальная) логика приобрела во второй половине XIX века в сочинении Джорджа Буля “Законы мысли”.

Интенсивно математическая логика начала развиваться в 50-е годы XX века в связи с бурным развитием цифровой техники.

1. Элементы математической логика

Основными разделами математической логики являются исчисление высказываний и исчисление предикатов.

Высказывание – есть предложение, которое может быть либо истинно, либо ложно.

Исчисление высказываний – вступительный раздел математической логики, в котором рассматриваются логические операции над высказываниями.

Предикат – логическая функция от п переменных, которая принимает значения истинности или ложности.

Исчисление предикатов – раздел математической логики, объектом которого является дальнейшее изучение и обобщение исчисления высказываний.

Теория булевых алгебр (булевых функций) положена в основу точных методов анализа и синтеза в теории переключательных схем при проектировании компьютерных систем.

1.1 Основные понятия алгебры логики

Алгебра логики – раздел математической логики, изучающий логические операции над высказываниями.

В алгебре логики интересуются лишь истинностным значением высказываний. Истинностные значения принято обозначать:

1 (истина) 0 (ложь).

Каждой логической операции соответствует функция, принимающая значения 1 или 0, аргументы которой также принимают значения 1 или 0.

Такие функции называются логическими или булевыми, или функциями алгебры логики (ФАЛ). При этом логическая (булева) переменная x может принимать только два значения:

.

Таким образом,

- логическая функция, у которой логи-ческие переменные являются высказываниями. Тогда сама логическая функция является сложным высказыванием.

В этом случае алгебру логики можно определить, как совокупность множества логических функций с заданными в нем всевозможными логическими операциями. Таким логическим операциям, как конъюнкция (читается И) , дизъюнкция (ИЛИ ), импликация, эквивалентность, отрицание (НЕ) , соответствуют логические функции, для которых приняты обозначения

(&, ·), ~, – (), и имеет место таблица истинности:
x~y
0 0 0 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 0 0
1 1 1 1 1 0 1

Это табличный способ задания ФАЛ. Наряду с ними применяется задание функций с помощью формул в языке, содержащем переменные x , y , …, z (возможно индексированные) и символы некоторых конкретных функций – аналитический способ задания ФАЛ.

Наиболее употребительным является язык,содержащий логические символы

~, –. Формулы этого языка определяются следующим образом:

1) все переменные есть формулы;

2) если P и Q – формулы, то

P ~ Q , - фор-мулы.

Например, выражение

~ - формула. Если переменным x , y , z придать значения из двоичного набора 0, 1 и провести вычисления в соответствии с операциями, указанными в формуле, то получим значение 0 или 1.

Говорят, что формула реализует функцию. Так формула

~ реализует функцию h (x , y , z ):
x y z h (x, y, z )
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Пусть P и Q – формулы, которые реализуют функции f (x 1 , x 2 , …, x n ) и g (x 1 , x 2 , …, x n ). Формулы равны: P = Q , если функции f и g совпадают, т.е. совпадают их таблицы истинности. Алгебра, основным множеством которой является все множество логических функций, а операциями – дизъюнкция, конъюнкция и отрицание, называется булевой алгеброй логических функций.

Приведем законы и тождества, определяющие операции

– и их связь с операциями , ~:

1. Идемпотентность конъюнкции и дизъюнкции:

.

2. Коммутативность конъюнкции и дизъюнкции:

.

3. Ассоциативность конъюнкции и дизъюнкции:

.

4. Дистрибутивность конъюнкции относительно дизъюнкции и дизъюнкции относительно конъюнкции:


.

5. Двойное отрицание:

.

6. Законы де Моргана:

=, =.

7. Склеивание:

.

8. Поглощение

.

9. Действия с константами 0 и 1.

Другие разделы

МАТЕМАТИЧЕСКАЯ ЛОГИКА, дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.

Важную роль в математической логике играют понятия дедуктивной теории и исчисления. Исчислением называется совокупность правил вывода, позволяющих считать некоторые формулы выводимыми. Правила вывода подразделяются на два класса. Одни из них непосредственно квалифицируют некоторые формулы как выводимые. Такие правила вывода принято называть аксиомами . Другие же позволяют считать выводимыми формулы, синтаксически связанные некоторым заранее определённым способом с конечными наборами выводимых формул. Широко применяемым правилом второго типа является правило modus ponens: если выводимы формулы и, то выводима и формула.

Отношение исчислений к семантике выражается понятиями семантической пригодности и семантической полноты исчисления. Исчисление И называется семантически пригодным для языка Я, если любая выводимая в И формула языка Я является верной. Аналогично, исчисление И называется семантически полным в языке Я, если любая верная формула языка Я выводима в И.


Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода, с использованием языка математики.


Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат К. Гёделя о том, что так называемое классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка. С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Гёделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики.


Стоит отметить, что на практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и соответственно входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.


Разделы математической логики

    Алгебра логики

    Логика высказываний

    Теория доказательств

    Теория моделей

Логика высказываний (или пропозициональная логика от англ. propositional logic, или исчисление высказываний) - это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка.

Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений

Алгебра логики (алгебра высказываний) - раздел математической логики, в котором изучаются логические операции над высказываниями . Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

Базовыми элементами, которыми оперирует алгебра логики, являются высказывания. Высказывания строятся над множеством , над элементами которого определены три операции:

    Отрицание (унарная операция),

    Конъюнкция (бинарная),

    Дизъюнкция (бинарная),

а также константы - логический ноль 0 и логическая единица 1.

Теория вероятности - раздел математики, изучающий случайные события их свойства и операции над ними.

В теории вероятностей изучаются, те случайные события, которые могут быть воспроизведены в одних и тех же условиях и обладающие следующим свойством: в результате эксперимента, при условии S событие A может произойти с определенной вероятность p.


Основными понятиями теории вероятности являются: событие, вероятность, случайное событие, случайное явление, математическое ожидание, дисперсия, функция распределения, вероятностное пространство.


Как наука теория вероятностей возникает в середине 17 века. Первые работы появляются, в связи с подсчетом вероятностей в азартных играх. Исследуя прогнозирование выигрыша при бросании костей,
Блез Паскаль и Пьер Ферма , в своей переписке 1654 года, открыли первые вероятностные закономерности. В частности в этой переписки они пришли к понятию математическое ожидание и теоремам умножения и сложения вероятностей. В 1657 году эти результаты были приведены в книге Х. Гюйгенса «О расчетах в азартных играх», которая является первым трактатом по теории вероятностей.

Больших успехов в теории вероятностей достиг
Яков Бернулли : он установил закон больших чисел в простейшем случае, сформулировал многие понятия современной теории вероятностей. Им была написана монография по теории вероятностей, которая была издана посмертно в 1713 году, под названием «Искусство предположений».

В первой половине 19 века теория вероятностей начинает применяться в теории ошибок наблюдений. В это время были доказаны
теорема Муавра - Лапласа (1812) и теорема Пуассона (1837), являющиеся первыми предельными теоремами. Лаплас расширил и систематизировал математические основы теории вероятностей. Гаусс и Лежандр разработали метод наименьших квадратов.

Во второй половине 19 века большинство открытий в теории вероятности были сделаны российскими учеными
П. Л. Чебышёвым и его ученикам и А. М. Ляпуновым и А.А Марковым. В 1867 году Чебышёв сформулировал и достаточно просто доказал закон больших чисел при весьма общих условиях. В 1887 он же впервые сформулировал и предложил метод решения центральной предельной теоремы для сумм независимых случайных величин. В1901 году эта теорема была доказана Ляпуновым при более общих условиях. Марков в 1907 году впервые рассмотрел схему испытаний связанных в цеп, тем самым, положив основу теории Марковских цепей. Так же он внес большой вклад в исследования, касающиеся теории больших чисел и центральной предельной теоремы.

В начале 20 века происходит расширение круга применения теории вероятностей, создаются системы строго математического обоснования и новые методы теории вероятностей. В этот период благодаря трудам
Андрея Николаевича Колмогорова теории вероятностей приобретает современный вид.

В 1926 году, будучи аспирантом, Колмогоров получает необходимые и достаточные условия, при которых имеет место закон больших чисел. В 1933 в своей работе «Основные понятия теории вероятностей» Колмогоров вводит аксиоматику теории вероятностей, которая общепризнанна наилучшей.


Математический аппарат теории вероятности широко используется в науке и технике. В частности в астрономии для расчета орбит комет используется метод наименьших квадратов. В медицине при оценке эффективности методов лечения так же используется теория вероятности.


/ БДЭ Математика /

Дедукция

Помните, Шерлок Холмс постоянно твердил о своих дедуктивных способностях? Так что же такое дедукция?

ДЕДУКЦИЯ (лат. deductio - выведение) - такая форма мышления, когда новая мысль выводится чисто логическим путем из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью, либо аксиомой, либо гипотезой. Последняя мысль данного вывода называется заключением.

Дедуктивное умозаключение, являющееся предметом традиционной логики, применяется нами всякий раз, когда требуется рассмотреть какое - либо явление на основании уже известного нам общего положения и вывести в отношении этого явления необходимое заключение. Нам известен, например, следующий конкретный факт - “данная плоскость пересекает шар” и общее правило относительно всех плоскостей, пересекающих шар, -“всякое сечение шара плоскостью есть круг”. Применяя это общее правило к конкретному факту, каждый правильно мыслящий человек необходимо придет к одному и тому же выводу: “значит данная плоскость есть круг”.


Структура дедуктивного умозаключения и принудительный характер его правил
отобразили самое распространенные отношения между предметами материального мира: отношения рода, вида и особи, т. е. общего, частного и единичного: то, что присуще всем видам данного рода, то присуще и любому виду; то, что присуще всем особям рода, то присуще и каждой особи.

Впервые теория дедукции была обстоятельно разработана Аристотелем. Он выяснил требования, которым должны отвечать отдельные мысли, входящие в состав дедуктивного умозаключения, определил значение терминов и раскрыл правила некоторых видов дедуктивных умозаключений. Положительной стороной аристотелевского учения о дедукции является то,что в нем отобразились реальные закономерности объективного мира.

Под термином “дедукция” в узком смысле слова понимают также следующее:
1) Метод исследования, заключающийся в следующем: для того, чтобы получить новое знание о предмете или группе однородных предметов, надо, во - первых найти ближайший род, в который входят эти предметы, и, во - вторых, применить к ним соответствующий закон, присущий всему данному роду предметов . Дедуктивный метод играет огромную роль в математике. Известно, что все теоремы выводятся логическим путем с помощью дедукции из небольшого конечного числа исходных начал, называемых аксиомами.
2) Форма изложения материала в книге, лекции, докладе, беседе, когда от общих положений, правил, законов идут к менее общим положениям, правилам, законам.
Этот способ позволяет задавать формальные аксиоматические теории .
2.Задание только аксиом
В этом случае правила вывода считаются общеизвестными, поэтому задаются только аксиомы. Поэтому при таком построении теорем, говорят, что полуформальная аксиоматическая теория .
3.Задание только правил вывода
Данный способ построения теорем основывается на задании только правил вывода, поскольку множество аксиом пусто. Исходя из этого, теория, заданная таким образом, являет собой частный случай формальной теории. Позднее эта разновидность стала называться теорией естественного вывода .

К основным свойства дедуктивных теорий относятся:
1. Противоречивость
Противоречивой называется теория, в которой множество теорем покрывает всё множество формул.

2. Полнота
Полной называется теория, в которой для любой формулы F выводима либо сама F , либо ее отрицание -F .
3. Независимость аксиом
Когда отдельную аксиому теории нельзя вывести из остальных аксиом, то ее называют независимой . Система аксиом называется независимой только в том случае, если каждая аксиома в ней независима.
4. Разрешимость
Когда в теории существует эффективный алгоритм, позволяющий определить количество шагов, доказывающих теорему, теория называется разрешимой .
К примеру, логика высказываний, логика первого порядка (исчисление предикатов), формальная арифметика (теория S ).

Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

математическая логика - ЛОГИКА СИМВОЛИЧЕСКАЯ, математическая логика, теоретическая логика область логики, в которой логические выводы исследуются посредством логических исчислений на основе строгого символического языка. Термин «Л. с.» был, по видимому, впервые… … Энциклопедия эпистемологии и философии науки

МАТЕМАТИЧЕСКАЯ ЛОГИКА - Ее еще называют символической логикой. М. л. это та же самая Аристотелева силлогистическая логика, но только громоздкие словесные выводы заменены в ней математической символикой. Этим достигается, во первых, краткость, во вторых, ясность, в… … Энциклопедия культурологии

МАТЕМАТИЧЕСКАЯ ЛОГИКА - МАТЕМАТИЧЕСКАЯ логика, дедуктивная логика, использующая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений … Современная энциклопедия

МАТЕМАТИЧЕСКАЯ ЛОГИКА - дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике … Большой Энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - (символическая логика), аналитический раздел логики, результат применения математических методов к проблемам классической логики. Рассматривает понятия, которые могут быть истинными или ложными, связь между понятиями и оперирование ими, включая… … Научно-технический энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - один из ведущих разделов современной логики и математики. Сформировался в 19 20 ст. как реализация идеи о возможности записать все исходные допущения на языке знаков, аналогичных математическим и тем самым заменить рассуждения вычислениями.… … Новейший философский словарь

математическая логика - сущ., кол во синонимов: 1 логистика (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

математическая логика - — Тематики электросвязь, основные понятия EN mathematical logic … Справочник технического переводчика

МАТЕМАТИЧЕСКАЯ ЛОГИКА - теоретическая логика, символическая логика, раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики. Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе… … Математическая энциклопедия

Книги

  • Математическая логика , Ершов Юрий Леонидович, Палютин Евгений Андреевич. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории… Купить за 1447 грн (только Украина)
  • Математическая логика , Ершов Ю.Л.. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории…

Будет посвящён основам математической логики, которая представляет собой не только отдельный раздел математики, но и имеет огромное значение при изучении всей вышки (да и не только вышки) . «Существует и единственно», «из этого следует это», «необходимое условие», «достаточность», «тогда и только тогда» – знакомые обороты, не правда ли? И это не просто «дежурные» штампы, которыми можно пренебречь – это устойчивые выражения, обладающие строгим смыслом , с которым мы и познакомимся в данной статье. Кроме того, материал будет полезен начинающим изучать непосредственно математическую логику – я рассмотрю её базу: высказывания и действия над ними, формулы, основные законы + некоторые практические задачи. И, конечно же, вы узнаете очень важное, а местами и весьма забавное отличие матлогики от нашей «обычной» логики. Начинаем закладывать фундамент:

Высказывания и высказывательные формы

Высказывание – это предложение, о котором можно сказать, истинно оно или ложно . Высказывания обычно обозначают строчными латинскими буквами , а их истинность/ложность единицей и нулём соответственно:

– данная запись (не путать с модулем !) говорит нам о том, что высказывание истинно ;
– а эта запись – о том, что высказывание ложно .

Например:

– черепахи не летают;
– Луна квадратная;
– дважды два будет два;
– пять больше, чем три.

Совершенно понятно, что высказывания и истинны : ,
а высказывания и – ложны :

Разумеется, далеко не все предложения являются высказываниями. К таковым, в частности относятся вопросительные и побудительные предложения:

Вы не подскажете, как пройти в библиотеку ?
Пойдём в баню!

Очевидно, что здесь не идёт речи об истине или лжи. Как не идёт о них речи и в случае неопределённости либо неполной информации:

Завтра Петя сдаст экзамен – даже если он всё выучил, то не факт, что сдаст; и наоборот – если ничего не знает, то может и сдаст «на шару».

…да ладно, Петь, не переживай – сдашь =)

– а тут мы не знаем, чему равно «эн», поэтому это тоже не высказывание.

Однако последнее предложение можно доопределить до высказывания, а точнее, до высказывательной формы , указав дополнительную информацию об «эн». Как правило, высказывательные формы записываются с так называемыми кванторами . Их два:

квантор общности (перевёрнутая буква A – от англ. All) понимается и читается как «для всех», «для любого (ой) (ых) »;

квантор существования (развёрнутая буква E – от англ. Exist) понимается и читается как «существует».

– для любого натурального числа выполнено неравенство . Данная высказывательная форма ложна , поскольку ей, очевидно, не соответствуют натуральные числа .

– а вот это высказывательная форма уже истинна , как истинно и, например, такое утверждение:
…ну а что, разве существует натуральное число, которое меньше, чем –10?

Предостерегаю вас от опрометчивого использования данного квантора, ибо «для любого» может на поверку оказаться вовсе и «не для любого».

Внимание! Если вам что-то не понятно в обозначениях, пожалуйста, вернитесь к уроку о множествах .

– существует натуральное число , которое больше двух. Истина …и, главное, не поспоришь =)

Ложь

Нередко кванторы «работают в одной упряжке»:

– для любого вектора существует противоположный ему вектор. Прописная истина , а точнее, аксиома (утверждение, принимаемое без доказательства) векторного пространства.

Обратите внимание, что квантор существования подразумевает сам факт существования объекта (хотя бы одного), который удовлетворяет определённым характеристикам. Пусть в мире существуют единственная белая ворона, но существуют же. Более того, в математике (как школьной, так и высшей) доказывается великое множество теорем на существование и как раз единственность чего-либо. Доказательство такой теоремы состоит из двух частей:

1) Существование объекта, удовлетворяющего определённым критериям. В этой части обосновывается сам факт его существования.

2) Единственность данного объекта. Этот пункт доказывается, как правило, методом от противного , т.е. предполагается, что существует 2-й объект с точно такими же характеристиками и далее это предположение опровергается.

Школьников, впрочем, стараются не пугать подобной терминологией, и теорема часто преподносится в завуалированном виде, например:

В любой треугольник можно вписать окружность и, причём только одну

Кстати, а что такое вообще теорема? Логическую суть этого страшного слова мы узнаем очень скоро….

Логические операции (действия над высказываниями)

Подобно тому, как с числами можно проводить арифметические действия (складывать, умножать и т.д.), к высказываниям тоже применимы свои операции. Существует три базовых логических операции:

отрицание высказывания;

конъюнкция или логическое умножение высказываний;

дизъюнкция или логическое сложение высказываний.

По порядку:

1) Отрицание высказывания

НЕ и символ

Отрицанием высказывания называется высказывание (читается «не а») , которое ложно , если истинно, и истинно – если ложно:

Так, например, высказывание – черепахи не летают истинно: ,
а его отрицание – черепахи летают если хорошенько пнуть – ложно: ;

высказывание – дважды два будет два ложно: ,
а его отрицание – неверно, что дважды два будет два – истинно: .

Кстати, не нужно смеяться над примером с черепахами;) садисты

Удачной физической моделью данной операции является обычная лампочка и выключатель:

свет включен – логическая единица или истина,
свет выключили – логический ноль или ложь.

2) Конъюнкция (логическое умножение высказываний)

Данной операции соответствует логическая связка И и символ либо

Конъюнкцией (читается «а и бэ») , которое истинно в том и только том случае, когда истинны оба высказывания и :

Данная операция тоже встречается сплошь и рядом. Вернёмся к нашему герою с первой парты: предположим, что Петя получает допуск к экзамену по высшей математике, если сдаёт курсовую работу и зачёт по теме. Рассмотрим следующие высказывания:
Петя сдал курсовую работу ;
– Петя сдал зачёт .

Заметьте, что в отличие от формулировки «Петя завтра сдаст» здесь уже в любой момент времени можно сказать, истина это или ложь.

Высказывание (суть – Петя допущен к экзамену) будет истинно в том и только том случае, если он сдал курсовик и зачёт по . Если хоть что-то не сдано (см. три нижних строчки таблицы) , то конъюнкция – ложна.

И очень своевременно пришёл мне в голову отличный математический пример: знак системы соединяет входящие в неё уравнения/неравенства как раз по правилу И . Так, например, запись двух линейных уравнений в систему подразумевает то, что мы должны найти ТАКИЕ корни (если они существуют) , которые удовлетворяют и первому и второму уравнению.

Рассматриваемая логическая операция распространяется и на большее количество высказываний. Условно говоря, если в системе 5 уравнений, то её корни (в случае их существования) должны удовлетворять и 1-му и 2-му и 3-му и 4-му и 5-му уравнению данной системы.

И в заключение пункта вновь обратимся к доморощенной электротехнике: конъюнктивное правило хорошо моделирует выключатель в комнате и рубильник на электрическом щитке в подъезде (последовательное подключение). Рассмотрим высказывания:

выключатель в комнате включен ;

рубильник в подъезде включен .

Наверное, все уже поняли, что конъюнкция читается самым что ни на есть естественным образом:
– выключатель в комнате включен и рубильник в подъезде включен.

Очевидно, что тогда и только тогда, когда . В трёх других случаях (проанализируйте, каких) цепь разомкнётся и свет погаснет: .

Давайте присоединим ещё одно высказывание:
рубильник на подстанции включен .

Аналогично: конъюнкция будет истинна тогда и только тогда, когда . Здесь, к слову, уже будет 7 различных вариантов разрыва цепи.

3) Дизъюнкция (логическое сложение высказываний)

Этой операции соответствует логическая связка ИЛИ и символ

Дизъюнкцией высказываний и называют высказывание (читается «а или бэ») , которое ложно в том и только том случае, когда ложны оба высказывания и :

Предположим, что в экзаменационном билете по высшей математике 2 вопроса и студент сдаёт экзамен, если ответит хотя бы на один вопрос. Рассмотрим следующие высказывания:
Петя ответил на 1-й вопрос ;
Петя ответил на 2-й вопрос .

Дизъюнктивная запись читается просто и понятно: Петя ответил на 1-й или 2-й вопрос и подразумевает три истинных исхода (см. таблицу) . При этом экзамен Пётр не сдаст в единственном случае – если «запорет» оба вопроса:

Следует отметить, что союз «или» мы очень часто понимаем как «исключающее или», и, более того – его зачастую так и нужно понимать! Из той же фразы о сдаче экзамена человек, скорее всего, сделает вывод, что Петя ответил только на 1-й или только на 2-й вопрос. Однако рассматриваемое ИЛИ – это не обывательское «или».

Операция логического сложения также применима для трёх и бОльшего количества высказываний. Некоторые лояльные преподаватели задают 10-15 вопросов и ставят экзамен, если студент хоть что-то знает =) Иными словами, логическое ИЛИ скрывает за собой связку «хотя бы на один» (и она вовсе не означает, что СТРОГО на один!).

Ну и давайте отвлечёмся от бытового электричества: подавляющее большинство сайтов Интернета расположены на профессиональных серверах, которые снабжаются, как правило, двумя блоками питания. В электротехнике это называется параллельным подключением, которое как раз и моделирует правило ИЛИ – сервер работает, если исправен хотя бы один блок питания. Оборудование, кстати, поддерживает «горячую» замену, т.е. сгоревший БП можно заменить, не выключая сервер. Такая же история с жёсткими дисками – они дублируются в так называемом RAID-массиве , и более того, сам Дата-центр, где находятся серверы, обычно запитывается двумя независимыми электролиниями + дизель-генератор на всякий случай. Эти меры позволяют обеспечить максимальный аптайм сайтов.

И коль скоро речь зашла о компьютерах, то они… базируются на рассмотренных логических операциях! Это кажется невероятным, но задумаемся – а что вообще могут «понимать» эти «железки»? А понимать они могут следующее:

в проводе есть ток – это логическая единица ;
провод обесточен – это логический ноль .

Именно данный факт первопричина того, что в основе измерения объёма информации лежит степень двойки:
и т.д.

Простейшим «компьютером» является… обычный выключатель – он хранит информацию в 1 бит (истину или ложь в указанном выше смысле). Центральный же процессор современного компьютера насчитывает сотни миллионов (!) транзисторов, и самое сложное программное обеспечение, самая «навороченная игра» раскладывается на множество нулей и единиц, которые обрабатываются с помощью элементарных логических операций!

И уже следующие две операции, которые мы рассмотрим, являются не самостоятельными , то есть могут быть выражены через отрицание, конъюнкцию и дизъюнкцию:

Импликация и логическое следствие.
Необходимое условие. Достаточное условие

До боли знакомые обороты: «следовательно», «из этого следует это», «если, то» и т.п.

Импликацией высказываний (посылка) и (следствие) называют высказывание , которое ложно в единственном случае – когда истинно, а – ложно:

Фундаментальный смысл операции таков (читаем и просматриваем таблицу сверху вниз) :

из истины может следовать только истина и не может следовать ложь ;

изо лжи может следовать всё, что угодно (две нижние строчки) , при этом:

истинность посылки является достаточным условием для истинности заключения ,

а истинность заключения – является необходимым условием для истинности посылки .

Разбираемся на конкретном примере:

Составим импликацию высказываний – идёт дождь и – на улице сыро :

Если оба высказывания истинны , то само собой истинна и импликация если на улице идёт дождь, то на улице сыро . При этом не может быть такого, чтобы дождь шёл , а на улице было сухо :

Если же дождя нет , то на улице может быть как сухо :

так и сыро :
(например, по причине того, что растаял снег) .

А теперь ВДУМЫВАЕМСЯ в эти «штампованные» слова необходимость и достаточность :

Дождь является достаточным условием для того, чтобы на улице было сыро, и с другой стороны, сырость на улице необходима дляпредположения о том, что прошёл дождь (ибо если сухо – то дождя точно не было) .

Обратная же импликация нелегальна: – сырости на улице ещё не достаточно для обоснования факта дождя, и, кроме того, дождь ведь не является НЕОБХОДИМОЙ причиной сырости (т.к., например, может пройти и растаять град) .

Вроде бы должно быть понятно, но на всякий случай ещё несколько примеров:

– Чтобы научиться выполнять действия с матрицами , необходимо уметь складывать и умножать числа . Но этого, как вы правильно предчувствуете, не достаточно .

– Чтобы научиться выполнять арифметические действия достаточно окончить 9 классов . Но это не является условием необходимым – считать может научить и бабушка, причём ещё в детском саду.

– Чтобы найти площадь треугольника достаточно знать его сторону и высоту, проведённую к этой стороне . Однако опять же – это не необходимость , площадь треугольника можно найти и по трём сторонам (формуле Герона) или, например, с помощью векторного произведения .

– Для допуска к экзамену по высшей математике Пете необходимо отчитаться по курсовой работе . Но этого не достаточно – потому что ещё нужно сдать зачёт.

– Для того чтобы вся группа получила зачёт достаточно занести преподавателю ящик коньяка . И здесь, как нетрудно предположить, отпадает необходимость что-либо учить =) Но, обратите внимание, подготовка вовсе не возбраняется;)

Бывают ли условия необходимые и в то же время достаточные? Конечно! И очень скоро мы до них доберёмся. А сейчас об одном важном принципе матлогики:

Математическая логика формальна

Её интересует истинность или ложность высказываний, но не их содержание ! Так, если мы составим импликацию Если черепахи не летают, то дважды два равно четырём , то она будет истинной! Иными словами, любое истинное высказывание можно обосновать любой истиной (1-я строчка таблицы) , и с точки зрения формальной логики это будет истина!

Но ещё интереснее ситуация с ложным посылом: любой ложью можно обосновать всё, что угодно – как истину так и ложь:

– если Луна квадратная, то ;
– если пингвины ходят в валенках, то черепахи носят шлёпанцы .

А что? – по таблице оба высказывания истинны!

Данные факты получили название парадокс импликации , но в действительности мы, конечно же, рассматриваем примеры, осмысленные с точки зрения нашей содержательной логики.

И ещё один очень важный момент : импликацию часто обозначают значком (тоже читается «следовательно», «из этого следует это» ), который мы также используем в ходе решения задач, доказательств теорем и т.д. И здесь речь идёт о совпадении обозначений – то, что мы используем в «обычных» математических выкладках, строго говоря, не является импликацией. В чём отличие? Когда мы решаем задачу и пишем, что («из а следует бэ») , то полагаем высказывание заведомо истинным , и более того, выводим из него другую истину . В математической логике это называется логическим следствием . Обычно следствие подлежит обоснованию, и поэтому при оформлении работ всегда старайтесь пояснять, какие аксиомы, теоремы, решённые задачи и т.д. вы использовали для того или иного вывода.

Теорема по своей сути тоже представляет собой логическое следствие: её условие опирается на истинные посылки (аксиомы, ранее доказанные теоремы и т.д.) . Доказательство же устанавливает истинность следствия , причём в этом процессе не могут использоваться ложные рассуждения.

Недоказанная теорема называется гипотезой , и варианта тут два: либо она выводит из истины истину и представляет собой теорему, либо гипотеза невернА, т.е. из множества истинных посылок следует «не бэ»: . В случае опровержения получается тривиальный вывод наподобие «гипотеза Ивана Петрова неверная» , но и это, бывает, дорогого стОит – дерзайте , уважаемые читатели!

Рассмотрим в качестве примера, конечно, не мегатеорему, но утверждение, которое требует пусть простого, но обоснования. Хотя и его не будет =) =):

– число делится на 4 ;
– число делится на 2 .

Очевидно, что следствие истинно , то есть из того, что число делится на 4, следует и его делимость на 2. И, соответственно, противоположное заключение – есть ложь:

При этом ещё раз обращаю внимание, что посылка изначально постулируется как истина (в отличие от импликации, где она может быть и ложной) .

Для логических следствий также в ходу понятия необходимости и достаточности , скопирую пару строк сверху:

истинность посылки – это достаточное условие для истинности заключения ,

истинность заключения – это необходимое условие для истинности посылки .

В нашем случае:

Делимость числа на 4 является достаточным условием для того, чтобы оно делилось на 2. И с другой стороны, делимость числа на 2 является необходимым условием делимости на 4.

Следует отметить, что рассмотренный пример можно записать и в виде импликации:
(пользуясь таблицей, проанализируйте все расклады самостоятельно)

Однако в общем случае «перенос понятий» некорректен ! То есть, если мы ведём разговор о том, что , то это ещё не значит, что будет справедлива импликация . И такой пример я приведу в заключительном пункте. и необходимо сдать 3 экзамена (в противном случае сессия будет не сдана) и в то же самое время этого достаточно (т.к. больше ничего делать не нужно) .

Особенность эквиваленции состоит в том, что имеет место либо и то и другое , либо ничего , например:

Петя занимается штангой тогда и только тогда, когда Маша танцует на столе

Это значит, что либо Петя занимается штангой и Маша танцует на столе, либо они оба лежат на диване Пётр, ты заслужил! =) Такие вот дружные Петя и Маша. Теперь вроде бы похожая фраза без «тогда и только тогда»:

Петя занимается штангой, когда Маша танцует на столе

Но смысл несколько поменялся: здесь можно предположить, что Петя, бывает, тягает штангу и без Маши, и другой стороны, Маше «до лампочки», качается ли во время её танца Петя.

Вот в чём сила необходимого и достаточного условия! – оно объединяет и дисциплинирует =)

…хотел я для прикола распределить роли наоборот, но затем передумал… всё-таки нельзя такое пропагандировать =)

К слову, о дисциплине – рациональный подход как раз и предполагает необходимость и достаточность – когда человек для достижения какой-либо цели делает ровно столько, сколько нужно, и не больше. Это, конечно, бывает скучно в обычной жизни, но всячески приветствуется в математических рассуждениях, которые нас уже заждались:

Треугольник является равносторонним тогда и только тогда, когда у него равные углы

Высказывания – треугольник равносторонний и – у него равные углы можно соотнести эквиваленцией , но на практике мы почти всегда связываем их обоюдоострым значком логического следствия называется гипотенузой

Данный пункт – это собственно и есть теорема Пифагора, формулировка которой нам знакома ещё со школы: «Если треугольник прямоугольный, то ».

2) На втором шаге обосновывается достаточность :
– здесь надо доказать, что справедливость равенства достаточна для того, чтобы треугольник был прямоугольным.

Учащихся опять же такими словами не запугивают, и второй пункт формулируют в виде обратной теоремы Пифагора: «Если , то треугольник прямоугольный».

Связей по схеме «тогда и только тогда» в математике очень много, и я только что привёл стандартную схему их доказательства. И, конечно же, всегда анализируйте, что означают «необходимо»

Жду вас во второй части нашего увлекательного урока, где мы познакомимся с основными логическими формулами и законами , а также порешаем практические задачи. Для решения задач потребуется пять табличек с этой страницы, поэтому я рекомендую сразу переписать их на листок – чтобы они были перед глазами.

Кроме того, я открою вам секрет успешного изучения математической логики;)