Домашний очаг

Называют термодинамическим процессом. Термодинамические процессы

Определение: Термодинамической системой называется совокупность макроскопических объектов: тел и полей,

которые могут обмениваться энергией как друг с другом, так и с внешней средой, то есть телами и полями, которые являются внешними по отношению к данной системе.

Для описания состояния термодинамической системы вводятся термодинамические величины, которые называются термодинамическими параметрами состояния системы: p ,V ,t 0 , и т. д.

Определение: Равновесное состояние (состояние термодинамического равновесия) называется состояние системы, не изменяющееся с течением времени (стационарное состояние) и независящее от процессов, происходящих во внешней среде.

Равновесное состояние устанавливается в системе при постоянных внешних условиях и сохраняется в системе произвольно долгое время. Во всех частях термодинамической системы, находящейся в состоянии термодинамического равновесия, температура одинакова.

К понятию температуры подойдём следующим образом:

если при соприкосновении 2-х тел происходит теплообмен, то говорят, что у этих тел различные температуры, если теплового обмена нет, одинаковые температуры; то тело, которое передаёт энергию в форме тепла, имеет большую температуру, а тело, принимающее энергию в форме тепла, имеет меньшую температуру. При длительном контактетемпература соприкасающихся тел выравнивается.

Определение: Температура равновесной системы является мерой интенсивности теплового движения её молекул.

Для равновесной системы, частицы которой подчиняются законам классической статической физики, средняя кинетическая энергия теплового движения пропорциональна температуре системы. Температуру можно измерить только косвенным путём, основываясь на том факте, что целый ряд физических свойств тел, поддающихся прямому или косвенному измерению, зависят от температуры это длина, объём, сопротивление, удельное сопротивление, упругие и пластичные свойства и т. д. Измерения любых из этих свойств может быть основой измерения температуры. Для этого необходимо, чтобы для тела, названного термометрическим телом, была известна функциональная зависимость данного свойства от температуры. Температурные шкалы, устанавливаемые с помощью термометрического тела, называют эмпирическими.

Международная стоградусная шкала (шкала Цельсия) , в которой в качестве двух основных точек выбраны температуры кипения и плавления дистиллированной воды приp =1,01325 10 5 Па : t плав. = 0 о С ,t кип. =100 о С . Цена одного градуса равна одной сотой полученного интервалаодин Цельсий. На практике, для измерения температуры используются градусники, основанные на зависимости объёма жидких тел (например: ртути, спирта) от температуры. Вначале фиксируются на шкале две точки для моментов замерзания и закипания дистиллированной воды, а затем интервал между этими точками на шкале делится на равные сто долей.

Абсолютная шкала температур (шкала Кельвина) . В подавляющем большинстве физических законов используется температура из данной шкалы. Это связано с тем, что математическая запись физических законов имеет более компактный вид именно при использовании температуры из шкалы Кельвина. Почему происходит именно так? Ответ находится за рамками общего курса физики. Здесь можно только отметить, что абсолютная шкала температуры имеет детерминированную связь с термодинамической шкалой температур, которая не зависит от свойств термометрических тел.

Связь между этими шкалами выражается соотношением: Т = 273,15 + t 0 , т.е. цена градуса в обоих шкалах одинакова. Температура по шкале КельвинаТ = 0 К называется абсолютным нулём.

Параметры системы разделяются на внешние ивнутренние .

Определение: Внешними параметрами системы называется физические величины, зависящие от положения в пространстве и различных свойств тел, являющихся внешними по отношению к данной системе.

Пример: газ в сосуде V (объём) внешний параметр.

Определение: Внутренними параметрами системы называется физические величины, зависящие как от положения в пространстве внешних по отношению к системе тел, так и от координат и скоростей частиц, образующих данную систему.

Пример: для газа p (давление) иU (внутренняя энергия).

Параметры состояния равновесной системы не являются независимыми, так как они зависят от внешних параметров и температуры.

Определение: Уравнением состояния простой системы называется функциональная зависимость равновесного давления в системе от объёма и температуры, то есть p = f (V , T ) .

В термодинамике уравнение состояния получают опытным путём, а в молекулярной физике теоретически. В этом состоит взаимосвязь между статистическими и термодинамическими методами.

Определение: Термодинамическим процессом называется процесс, при котором изменяется хотя бы один из внешних параметров системы.

Определение: Термодинамический процесс называется равновесным, если система бесконечно медленно проходит непрерывный ряд бесконечно близких равновесных состояний.

Остальные процессы не равновесны.

Пример равновесного процесса: крайне медленное изотермическое сжатие газа поршнем, находящемся в цилиндре.

Определение: Изопроцессами называются термодинамические процессы, происходящие в системе с постоянной массой при каком- либо одном постоянном параметре состояния.

Изотермический при T = const :p 1 V 1 = p 2 V 2 .

Изохорный при V = const :.

Изобарный при p = const :
.

Определение: Адиабатическим называется термодинамический процесс, который происходит в системе без теплообмена с внешними телами.

Примерами адиабатических процессов являются все быстротекущие термодинамические процессы: детонация рабочей смеси во всех типах двигателей внутреннего сгорания, горение топлива в турбореактивных двигателях и т.д. Скорость протекания данных процессов настолько велика, что потерями на теплообмен можно пренебречь.

Определение: Функциями состояния называются физические величины, характеризующие состояние системы, независящие от вида процессов происходящих в системе, и определяемых значениями параметров начального и конечного состояний системы.

Под термодинамическим процессом понимается совокупность последовательных состояний, через которые проходит термодинамическая система при ее взаимодействии с окружающей средой.

Состояние термодинамической системы может быть равновесным и неравновесным. Равновесным называется такое состояние системы, при котором во всех точках ее объема все параметры состояния и физические свойства одинаковы (давление, температура, удельный объем и др.). В термодинамике постулируется, что изолированная система с течением времени всегда приходит в состояние термодинамического равновесия и никогда не может самопроизвольно выйти из него.

Все процессы, происходящие в термодинамической системе, подразделяются на равновесные и неравновесные. Равновесными называются такие процессы, когда система проходит ряд последовательных равновесных состояний. Если процесс протекает настолько медленно, что в каждый момент времени устанавливается равновесие, то такие процессы называются квазистатическими. Эти процессы обладают свойствами обратимости.

Неравновесными называются такие процессы, при протекании которых система не находится в состоянии равновесия. Процесс перехода системы из неравновесного состояния в равновесное называется релаксацией, а время перехода в состояние равновесия - временем релаксации.

Все реальные процессы, протекающие в природе, являются неравновесными. Это определяется тем, что при протекании процесса с конечной скоростью в рабочем теле нс успевает установиться равновесное состояние. Например, при быстром расширении газа в цилиндре с поршнем температура и давление в различных точках объема рабочего тела не будут одинаковыми, т.с. будет иметь место неравновесное состояние, а сам процесс будет неравновесным. Следовательно, реальные процессы, будучи неравновесными, могут лишь в той или иной степени приближаться к равновесным, никогда с ними в точности не совпадая.

Однако термодинамика в первую очередь рассматривает равновесные процессы и равновесные состояния, так как только равновесные состояния могут быть описаны количественно с помощью уравнений состояния. Лишь равновесные процессы изменения состояния термодинамической системы можно изображать графически. Всякое произвольно взятое равновесное состояние в трехосной системе координат pvT изображается точкой, а совокупность этих точек при непрерывном изменении состояния - некоторой кривой, представляющей собой графическое изображение равновесного процесса. Однако использовать трехосную систему координат затруднительно, поэтому на практике пользуются проекциями кривых трехосной системы на плоскости в прямоугольной системе координат. В технической термодинамике для исследования равновесных термодинамических процессов наиболее часто применяют двухосную систему координат pv. В этой системе координат вертикаль изображает изохорный процесс, горизонталь - изобарный, кривая вида гиперболы - изотермический (рис. 1.2). Кроме того,

Рис. 1.2.

в термодинамике рассматриваются процессы адиабатный , совершающийся при отсутствии теплообмена (dq = 0) и политропный (обобщающий процесс), частными случаями которого являются первые четыре процесса.

Любой параметр состояния является также функцией состояния, так как его изменение в любом термодинамическом процессе не зависит от вида процесса, а определяется лишь начальным и конечным состояниями.

К термодинамическим процессам относится также круговой процесс , или цикл. Циклом называется совокупность процессов, возвращающих систему в первоначальное состояние. На диаграммах цикл изображается замкнутым контуром, вид которого полностью определяется числом и формой составляющих цикл процессов. Графическое изображение и изучение циклов в пространственной системе координат было бы еще более трудным, чем изображение отдельных процессов. Поэтому цикл также проектируется на одну из координатных плоскостей.

В термодинамике выделяют несколько основных процессов. Термодинамическим процессом принято называть такое изменение общего состояния всей системы, когда в результате подобных трансформаций меняется полностью хотя бы один из ее основных параметров, его значение. Ими выступают:

Рисунок 1. Термодинамические процессы. Автор24 - интернет-биржа студенческих работ

  • температура;
  • давление;
  • объем.

Известно, что все термодинамические процессы имеют тесные связи друг с другом. При изменении хотя бы одного параметра может меняться в неизбежном режиме вся система. В общем смысле, любой термодинамический процесс можно представить в виде равновесной системы, которая балансирует на грани нарушения этого равновесия. Если вся система уже находится в равновесном состоянии, то это явление не предполагает наличия термодинамических процессов вовсе. В таких системах не фиксируются термодинамические процессы.

Хоть понятие равновесного состояния системы нельзя назвать четким, все же существуют некоторые законы его присутствия в реальном воплощении. Любые материальные вещи невозможно полностью изолировать от окружающего его мира, поэтому в любой реальной системе возможно протекание различных термодинамических процессов. Иногда подобные процессы протекают настолько слабо и медленно, что не всегда удается их зафиксировать в оптимальном выражении. Специалисты их устанавливают как цепь разнообразных равновесных состояний системы. Их еще могут называть равновесными процессами, а также квазистатическими процессами.

Круговыми процессами и циклическими процессами называют ряд последовательных повторяющихся изменений в системе. В итоге система после прохождения определенного отрезка пути возвращается в исходное состояние. Круговой и равновесный процесс возникает и изучается под видом прикладных приемов термодинамики физических явлений, а также они лежат в основании некоторых теоретических размышлений и выводов науки.

Сегодня выделяют несколько основных термодинамических процессов:

  • изобарный;
  • изохорный;
  • адиабатический;
  • адиабатный;
  • политропный;
  • изотермический.

Изобарный процесс

Рисунок 2. Изобарный процесс . Автор24 - интернет-биржа студенческих работ

Определение 1

Изобарный процесс – это такой термодинамический процесс, который может протекать при постоянном давлении. Подобный процесс осуществляется, например, когда помещается газ в плотный цилиндр, где есть подвижный поршневой крючок.

На поршень действует постоянная внешняя сила. Она достигается при подводе или отводе теплоты к объекту. При этом сама подвижная часть поршня способна менять свое местоположение при изменении параметров температуры. От этого зависит направление движения поршня. Согласно закону Гей-Люссака, объем газа в нем меняется, исходя из уравнения закона. Из этого следует, что занимаемый объем газа может быть прямо пропорционален определенной температуре воздействия. Внутренняя энергия газов изменяется под действием температурного режима извне. Этим правилом характеризуется весь изобарный процесс в термодинамике.

Изохорный процесс

Определение 2

Изохорный процесс – термодинамический процесс, который заключается в протекании при постоянном объеме.

В качестве примера можно привести закрытый сосуд, куда помещен газ. При его нагревании возникают признаки изохорного процесса. При подводе особого температурного режима к изучаемому сосуду давление возрастает. Чем больше тепловой эффект, тем процесс становится более интенсивным. Подобные преобразования параметров газа в сосуде способен математическим методом описать закон Шарля.

Согласно его уравнению, давление газа на стенки сосуда будут прямо пропорциональными абсолютной температуре этого газа. Примечательно, что вся подведенная к сосуду теплота изменяет внутреннюю энергию газа, поэтому совершение работы не происходит изменение объема в сосуде при изохорном процессе равно нулевым значениям.

Адиабатный процесс

Адиабатный процесс - такой термодинамический процесс, который может протекать без теплообмена рабочего тела и окружающей среды. В обычных условиях адиабатный процесс сложно представить и осуществить, так как подобное явление протекает только с телом, помещенное в сосуд. В роли сосуда может находиться цилиндр с работающим поршнем внутри. Весь сосуд должен быть окружен теплоизоляционным материалом высокого качества. Однако полностью изолировать рабочее тело не представляется возможным и теплоизолятор сильного действия не даст гарантии обмена теплотой с окружающей средой. В этом случае, возможно, предстоит создать лишь приблизительную модель адиабатного процесса, так как многие явления протекают очень быстро и принято рассматривать подобные модели с показателями по погрешности.

Изотермический процесс

Изотермический процесс – термодинамический процесс, который протекает при неизменной температуре. Его так же, как и адиабатный процесс осуществить с точностью очень сложно. Для этого необходимо соблюдение условий по расширению и сжатию рабочего газа при постоянной температуре. Также нужно, чтобы газы успевали обмениваться с окружающей средой без потери собственного температурного режима. Хорошо способен описать этот процесс закон Бойля-Мариотта.

Политропный процесс

Политропный процесс характеризуется иными свойствами термодинамических процессов. В отличие от вышеперечисленных процессов термодинамики политропный процесс предполагает возможность изменения любого параметра газа. В других процессах подобные параметры изменять нельзя. Иные термодинамические процессы принято считать частными случаями политропного процесса.

Общим уравнением политропного процесса является $pvn = const$. В этом уравнении $n$ – показатель политропы, которая является постоянной для данного процесса величиной. Она принимает различные значения - ∞ до + ∞.

Если придавать известной формуле определенные значения показателю политропы, то в качестве результата получаем определенный термодинамический процесс. В зависимости от этих представлений приходит итог по изотермическому, адиабатному, изохорному или изобарному процессу.

Лекция 2

ПДК выбрососв АЭС 0,05 Зв/год для персонала0,005Зв/год для населения вблизи

Термодинамическая система может произвести полезную работу только при условии, если в ней осуществляется термодинамический процесс. В этом случае изменяются и основные термодинамические параметры Р, v и Т. Термодинамический процесс - это совокупность изменений состояний термодинамической системы при её переходе из одного состояния в другое.

Мы будем рассматривать только равновесные термодинамические процессы , протекающие в равновесных системах. Равновесным состоянием системы называется состояние, когда во всех точках системы давления и температуры одинаковы. Система, выве­денная из состояния равновесия и пре­доставленная при постоянных парамет­рах окружающей среды самой себе, че­рез некоторое время вновь придет в рав­новесное состояние, соответствующее этим параметрам. Процесс, проходящий через чередующиеся равновесные состояния системы называется равновесным процессом .

В противном случае система неравновесна . Все процессы, протекающие в реальном времени, как правило, неравновесны. Допущение о существовании равновесных систем основано на том, что любая система, выве­денная из состояния равновесия и пре­доставленная при постоянных парамет­рах окружающей среды самой себе, че­рез некоторое время вновь придет в рав­новесное состояние. Такое самопроизволь­ное (без внешнего воздействия) возвра­щение системы в состояние равновесия называется релаксацией , а промежуток времени, в течение которого реальная система возвращается в состояние равнове­сия, называется временем релаксации . Если реальный процесс протекает медленнее, чем идёт релаксация, то процесс является равновесным. Дли разных процессов и разных параметров время релаксации различно. Внутренними процессами, компенсирующими нарушение равновесия при измене­ние состояния тела и восстанавливающими термодинамическое равновесие, являются элементарные процессы обмена энергией при столкновении молекул.

Интересно отметить, что превращение энергии поступательного движения молекул в энергию вращательного движения и обратно при столкновении молекул происходит весьма быстро. Так, давление в объёме выравнивается со скоростью звука (более 340 м/с в воздухе при нормальных физических условиях). Температу­ра – значительно медленнее. Связано это с тем, что превращение энергии поступательного или враща­тельного движения молекул в колебательное при росте температуры осуществляется сравнительно медленно. Вообще все процессы обмена энергии, в которых участвуют колебательные степени свободы движе­ния молекул, требуют для своего осуществления сравнительно большого времени.


Рассмотрим, например, процесс сжа­тия газа в цилиндре. Если время смеще­ния поршня от одного положения до дру­гого существенно превышает время ре­лаксации, то в процессе перемещения поршня давление и температура успеют выровняться по всему объему цилиндра. Это выравнивание обеспечивается непре­рывным столкновением молекул, в ре­зультате чего подводимая от поршня к газу энергия достаточно быстро и рав­номерно распределяется между ними. Если последующие смещения поршня бу­дут происходить аналогичным образом, то состояние системы в каждый момент времени будет практически равновесным.

Теоретически равновесный процесс можно осуществить только при бесконечно медленном изменении состояний системы и внешних условий. В этом смысле время как действующий физический фактор в равновесных процессах не применяется.

Уравнение состояния F (Р, v, Т) = 0 в трёхосной системе координат Р, v и Т представляют собой поверхность, называемую термодинамической поверхностью . Если рассечь эту поверхность (рис. 1.8) плоскостями параллельными осям координат, то получим кривые. Например, сечение плоскостью Т = const даёт линию изменения давления в зависимости от объёма в координатах Р и v , Описываемый процесс называется изотермным.
В термодинамике чаще всего применяют двухосную систему с координатами Р и v (рис. 1.9).

Переход физической системы из одного («начального») состояния в другое («конечное») через какую-то последовательность промежуточных состояний называется процессом. Однако при классификации процессов, происходящих в объеме данной термодинамической системы, необходимо учитывать также и те изменения, которые происходят в окружающих телах (взаимодействующих с данной системой). Процесс называется обратимым, если выполняются два условия:

1) если изменения в системе можно провести в обратном направлении через те же промежуточные состояния, через которые проходила система в прямом направлении;

2) если при обратном переходе не только сама система, но и все связанные с нею окружающие тела в точности возвращаются в первоначальное состояние.

Процесс называется равновесным, если начальное, конечное и все промежуточные состояния системы являются равновесными. Таким образом, для равновесности процесса, происходящего внутри термодинамической системы, существование или отсутствие «остаточных изменений» в окружающих телах имеет значения; важно только,

чтобы каждое из промежуточных состояний системы было равновесным.

Для иллюстрации рассмотрим процесс расширения и сжатия газа, заключенного в цилиндре с поршнем (рис. 11.3).

Если поршень смещается вправо или влево очень медленно, то давление и температура газа в различных местах объема газа успевают выравниваться: следовательно, каждое промежуточное состояние можно считать с удовлетворительной точностью равновесным. Такие процессы можно провести как в одном (например, расширение), так и в обратном (сжатие) направлениях через одни и те же промежуточные состояния с одинаковыми давлениями и температурами по всему объему тела.

При быстром сжатии и расширении промежуточные состояния не будут равновесными. При быстром сжатии давление и температура вблизи поршня больше, чем вдали от поршня так как для выравнивания давления и температуры всегда требуется некоторое время. При быстром расширении, наоборот, давление и температура вблизи поршня меньше, чем вдали. Таким образом, промежуточные состояния в обоих процессах оказываются неравновесными вследствие того, что процессы выравнивания температур и давлений не происходят «мгновенно».

Скорость изменения состояния термодинамической системы определяется не только скоростью внешнего воздействия (в данном примере - скоростью поршня, изменяющего объем газа), но и скоростью внутренних процессов выравнивания температур и давлений (т. е. скоростью релаксации). Вопрос о том, является ли изучаемый процесс «медленным» или «быстрым», зависит от соотношения между скоростями внешнего воздействия и релаксации. Промежуточные состояния могут быть равновесными только в двух предельных случаях: 1) если скорость внешнего воздействия бесконечно мала и 2) если скорость процессов релаксации бесконечно велика.

Примером необратимых процессов являются процессы расширения или сжатия, происходящие при наличии трения. Рассмотрим еще раз расширение и сжатие газов в цилиндре с поршнем (рис. 11.3). Если бы эти процессы происходили равновесно и без трения, то работа, совершаемая газом при расширении в точности равнялась бы внешней работе, необходимой для сжатия. При наличии же трения (даже если оба процесса происходят достаточно медленно) работа, совершаемая газом при расширении, будет меньше а работа внешних сил, затрачиваемая на сжатие газа, будет больше, чем Обозначим через количество теплоты, которое выделилось при трении поршня о стенки цилиндра в процессе расширения. Для простоты рассуждений допустим, что эта теплота идет только на нагревание цилиндра и поршня. Для того чтобы процесс сжатия был в точности обратным процессу расширения, необходимо, чтобы при сжатии теплота была отнята от цилиндра и поршня, превращена в механическую энергию

и передана тому «механизму», который производит сжатие газа. Такой способ возвращения к первоначальному состоянию оказывается невозможным; поршень и цилиндр нагреваются также и при сжатии, а в окружающей среде фиксируются «остаточные изменения» - превращение некоторого количества механической энергии в теплоту (важно подчеркнуть, что теплота, выделившаяся при трении, не может быть превращена в механическую энергию без новых «остаточных изменений» в окружающей среде; см. ч. II, § 7).

Таким образом, все процессы, происходящие при наличии трения, являются необратимыми. Превращение механической энергии в тепловую при трении является односторонним процессом; его невозможно провести в обратном направлении, при котором теплота, выделившаяся при трении, могла бы превратиться в механическую работу без каких-либо остаточных изменений в системе и в окружающих телах.

Другим важным примером необратимых процессов является теплообмен между телами, имеющими различные температуры. Допустим, что в течение «прямого» процесса между двумя какими-нибудь телами, входящими в состав системы, существует конечная разность температур и теплота переходит от тела с высокой температурой к телу с низкой температурой. При «обратном» процессе теплота, полученная холодным телом, должна быть возвращена горячему телу, с тем чтобы было восстановлено первоначальное состояние системы. Путем одной только теплопроводности такая передача теплоты от холодных тел к горячим невозможна.

Обратимые процессы имеют большое значение в теоретической термодинамике как идеальные процессы перехода систем из одного состояния в другое. Перечислим основные условия, необходимые для того, чтобы процесс был обратимым:

1) каждое промежуточное состояние системы должно быть равновесным;

2) в системе должно отсутствовать внутреннее трение, т. е. одностороннее превращение механической энергии в тепловую;

3) в системе не должны происходить односторонние химические реакции, например горение;

4) разность температур между соприкасающимися телами внутри системы, а также между системой и окружающими телами должна быть бесконечно малой. В частности, если система получает теплоту из окружающей среды, то температура источника тепла должна быть больше температуры системы также на бесконечно малую величину. Благодаря этому процесс теплопередачи протекает бесконечно медленно и поэтому будет равновесным и обратимым процессом.