Домашний очаг

Равновесие по нэшу в чистых и смешанных стратегиях. Равновесие по Нэшу

На протяжении всей жизни человек вынужден принимать определённые решения по самым разнообразным вопросам, начиная от бытовых споров - кто будет убирать комнаты в доме или как благоустроить свой город, и заканчивая международными переговорами, многомиллионными аукционами и даже военными действиями. И во всех этих ситуациях человек стремится максимизировать свой собственный выигрыш. Но при этом ему всегда приходится выбирать: сотрудничать с другими людьми или думать только о своей выгоде, не заботясь о выгоде других. Классическим примером, который показывает, что в погоне за личной выгодой не всегда можно достичь лучшего результата, выступает «Дилемма заключённого».

Двое заключённых А и Б подозреваются в совершении преступления, за которое им грозит до 10 лет лишения свободы. Но прямых улик пока нет. Поэтому следствие предлагает каждому из заключённых пойти на сделку - признаться в содеянном и свалить инициативу преступления на другого. Если один признается, а другой заключённый будет хранить молчание, то первому уменьшат срок заключения до трёх лет за содействие следствию, а второго посадят на 10 лет.

Если оба пойдут на сделку со следствием и сознаются в содеянном, то каждый получит по 5 лет. Однако, если оба будут молчать, то за отсутствием улик, их выпустят на свободу. Заключённые находятся в разных камерах, чтобы они не могли сговориться друг с другом и согласовать своё поведение на допросе. Ни один из них не знает точно, что сделает другой. Какое решение примет каждый из них? Что произойдёт?

У каждого заключённого есть выбор: молчать или признаться. Это и есть дилемма заключённого: должен ли он оговорить другого или должен попытать удачу и не признаваться, сильно при этом рискуя? В зависимости от выбора заключённых в этой ситуации возможны четыре исхода.

Рассмотрим их:

1. Если оба заключённых дают признательные показания, каждый из них получает по пять лет тюрьмы;

2. Если заключённый А будет хранить молчание, а заключённый Б даст показания против него, то первый сядет на 10 лет, а второй - на три года;

3. И наоборот, если заключённый А признается, а заключённый Б будет хранить молчание, то первый сядет на три года, а второй - на 10 лет;

4. А если оба будут молчать, то за отсутствием улик из выпустят на свободу.

Какой из этих исходов наиболее реален? Чтобы ответить на этот вопрос, нужно знать, как рассуждает каждый из них. Вот как рассуждает заключённый А:

« Допустим, что заключённый Б признается. Если я тоже признаюсь, то получу 5 лет. Если же буду молчать - получу 10 лет. Значит, если заключённый Б признается, мне тоже лучше признаться в содеянном.

Если же заключённый Б будет хранить молчание, как следует поступить мне? Если признаюсь - получу 3 года. А если тоже буду молчать, то выйду на свободу. Это, конечно, идеальный вариант, но я не уверен, что заключённый Б будет молчать, я ему не доверяю. Поэтому мне лучше дать показания.

Значит, что бы ни делал заключённый Б, мне лучше признаться».

Ход рассуждений заключённого Б аналогичный, и он также приходит к выводу, что для него выгоднее признаться, независимо от того, что будет делать заключённый А.

Что же получается? Каждый из заключённых выбрал стратегию, которая, хотя и не приводит к самому лучшему результату (выходу на свободу), но является наилучшей для каждого из них при любом поведении соперника. Так как цель каждого заключённого - минимизировать свой срок заключения, не заботясь о другом заключённом, то признаться и оговорить другого - наиболее выгодная стратегия для каждого из них. Проще говоря, не важно, что сделает другой, каждый выиграет больше, если предаст. Поэтому заключённые выберут стратегию «Признаться» и получат по 5 лет тюрьмы.

Итак, на этом примере мы увидели, что решение, принимаемое одним игроком, влияет на решение другого (и наоборот) и в итоге влияет на конечный исход игры.

Другими примерами игр, в которых участвуют люди с несовпадающими (противоположными) целями, когда результат зависит от решений всех участников, могут послужить игра в покер, шахматы, пенальти в футболе и многие другие игры.

Но, наряду с традиционными играми, между людьми существуют и такие серьёзные отношения как рыночная конкуренция, гонка вооружений, загрязнение окружающей среды, выборы, торговля и др. Например, компании, конкурирующие на рынке, при принятии решений должны оглядываться на действия конкурентов. Или другой показательный пример - гонка вооружений между Советским Союзом и США в 1950-1990-х годах. В течение почти полувека две великие страны тратили много денег на вооружение, не отставая друг от друга. Если бы между ними было доверие, они бы не тратили столько средств на вооружение, а потратили бы их с бо льшей пользой (на образование, здравоохранение, пенсии и т. п.) и обе стороны выиграли бы от этого. Но вместо этого каждая страна, не доверяя другой, продолжала производить оружие и никто от этого не выигрывал.

Все эти серьёзные отношения тоже называют играми, поскольку в них, как и в обычных играх, результат зависит от решений (стратегий) всех участников. А наука, которая изучает эти серьёзные отношения, называется теорией игр. Поэтому слово «игра» в данном случае не должно вводить вас в смятение. Это понятие в теории игр трактуется шире, чем в повседневной жизни.

Равновесие Нэша

Итак, в «Дилемме заключённого» ситуация складывается таким образом, что, поступая по отдельности рационально и разумно, в итоге заключённые получают по пять лет тюрьмы. Однако, как мы уже отметили, это не самый оптимальный исход. Есть вариант и получше: выйти на свободу, если оба будут молчать.

Наверняка каждый из заключённых, когда принимал решение, рассуждал так: «Если мы оба будем молчать, то выйдем на свободу. Конечно, это лучше, чем сесть на пять лет. Но где гарантия, что второй тоже будет молчать? Ведь если я буду молчать, а другой даст показания, то я сяду на целых 10 лет! Нет, уж лучше я признаюсь в содеянном».

Очевидно, что взаимное недоверие друг к другу не позволяет реализоваться ситуации, когда каждый выйдет на свободу. К тому же заключённые сидят в разных камерах и каждый принимает решение, не зная о решении другого и у каждого есть соблазн дать показания против другого и получить 3 года вместо 5 или 10 лет. Получается, что самый лучший исход - выйти на свободу - является ненадёжным и нестабильным. Именно поэтому заключённые выбрали такие стратегии, которые привели пусть не к самому лучшему исходу, но зато надёжному и исключающему риск обмана и предательства. Такой исход называется равновесием Нэша.

Равновесие Нэша (Nash equilibrium ) - это такая комбинация стратегий игроков и их выигрышей, при которой ни один из игроков не может увеличить свой выигрыш, изменив свою стратегию, если при этом другие участники своих стратегий не меняют. Примечание: равновесие Нэша существует в играх, в которых игроки действуют независимо друг от друга и не могут объединяться и координировать свои действия.

Простыми словами, равновесие Нэша - это такая ситуация, когда стратегия каждого игрока является наилучшей реакцией на стратегии других игроков и ни одному игроку невыгодно в отдельности менять свою стратегию.

Равновесие Нэша - это не самый лучший исход из всех возможных, но в ситуации, когда каждый играет сам за себя, это оптимальный исход для каждого игрока, потому что сводятся к нулю риски и потери каждого игрока, которые могли бы быть, если другой игрок решит его обмануть или предать.

Равновесие Нэша - это устойчивое равновесие, потому что игрокам выгодно его сохранять, так как любое изменение ухудшит их положение. Но если в отношениях между игроками появляется сотрудничество, равновесие Нэша перестаёт быть равновесным, потому что появляется возможность достичь более лучшего результата. Например, если бы в «Дилемме заключённого» у игроков была возможность договориться о сотрудничестве, а именно - вдвоём хранить молчание, либо, если бы у них не было сомнений в том, что другой не предаст и тоже будет молчать, то ситуация могла бы закончиться для обоих с более лучшим исходом - выходом на свободу.

Вывод: Равновесие Нэша показывает, что каждый игрок может выиграть больше, если между игроками будут существовать сотрудничество, доверие и честность, и каждый игрок, делая лучше для других, сделает лучше для себя.

Иллюстрация с сайта postnauka.com

Равновесие Нэша – это часть теории игр, её автором выступил американский математик Джон Нэш. Эта теория демонстрирует оптимальную игру «в вакууме»: когда ставить олл-ин или коллировать пуш оппонентов. Важно понимать, что пуша/колла по Нэшу в современных покерных реалиях уже не является единственно верной. Она является оптимальной только при условии, если ваши оппоненты знают об этой стратегии и придерживаются её без отклонений.

Оптимально использовать стратегию пуш/фолда по Нэшу можно только против сильных и понимающих игроков. При минимальном отклонении эффективность этой стратегии значительно снижается. Наиболее выгодным вариантом использования равновесия Нэша является подстройка под оппонентов, и коррекция собственной игры на основе диапазонов соперников.

Где использовать равновесие Нэша?

Диапазоны равновесие Нэша подходят для игры в , Sit&Go и турнирах . Применять эту стратегию следуют, когда ваш стек опускается до 15 больших блайндов или ниже, и ваша игра сводится к одним пуш/фолд решениям. Чтобы отточить свое мастерство игры, вам следует использовать специальное программное обеспечение, которое моделирует такие ситуации: и ICMIZER.

Предположим, что ваш оппонент идет олл-ин, а у вас осталось 14 больших блайндов. По равновесию Нэша, вы можете коллировать с широким диапазоном рук, имея 20 BB, включая карманные тройки, QJ, QT и даже K2s.

Но это диапазон «в вакууме», который не учитывает тип турнира, стадию и разницу в выплатах. Эта стратегия является верной, но только при условии, что игра состоит только из двух решений префлоп: пуш или фолд. В современных реалиях сильные игроки способны сыграть глубокую постфлоп раздачу и со стеком в 15 больших блайндов.

Помимо использования равновесия Нэша, вы всегда можете просто подождать хорошей руки и заколлировать противника. Но если вы точно не знаете, что является хорошей рукой относительно размера вашего стека, то ориентируйтесь на таблицы Нэша.

Диапазон пуша Нэшу

Диапазон колла по Нэшу

Зеленый цвет – эффективный стек от 15 до 20 больших блайндов.

Желтый и темно-желтый цвет – эффективный стек от 6 до 14 больших блайндов.

Красный цвет – эффективный стек от 1 до 5 больших блайндов.

Использование в своей игре равновесия Нэша подойдет игрокам, поскольку предоставит первоначальное понимание о диапазонах пуша или колла для стандартных турнирных ситуаций и поможет достаточно быстро начать покером.

Определение 2.10. Пусть задана игра G в нормальной форме (N,Sj , Исход s = (s, s 2 > > %)е5 называется равновесием

Нэша (NE - Nash Equilibrium) игры G, если Vi е 1.....N, Уу, е 5,

Иначе говоря, каждый из игроков максимизирует свою функцию полезности

на множестве своих стратегий.

В точке равновесия Нэша стратегия х,- - одна из лучших для игрока i стратегий в ответ на х_ ; =(х 1 ,х 2 ,--.,^_ 1 ,х 1+1 ,...,х лг) - стратегии остальных игроков. Игрок i рассматривает стратегии из х_ ; как заданную вполне определенную совокупность стратегий «внешнего мира», на которую он не может активно воздействовать. Он может активно выбирать лишь свою стратегию в, которая будет наилучшим выбором, если остальные игроки выберут s_j. При этом игрок i полагает, что аналогично выбирают свои стратегии и все остальные игроки.

В точке равновесия Нэша игроку i невыгодно в одиночку отклоняться от стратегии s it если остальные игроки придерживаются стратегий 5 1 ,s 2 ,...s,-_ 1 ,s i+1 ...s N . Действия «в одиночку» могут только уменьшить выигрыш игрока i. Поиск точки равновесия Нэша, таким образом, сводится к решению системы из N задач максимизации функций полезности по соответствующим переменным

Пусть G - (N, 5,-, Uj , i - 1,..N) - конечная игра в нормальной форме.

Назовем X,- множеством смешанных стратегий игрока i, а множество X = X,-Х 2 -...-X jV - множеством профилей всех смешанных стратегий. Обозначим аеХ - элементы этого множества.

Назовем игру G = (N; X; и) смешанным расширением игры G. Тогда равновесие в смешанных стратегиях в игре G - это равновесие Нэша в ее смешанном расширении.

Пример 2.17. Задана биматричная игра

Какие выигрыши будут у игроков при выборе ими стратегий т = 0 + 0,и п = 0,25с + 0,75d ?

Решение

Запишем рядом с чистыми стратегиями вероятности их выбора:

Поскольку выбор стратегий осуществляется игроками независимо, вероятность профиля (а; с) равна 0,4-0,25 = 0,1. Аналогично рассчитываются вероятности выигрышей игроков при остальных наборах чистых стратегий. Для удобства выигрыши игроков представим в виде вектор-столбца:

Ответ: щ - 2; и 2 = 0,25.

Наряду с равновесием Нэша введем еще одно важное понятие - доминирования по Парето.

Пусть задана игра в нормальной форме G = (N,Si, u it i = l,...,N). Рассмотрим два профиля стратегий x = (x,x 2 ,...,x jY)e5 и i/ = (i/ v i/ 2 ,...,yy)&S.

Определение 2.11. Профиль стратегий х доминирует по Парето профиль стратегий у, если

Последняя система неравенств означает, что для всех игроков профиль х не хуже, чем профиль у, но при этом хотя бы для одного из игроков профиль х лучше, чем у.

Определение 2.12. Профиль стратегий х называется оптимальным по Парето (Парето-оптимальным), если он недоминируем но Парето.

Если исход оптимален но Парето, то он характеризуется следующим свойством: невозможно улучшить положение ни одного из игроков без ухудшения положения хотя бы одного из других игроков.

Пример 2.18. Найти точки равновесия Нэша, точки равновесия в строго доминирующих стратегиях и Парето-оптимальные точки в матричной игре двух игроков с заданными платежными матрицами:

Решение

Очевидно, ни одна из стратегий не является строго доминируемой. Поэтому равновесия в строго доминирующих стратегиях нет.

Для определения равновесий Нэша подчеркнем наибольшие выигрыши каждого из игроков при фиксированных ходах противника:

Исходы с двойными подчеркиваниями будут равновесиями Нэша: (a; d) (b; с); (b;d ).

Для определения Парето-оптимальных исходов удобно изобразить все точки биматричной игры в критериальной плоскости (рис. 2.21 - по осям откладываем выигрыши игроков).


Рис. 2.21

Парето-оптимальными являются точки, в направлении штриховки от которых (к «северо-востоку») нет других точек. Таковыми являются исходы (а ; d) (а; с); (Ь; с). Введем для краткости обозначения для Парето- оптимальных точек - Р и для равновесных по Нэшу - N. Получим

Выясним, существуют ли в этой игре равновесные по Нэшу профили смешанных стратегий.

Пусть стратегии а и b играются с вероятностями р и 1 - р соответственно, а стратегии с и d - с вероятностями q и 1 - q.

Максимизируем функцию щ(р, q) = 3q - 2pq по переменной р е при постоянном значении q

К аналогичному результату приводит рассмотрение рационального поведения второго игрока, оптимизирующего u 2 (p,q ) по переменной q при постоянном значении р

Изобразим полученный результат (рис. 2.22) в координатах (q, р ):

Рис. 2.22

Как видим, оба графика совпали.

Равновесия Нэша:

Пример 2.19. Найти точки равновесия Нэша (в смешанных стратегиях) и Парето-оптимальные точки в матричной игре двух игроков с заданными платежными матрицами:

Решение

Очевидно, доминирующих стратегий в игре нет. Точек равновесия Нэша в чистых стратегиях также нет. Парето-оптимальные профили: (а ; d) и {b d).

Рассмотрим смешанные стратегии игроков.

Пусть стратегии а и b играются с вероятностями р и 1 - р соответственно, а стратегии cud - с вероятностями q и 1 - q. Запишем матрицу ожидаемых выигрышей первого и второго игроков:

Очевидно, первый игрок решает задачу

Решением задачи является

Эти три случая представлены на рис. 2.23.

Рис. 2.23

Аналогично второй игрок решает задачу Решением задачи является

Эти три случая представлены на рис. 2.24.

Рис. 2.24

Совмещая рисунки, получим рис. 2.25.

Рис. 2.25

Точка N (р = 0,75; q = 0,6), очевидно, является точкой равновесия Нэша в смешанных стратегиях, поскольку она получена в результате решения задач максимизации функции u x (p,q ) пори u 2 (p,q) по q.

Ответ: равновесие Нэша:

Как соотносятся между собой решения игр в чистых стратегиях, полученные методом итерационного исключения строго доминируемых стратегий (если они существуют) и равновесий Нэша? Ответ на этот вопрос дают следующие две теоремы.

Теорема 2.3. Если существует процедура итерационного исключения строго доминируемых стратегий в игре G - (S ;, щ;i - 1,...,N), которая приводит к единственному исходу s = (s i ,s 2 ,...,s N), то этот исход является единственным равновесием Нэша.

Доказательство теоремы достаточно очевидно, поскольку процедура итерационного исключения строго доминируемых стратегий в конечной игре не может исключить равновесия Нэша. И в силу единственности получаемого исхода он будет единственным равновесием Нэша.

Замечание. Если в теореме 2.3 исключить слово «строго», то она перестает быть справедливой. Например, в игре

исходы (а; с) и (Ь; с) являются точками равновесия Нэша, хотя стратегия b доминируема.

Теорема 2.4. Если исход явля

ется равновесием Нэша, то он не может быть исключен в процедуре итерационного исключения строго доминируемых стратегий.

Доказательство теоремы следует из определения строгой доминируемости стратегии.

Пример 2.20. Рассмотрим матричную игру:

Точка равновесия Нэша - (а,х). Однако стратегия а первого игрока доминируема (не строго) стратегией с, а стратегия х второго игрока доминируема стратегией у. Тем самым мы показали, что условие строгой доминируемое™ в теореме существенно.

Пример 2.21. Рассмотрим игру двух игроков, называемую «битва полов» (или «семейный спор»). Саша и Маша пытаются решить, как им проводить выходной день, - пойти на футбол или на балет. Конечно, Саше больше хочется пойти на футбол, Маша же получает большее удовольствие от балета. Но совсем никакого удовольствия они не получат, если будут развлекаться порознь (бывает же такое!). Саша и Маша выбирают место развлечения одновременно и независимо друг от друга, не сговариваясь. Матрица выигрышей имеет следующий вид :

В данной игре исход (Футбол; футбол) является точкой равновесия Нэша. Это значит, что если игроки договорились о выборе каждым из них первой стратегии, то ни одному из них невыгодно будет отклоняться от нее, если другой ее придерживается. Аналогично и исход (Балет; балет) будет точкой равновесия Нэша. Рассмотрим теперь возможность выбора игроками смешанных стратегий. Пусть первый игрок (Саша) выбирает первую и вторую чистые стратегии с вероятностями соответственно р и 1 - р. Второй игрок (Маша) выбирает первую и вторую чистые стратегии с вероятностями соответственно q и 1 -q. Получаем матрицу

Выигрыш Саши равен

Стратегия Саши определяется выбором вероятности р. Функция выигрыша Саши и с (р, q) р ,

если , и, следовательно, приСаша выберет максимальное значение вероятности, т.е.р = 1.

Аналогично если, то функция u c (p,q) - убывающая по переменной/;, и, следовательно, при Саша, максимизируя свой выигрыш, выберет минимальное значение вероятности, т.е. р = 0.

При функция и с (р> q) не зависит от р и Сашу удовлетворяет любое значение р е . Таким образом, имеем

Все сказанное наглядно представляется диаграммой (рис. 2.26).

Рис. 2.26

Выигрыш Маши равен

Стратегия Маши определяется выбором вероятности q. Функция выигрыша Маши u M (p,q) является монотонно возрастающей по переменной q,

если , и, следовательно, приМаша выберет максимальное значение вероятности, т.е.q = 1.

Аналогично если , то функция u M (p,q) - убывающая по переменной q, и, следовательно, приМаша выберет минимальное значение

вероятности, т.е.

При функция и и (р, q) не зависит от q и Машу удовлетворяет

любое значение

Все сказанное наглядно представляется диаграммой (рис. 2.27). Совмещение диаграмм на рис. 2.26 и 2.27 дает три точки пересечения наилучших выборов игроков на всевозможные действия другого игрока (рис. 2.28).

Имеем три точки равновесия Нэша. Первые

две из них соответствуют выбору чистых стратегий (Балет; балет) и (Футбол; футбол). Третья точка представляет собой точку равновесия Нэша в смешанных стратегиях.

Заметим, что значения платежных функций обоих игроков в точке В соседней точке, например , значения платежных функций игроков равны Однако

эта точка не будет точкой равновесия, поскольку если Маша будет придерживаться стратегии , то Саше будет более выгодна стратегия р = 1,

поскольку

Рис. 2.27

Пример 2.22. Рассмотрим пример биматричной игры, в которой существует бесконечно много равновесий 11эша:

Выигрыш первого игрока равен

р получим

Графически этот выбор изображается следующим образом (рис. 2.29).

Рис. 2.29

q вторым игроком. Но первый игрок не знает, каков выбор второго игрока. Он лишь знает, что второй игрок будет также максимизировать свою функцию выигрыша по переменной q.

Выигрыш второго игрока равен

Из условия максимизации функции выигрыша по переменной q получим

Графически этот выбор изображается следующим образом (рис. 2.30).

Рис. 230

Совместим графики на рис. 2.29 и 2.30 (рис. 2.31).

Рис. 2.31

Графики совпадают на отрезке АВ и в начале координат. Все эти точки и будут равновесиями Нэша в смешанных стратегиях. Точка p = q = 0 означает выбор профиля чистых стратегий (b;d ). Поэтому получим: NE:{(b;d), (pa + (l-p)b ; с), ре }.

Следующая теорема дает ответ на вопрос о существовании равновесия Нэша в довольно широком классе игр.

Теорема 2.5 (Нэш, 1950). Для любой конечной игры (т.е. множество игроков и множества их чистых стратегий конечны) в нормальной форме G = (N,S jt Uj,i = 1,..., N) всегда существует по крайней мере одна точка равновесия Нэша, возможно, в смешанных стратегиях.

Чистые стратегии могут быть строго доминируемы смешанными стратегиями, даже если в чистых стратегиях не существует доминируемых стратегий. Покажем это на следующем примере.

Пример 2.23. Дана биматричная игра:

Найти все равновесия Нэша в смешанных стратегиях.

Решение

В данной биматричной игре невозможно, рассматривая только чистые стратегии игроков, исключить строго доминируемые стратегии. Попробуем найти смешанную стратегию, которая доминирует чистую стратегию.

Сначала рассмотрим возможность исключения строго доминируемых строк. Выпишем для удобства матрицу выигрышей первого игрока (он выбирает строки):

Очевидно, никакая смешанная стратегия ра + (1- р)Ь не сможет доминировать чистую стратегию с, поскольку неравенство /?-0 + (1-/?)-2>14 невыполнимо ни при каких значениях р е . Значит, стратегия с не может быть строго доминируема даже с применением смешанных стратегий.

Как было доказано выше, величина f(p) = p-A + (l-p) B при /?е, {А и В - действительные числа) может принимать все значения между числами А и В. Действительно, поскольку /(/?) - линейная функция, то множеством ее значений является отрезок E(f) = .

Аналогично стратегия а не может быть доминируема смешанной стратегией pb + (l-р)с, поскольку (при выборе вторым игроком стратегии е) потребуется выполнение неравенства 4/?+ 4(1-/?) >6.

Предполагая, что смешанная стратегия pa + (1 - р)с может строго доминировать чистую стратегию Ь, также получим невыполнимое неравенство 2/?+ 4(1-/?) >8.

Следовательно, в данной игре не существует строго доминируемых стратегий первого игрока.

Рассмотрим стратегии второго игрока. Выпишем матрицу его выигрышей:

Очевидно, стратегии ей/ недоминируемы. Поскольку 2 е , 1 е , то можем предположить, что существует смешанная стратегия qe + (l-q)f, строго доминирующая чистую стратегию d. Проверим наше предположение. Для этого требуется выполнение системы неравенств:

Необязательно было решать систему неравенств. Достаточно догадаться, что эта система имеет какое-нибудь решение. Например, в данной задаче

видно, что смешанная стратегия строго доминирует стратегию d.

Важно понимать, что не только второй игрок исключает стратегию d, но и первый игрок, поставив себя на место второго и выполнив за него все указанные операции, может прийти к вывод}" об исключении стратегии d.

Вычеркнув первый столбец, получим матрицу

Нетрудно увидеть, что в этой матрице смешанная стратегия первого

игрока строго доминирует стратегию с (это стало очевидным только

после исключения стратегии d). Игра сократилась до биматричной игры размерности 2x2:

Теперь е>/. Получим

И наконец, а >- Ь.

Равновесие Нэша: (а; е). Этот исход будет единственным равновесием Нэша в исходной игре, поскольку процедура исключения строго доминируемых стратегий не может исключить равновесный по Нэшу профиль стратегий.

Пример 2.24. Последовательным исключением строго доминируемых чистых стратегий привести биматричную игру к игре размерности 2x2 (смешанная стратегия может доминировать чистую). Найти все равновесия Нэша в смешанных стратегиях.

5) Пусть первый игрок играет смешанную стратегию рА + ( 1 - р)С, а второй - qE + (-q)F.

Выигрыш первого игрока равен

Из условия максимизации функции выигрыша по переменной р получим

Графически этот выбор изображается следующим образом (рис. 2.32).

Рис. 2.32

Это наилучшее для первого игрока действие, зависящее от выбора вероятности q вторым игроком.

Выигрыш второго игрока равен

Из условия максимизации функции выигрыша по переменной q получим Графически этот выбор изображается следующим образом (рис. 2.33).

Рис. 2.33

Совместим графики на рис. 2.32 и 2.33 (рис. 2.34).

Рис. 2.34

Графики совпадают в трех точках. Эти точки и будут определять равновесия Нэша:

Пример 2.25. Найти все равновесия Нэша в смешанных стратегиях в биматричной игре

Решение

Способ 1. Нетрудно видеть, что в данной игре не существует строго доминируемых стратегий. Введем смешанные стратегии игроков:

Выигрыш первого игрока максимизируем по переменной р:

Выигрыш второго игрока максимизируем по переменным q и г.

Рассмотрим различные значения р (рис. 2.35).

Рис. 235

Случай 1. Пусть р 0,5. Тогда из (2) и (3) получим р - 0. Итак, (р = ();q = 0;г = 1) - равновесие Нэша. Это исход (b, d).

Случай 2. Пусть р = 0,5. Тогда из (2) получим q = 0, а из (1) 5г= 3, или г = 0,6. Следовательно, (р = 0,5; q = 0; г = 0,6) - равновесие Нэша. Это исход (0,5а + 0,56, 0,6d + 0,4е).

Случай 3. Пусть р е (0,5; 1). Тогда из (2) и (3) получим q = 0; г= 0. Но тогда из (1) имеем р = 1, что противоречит исходному условию.

Случай 4. Пусть р = 1. Тогда из (3) получим г = 0, а из (1) q 3, что выполняется при всех допустимых q. Итак, (р = 1; е;г = 0) - равновесия Нэша. Это исходы (a, qc + (-q)e), qe[ 0; 1].

Ответ: (6, d) (0,5а + 0,56, 0,6с/ + 0,4с); (a,qc + (-q)e), ^е.

Покажем еще один способ нахождения равновесий Нэша в таких играх.

Способ 2 (решения примера 2.25). Рассмотрим выигрыши второго игрока при условии выбора первым игроком смешанной стратегии ра + (-р)Ь. Выигрыш второго игрока при выборе им чистой стратегии с равен U - 3 р при выборе чистой стратегии d - = р + 3(- р)] при выборе чистой стратегии е - U? 2 =Зр + (-р).

Построим графики функций выигрыша второго игрока (рис. 2.36).


Рис. 2.36

Случай 1. Пусть р d. Но наилучшим ответом первого игрока на стратегию второго d является чистая стратегия b (2 > 0), т.е. р- 0, что удовлетворяет исходному условию р 0,5. Следовательно, (b , d) - равновесие Нэша.

Случай 2. Пусть р е (0,5; 1). Тогда второй игрок выбирает чистую стратегию е. Но наилучшим ответом первого игрока на стратегию второго е является чистая стратегия а (4 > 1), т.е. р = 1, что не удовлетворяет исходному условию. В данном промежутке нет равновесий Нэша.

Случай 3. Пусть р = 0.5. Тогда вторым игроком не будет играться стратегия с, г.е. q - 0. Рассмотрим игру

Математическое ожидание выигрыша первого игрока равно

Значение р = 0,5 может быть наилучшим ответом на смешанную стратегию второго игрока только при г = 0,6. Тогда исход (0,5а + 0,56, 0,6d + + 0,4с) - равновесие Нэша.

К тому же результату мы придем и из других рассуждений. А именно, для первого игрока значение р = 0,5 возможно только в случае его безразличия к выбору стратегии а или Ь. Э го значит:

Случай 4. Пусть р= 1. Тогда вторым игроком не будет играться стратегия d, т.е. г = 0. Матрица принимает вид

Тогда (a, qc + (1 - q)e) - равновесие Нэша при любых

Пример 2.26. Найти все равновесия Нэша в смешанных стратегиях в биматричной игре

Решение

Рассмотрим выигрыши второго игрока при использовании им чистых стратегий в ответ на смешанную стратегию первого игрока:

Построим графики этих функций (рис. 2.37).


Рис. 2.37

В точке А пересекаются прямые d не. Найдем точку пересечения:

В точке В пересекаются прямые сие. Найдем точку пересечения:

Ломаная линия MABN - наилучший ответ второго игрока при различных значениях р. Рассмотрим несколько случаев.

Случай 1:

чистая стратегия d. d й, что соответствует значению b, d).

Случай 2: . Тогда наилучшим ответом второго игрока является

чистая стратегия е. Но наилучшим ответом первого игрока на чистую стратегию е второго игрока является чистая стратегия а , что соответствует значению . В этом промежутке нет равновесий Нэша.

Случай 3: . Тогда наилучшим ответом второго игрока является

чистая стратегия с. Но наилучшим ответом первого игрока на чистую стратегию с второго игрока является чистая стратегия а , что соответствует значению . В этом промежутке получили единственное равновесие Нэша (а } с).

Случай 4: (точка Л). В этой точке заведомо не играется стратегия с. Матрица игры принимает вид

Рассмотрим математическое ожидание выигрыша первого игрока:

При равновесном по Нэшу исходе первый игрок максимизирует по р свою функцию полезности:

Очевидно, если является оптимальным для первого игрока, то

. Это значение можно получить из условия равенства значений функции выигрыша первого игрока при выборе им а и /;. Иными словами, первому игроку безразлично, выберет он а или b :

Следовательно, профиль стратегий является равно

весием Нэша.

Случай 5: (точка В). В этой точке заведомо не играется стратегия d. Матрица игры принимает вид

Поскольку а >- b , то р = 1 , что противоречит исходному условию Следовательно, не существует равновесия Нэша, при котором второй игрок выбирает

Этот метод решения можно применять для нахождения равновесий Нэша в любых биматричных играх размерности 2 хп или п х 2, и, следовательно, он более универсален, чем метод, примененный в способе 1 решения предыдущего примера.

  • Здесь и далее в аналогичных примерах стратегии Саши (Футбол, Балет) обозначенысловом, начинающимся с заглавной буквы, стратегии Маши - со строчной.

Что же делать участвующим в игре агентам? Как им определить, какая стратегия лучше других?

Давайте для начала поставим перед собой более скромную цель: определить, какие стратегии точно не подойдут.

Определение 1.2 . Стратегия агента называется доминируемой, если существует такая стратегия , что

В таком случае говорят, что доминирует над .

Иначе говоря, стратегия доминируема, если существует другая стратегия, которая не хуже в каждой точке, при любых возможных комбинациях стратегий других агентов. Значит, нет вообще никакой причины предпочитать , и ее можно просто отбросить при анализе.

Пример 1.4 . Вспомним пример 1.2, в котором полковник Блотто собирался расставить войска на поле . Если проанализировать матрицу из примера 1.2, станет очевидным, что стратегии , и доминируются другими: например, стратегия окажется лучше любой из них. Разумеется, то же самое верно и для противника Блотто. Таким образом, матрица существенно сократится.


Конец примера 1.4 .

Пример 1.5 . В примере 1.3, в котором мы обсуждали конкуренцию по Курно, было очень много доминируемых стратегий. Таковыми были все стратегии : они гарантированно приносили неположительную прибыль , в то время как нулевая стратегия (, ничего не производить) гарантирует нулевую прибыль . Поэтому сразу можно было ограничиться анализом квадрата в качестве множества стратегий.

Конец примера 1.5 .

Правда, стоит заметить, что легко построить пример, в котором любая стратегия доминируема. Это будет значить, что некоторые стратегии эквивалентны, то есть доминируют друг над другом. В таких случаях хотя бы одну из них стоит оставить, а то совсем не из чего будет выбирать.

Продолжаем разговор. После доминируемых стратегий логично будет ввести доминантные стратегии .

Определение 1.3 . Стратегия агента называется доминантной , если всякая другая стратегия ею доминируется, то есть

Доминантная стратегия для агента - настоящее счастье. Ему вообще думать не надо: достаточно выбрать доминантную стратегию, все равно никакая другая ни при каком исходе ничего лучшего не даст.

Более того, если у всех агентов есть доминантные стратегии , то анализ такой игры закончится, не успев начаться. Можно с уверенностью сказать, что все агенты выберут свои доминантные стратегии .

Определение 1.4 . Равновесие в доминантных стратегиях для стратегической игры - это такой профиль стратегий , что для всякого агента стратегия является доминантной.

Такое равновесие является самым устойчивым из всех. В следующей лекции мы приведем пример из теории экономических механизмов, в котором возникает такое равновесие - так называемый аукцион Викри (см. теорему 2.1.

Но, к сожалению, счастье достижимо далеко не всегда. Ни в примере 1.1, ни в примере 1.2, ни в примере 1.3 никакого равновесия в доминантных стратегиях не получалось. Для каждой стратегии игрока там существовал профиль стратегий других игроков , в котором игроку было бы выгодно сменить на ту или иную .

Равновесие Нэша

В предыдущем параграфе мы обсудили, что если у агента есть доминантная стратегия , то ему вообще размышлять и беспокоиться не о чем: он может просто выбирать эту стратегию. Но что же делать участвующим в игре агентам, когда таких стратегий нет и не предвидится?

Тогда приходится учитывать не только свои собственные стратегии, но и стратегии других агентов. Учет этот приведет к понятию равновесия, сформулированному в 1950 году Джоном Нэшем .

Определение 1.5 . Равновесие Нэша в чистых стратегиях для стратегической игры - это такой профиль стратегий , что для всякого агента выполняется следующее условие:

Иначе говоря, как и прежде, агенту невыгодно отклоняться от избранной стратегии . Но теперь ему это невыгодно делать не абстрактно, при любом выборе стратегий у других агентов, а только в конкретном профиле стратегий .

Пример 1.6 . Продолжаем рассматривать беднягу Блотто. Матрица игры полковника без доминируемых стратегий была приведена в примере 1.4. Из матрицы легко видеть, что если один игрок выбирает стратегию , то от выбора другого уже ничего не зависит, то есть можно сказать, что другому тоже нет резона отклоняться от стратегии . Все это значит, что для данной игры профиль стратегий находится в равновесии Нэша.

Конец примера 1.6 .

Приведем и непрерывный пример - поверьте, нас еще ждут подобные рассуждения, и пора привыкать к чуть более серьезному анализу.

Пример 1.7 . Вернемся к анализу конкуренции по Курно из примера 1.3. На этот раз мы не будем ничего упрощать: пусть цена задается неизвестной функцией , а себестоимость производства для каждой фирмы - неизвестной функцией . Чтобы найти равновесие Нэша, найдем функцию лучшего ответа. Прибыль компании определяется как

Чтобы определить максимум функции для фиксированного , нужно просто найти производную

и приравнять ее к нулю. Соответственно, равновесие Нэша достигается там, где обе фирмы выдают оптимальный ответ на стратегию противника, то есть на решениях следующей системы дифференциальных уравнений :


Оставим читателю удовольствие проверить, что в рассмотренном в примере 1.3 частном случае равновесием Нэша действительно будет точка пересечения прямых на рис. 1.1 .

Конец примера 1.7 .

В определении 1.5 упоминался странный термин " чистые стратегии ": а какими еще они бывают? Оказывается, что стратегии бывают не только чистыми, но и смешанными. Смешанные стратегии - логичное расширение понятия стратегии: давайте разрешим игроку не только выбирать одну из , но и делать из них более или менее случайный выбор.

Определение 1.6 . Смешанная стратегия для игрока в стратегической игре - это распределение вероятностей , где - множество всех распределений вероятностей над .

Смешанную стратегию также можно рассматривать как задание весов для каждой стратегии так, чтобы сумма (в непрерывном случае - интеграл ) всех весов была равна 1.

Бывают игры, где нет равновесий Нэша для чистых стратегий . Но оно всегда (в конечном случае) есть в смешанных стратегиях .

Пример 1.8 . Вспомним игру "камень-ножницы-бумага", матрицу которой мы уже выписывали в примере 1.1.

Очевидно, что никакого равновесия Нэша в чистых стратегиях здесь нет: для любой стратегии найдется кому ее опровергнуть. Но равновесие Нэша в смешанных стратегиях здесь имеется. Предположим, что второй игрок выбирает камень, ножницы или бумагу с вероятностью , а первый выбирает их с вероятностями , и . Тогда первый игрок выигрывает с вероятностью

а также проигрывает и делает ничью с той же вероятностью. Иначе говоря, если противник выбирает стратегию равновероятно, для игрока все стратегии эквивалентны. Поскольку игра симметрична, получается, что профиль смешанных стратегий

находится в равновесии.

Конец примера 1.8 .

Доказательство того, что равновесие в смешанных стратегиях всегда существует, следует из теоремы Какутани о неподвижной точке [ , ].

Теорема 1.1 (Какутани) Пусть - непустое выпуклое компактное подмножество евклидова пространства , а - многозначная функция на с замкнутым графиком, такая, что множество непусто, замкнуто и выпукло для всех . Тогда у есть

Равновесие Нэша (Nash equilibrium ) - это такая ситуация, при которой ни один из игроков не может увеличить свой выигрыш, в одностороннем порядке меняя свое решение. Другими словами, равновесие Нэша - это положение, при котром стратегия обеих игроков является наилучшей реакцией на действия своего оппонента

Равновесие Нэша в чистых стратегиях для стратегической игры - это такой профиль стратегий, что для всякого агента выполняется следующее условие:

Если в игре каждый из противников применяет только одну и ту же стратегию, то про саму игру в этом случае говорят, что она происходит в чистых стратегиях , а используемые игроком А и игроком В пара стратегий называются чистыми стратегиями .

Определение. В антогонистической игре пара стратегий (А i , В j) называется равновесной или устойчивой, если ни одному из игроков не выгодно отходить от своей стратегии.

Применять чистые стратегии имеет смысл тогда, когда игроки А и В располагают сведениями о действиях друг друга и достигнутых результатах. Если допустим, что хотя бы одна из сторон не знает о поведении противника, то идея равновесия нарушается, и игра ведется бессистемно.

33. Функция Неймана- Моргенштерна в теории игр. Равновесие Байеса-Нэша

Систематическая же математическая теория игр была детально разработана американскими учёными Дж. Нейманом и О. Моргенштерном (1944) как средство математического подхода к явлениям конкурентной экономики. В ходе своего развития И. т. переросла эти рамки и превратилась в общую математическую теорию конфликтов.

Основным в И. т. является понятие игры, являющееся формализованным представлением о конфликте. Точное описание конфликта в виде игры состоит поэтому в указании того, кто и как участвует в конфликте, каковы возможные исходы конфликта, а также кто и в какой форме заинтересован в этих исходах. Участвующие в конфликте стороны называются коалициями действия; доступные для них действия - их стратегиями; возможные исходы конфликта - ситуациями (обычно каждая ситуация понимается как результат выбора каждой из коалиций действия некоторой своей стратегии); стороны, заинтересованные в исходах конфликта, - коалициями интересов; их интересы описываются предпочтениями тех или иных ситуаций (эти предпочтения часто выражаются численными выигрышами). Конкретизация перечисленных объектов и связей между ними порождает разнообразные частные классы игр.

Определить оптимальную стратегию можно:

  • Равновесие Байеса-Нэша: если определено статистическое распределение встречаемого поведения (например, 33 % «око за око», 33 % всегда обманывают и 33 % всегда сотрудничают), то стратегию можно вычислить математически . Этим детально занимается теория эволюционной динамики.