Собственный опыт

Титан - металл. Свойства титана

Свойства титана

В периодической системе элементов Менделеева титан имеет порядковый номер 22. Его нейтральный атом состоит из ядра, заряд которого равен 22 ед. положительного электричества, и находиться вне ядра 22 электронов.

Итак, ядро нейтрального атома титана содержит 22 протона. Количество же нейтронов, т. е. нейтральных незаряженных частиц, различно: чаще 26, но может колебаться от 24 до 28. Поэтому и число изотопов титана различно. Устойчивых природных изотопов титана всего пять: 46 Ti, 47 Ti, 48 Ti, 49 Ti, 50 Ti. Это установил в 1936 г. немецкий физик Ф. В. Астон. До его исследований считалось, что титан изотопов вообще не имеет. Природные устойчивые изотопы титана распределяются следующим образом (в отн. %): 46 Ti - 7,99; 47 Ti - 7,32; 48 Ti - 73,97; 49 Ti - 5,46; 50 Ti - 5,25.

Кроме естественных, титан может иметь и целый ряд искусственных изотопов, получаемых с помощью его радиоактивного облучения. Так, если бомбардировать титан нейтронами или α-частицами, можно получить радиоактивный изотоп титана 52 Ti с периодом полураспада - 41,9 мин, который дает β- и γ-излучения. Искусственно получены и другие изотопы титана (42 Ti, 43 Ti, 44 Ti, 45 Ti, 51 Ti, 52 Ti, 53 Ti, 54 Ti), некоторые из них сильнорадиоактивные, с различными сроками полураспада. Так, у изотопа 44 Ti период полураспада всего 0,58 с, а у изотопа 45 Ti - 47 лет.

Радиус ядра титана равен 5 фм. Вокруг положительно заряженного ядра титана на четырех орбитах К, L, М, N располагаются электроны: на К - два электрона, на L - восемь, на M - 10, на N - два. С орбит N и М атом титана может свободно отдавать по два электрона. Таким образом, наиболее устойчивый ион титана - четырехвалентный. Пятым электрон с орбиты М "вырвать" невозможно, поэтому титан никогда не бывает больше чем четырехвалентным ионом. В то же время с орбит N и М атом титана может отдавать не четыре, а три, два или один электрон. В этих случаях он становится трех-, двух- или одновалентным ионом

Титан различной валентности имеет неодинаковые ионные радиусы. Так, радиус иона Ti 4+ равен 64 пм, иона Ti 3+ - 69, Ti 2+ - 78, Ti 1+ - 95 пм.

Долгое время не могли точно определить атомную массу титана (атомный вес). В 1813 г. Й. Я. Берцелиус получил неправдоподобно завышенную величину - 288,16. В 1823 г. немецкий химик Генрих Розе установил, что атомный вес титана ранен 61,6. В 1829 г. ученый несколько раз уточнял величину: 50,63; 48,27 и 48,13. Ближе к истинным оказались измерения английского химика Т. Э. Торна - 48,09. Однако это значение продержалось до 1928 г., когда исследования химиков Бакстера и Бутлера дали окончательную величину атомного веса - 47,9. Атомная масса природного титана, вычисленная по результатам исследования его изотопов, составляет 47,926. Эта величина практически идентична значению интернациональных таблиц.

В периодической системе элементов Менделеева титан расположен в группе IVB, в которую, кроме него, входит цирконий, гафний, курчатовий. Элементы данной группы в отличие от элементов группы углерода (IVА) обладают металлическими свойствами. У соединений даже самого титана кислотообразующая способность выражена слабее, чем у любого элемента группы углерода. Хотя титан занимает самое верхнее место в своей подгруппе, он является наименее активным металлическим элементом. Так, двуокись титана амфотерна, а двуокиси циркония и гафния обладают слабо выраженными основными свойствами. Титан больше, чем другие элементы подгруппы IVB, близок к элементам подгруппы IVA - кремнию, германию, олову. Четырехвалентный титан отличается от кремния и германия большей склонностью к образованию комплексных соединений различных типов, чем особенно сходен с оловом.

Титан и другие элементы подгруппы IVB очень близки по свойствам к элементам подгруппы IIIB (группы скандия), хотя и отличаются от последних способностью проявлять большую валентность. Титан к скандию даже ближе, чем к элементам подгруппы IVA. Сходство титана со скандием, иттрием, а также с элементами подгруппы VВ - ванадием и ниобием выражается и в том, что в природных минералах титан часто встречается вместо с этими элементами, изоморфно замещая друг друга.

Из кристаллохимии кислородных соединений известно, что характерное координационное число для титана равно 6, а единственным координационным полиэдром, соответствующим этому числу, является октаэдр. Причем ни в одном из кислородных соединений атомы титана не имеют координационного числа больше 6. В такой координации среднее расстояние между титаном и кислородом равно 2 Å. В структурах, для которых характерно статистическое распределение атомов Ti 4+ и Nb 5+ в октаэдрах, соответствующее среднее расстояние между титаном и ниобием также составляет 2 Å. Из этого следует вывод о близости ионных радиусов титана и ниобия.

Близость ионных радиусов элементов - непременное условие возможности изоморфизма между ними. Для титана наиболее полно этому условию удовлетворяют ниобий, тантал, трехвалентное железо и цирконий.

А теперь рассмотрим, какие же химические соединении с другими элементами может образовывать титан. С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди-, три- и тетрасоединения, с серой и элементами её группы (селеном, теллуром) - моно- и дисульфиды, с кислородом - оксиды, диоксиды и триоксиды. Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами - интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами.

Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных - золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии? А дело в том, что реакции титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически не вступает в реакции. Связано это с тем, что на свежей поверхности чистого титана, как только она образуется, очень быстро появляется инертная, хорошо срастающаяся с металлом тончайшая (в несколько ангстрем) пленка диоксида титана, предохраняющая его от дальнейшего окисления. Если даже эту шлепку снять, то в любой среде, содержащей кислород или другие сильные окислители (например, в азотной или хромовой кислоте), эта пленка появляется вновь, и металл, как говорят, ею "пассивируется", т. е. защищает сам себя от дальнейшего разрушения.

Известно, что коррозионная стойкость любого металла определяется величиной его электродного потенциала, т. е. разностью электрических потенциалов между металлом и раствором электролита. Отрицательные значения электродного потенциала свидетельствуют об убыли ионов металла с его поверхности и о переходе их в раствор, т. е. о растворимости и коррозии металла. Положительное значение указывает на то, что металл обладает стойкостью в данном растворе, не отдает своих ионов и не корродируется. Так вот, для свежеочищенной поверхности титана измеренные значения электродного потенциала в воде, в водных растворах, во многих кислотах и щелочах колеблются от -0,27 до -0,355 В, т. е. металл, казалось бы, должен быстро растворяться. Однако в большинство водных растворов электродный потенциал титана очень быстро поднимается от отрицательных до положительных значений, примерно до +0,5 В, и коррозия практически моментально прекращается: титан пассивируется и становится в высшей степени коррозионно-стойким.

Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах. Об исключительной его стойкости в атмосфере, в пресной и океанической воде даже при нагревании мы уже говорили. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на металл. В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе меди и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности к прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана по многих агрессивных средах, в таких, как азотная, соляная, серная, "царская водка" и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.

В азотной кислоте, являющейся сильным окислителем, в котором быстро растворяются очень многие металлы, титан исключительно стоек. При любой концентрации азотной кислоты (от 10 до 99%-ной), при любых температурах скорость коррозии титана в азотной кислоте не превышает 0,1-0,2 мм/год. Опасна только красная дымящая азотная кислота, пересыщенная (20% и более) свободными диоксидами азота: в ней чистый титан бурно, со взрывом, реагирует. Однако стоит добавить в такую кислоту хотя бы немного воды (1- 2% и более), как реакция заканчивается, и коррозия титана прекращается.

В соляной кислоте титан стоек лишь в разбавленных ее растворах. Например, в 0,5%-ной соляной кислоте даже при нагревании до 100° С скорость коррозии титана не превышает 0,01 мм/год, в 10%-ной при комнатной температуре скорость коррозии достигает 0,1 мм/год, а в 20%-ной при 20° С - 0,58 мм/год. При нагревании скорость коррозии титана в соляной кислоте резко повышается. Так, даже в 1,5%-ной соляной кислоте при 100° С скорость коррозии титана составляет 4,4 мм/год, а в 20%-ной при нагревании до 60° С - уже 29,8 мм/год. Это объясняется тем, что соляная кислота, особенно при нагревании, растворяет пассивирующую пленку диоксида титана и начинается растворение металла. Однако скорость коррозии титана в соляной кислоте при всех условиях остается ниже, чем у нержавеющих сталей.

В серной кислоте слабой концентрации (до 0,5-1%) титан стоек даже при температуре раствора до 50 - 95° С. Стоек он и в более концентрированных растворах (10- 20%-ных) при комнатной температуре, в этих условиях скорость коррозии титана не превышает 0,005-0,01 мм/год. Но с повышением температуры раствора титан в серной кислоте даже сравнительно слабой концентрации (10-20%-ной) начинает растворяться, причем скорость коррозия достигает 9-10 мм/год. Серная кислота, так же как и соляная, разрушает защитную пленку диоксида титана и повышает его растворимость. Её можно резко понизить, если в растворы этих кислот добавлять определенное количество азотной, хромовой, марганцевой кислот, соединений хлора или других окислителей, которые быстро пассивируют поверхность титана защитной пленкой и прекращают его дальнейшее растворение. Вот почему титан практически единственный металл, не растворяющийся в "царской водке": в ней при обычных температурах (10-20° С) коррозия титана не превышает 0,005 мм/год. Слабо корродирует титан и в кипящей "царской водке", а ведь в ней, как известно, многие металлы, и даже такие, как золото, растворяются почти мгновенно.

Очень слабо корродирует титан в большинство органических кислот (уксусной, молочной, винной), и разбавленных щелочах, и растворах многих хлористых солей, в физиологическом растворе. А вот с расплавами хлоридов при температуре выше 375° С титан взаимодействует очень бурно.

В расплаве многих металлов чистый титан обнаруживает удивительную стойкость. В жидких горячих магнии, олове, галлии, ртути, литии, натрии, калии, в расплавленной сере титан практически не корродирует, и лишь при очень высоких температурах расплавов (выше 300-400° С) скорость его коррозии в них может достигать 1 мм/год. Однако есть немало агрессивных растворов и расплавов, в которых титан растворяется очень интенсивно. Главный "враг" титана - плавиковая кислота (HF). Даже в 1%-ном ее растворе скорость коррозии титана очень высока, а в более концентрированных растворах титан "тает", как лед в горячей воде. Фтор - этот "разрушающий всё" (греч.) элемент - бурно реагирует практически со всеми металлами и сжигает их.

Не может противостоять титан кремнефтористоводородной и фосфорной кислотам даже слабой концентрации, перекиси водорода, сухим хлору и брому, спиртам, в том числе спиртовой настойке йода, расплавленному цинку. Однако стойкость титана можно увеличить, если добавить различные окислители - так называемые ингибиторы, например, в растворы соляной и серной кислот - азотную и хромовую. Ингибиторами могут быть и ионы различных металлов в растворе: железо, медь и др.

В титан можно вводить некоторые металлы, повышающие его стойкость в десятки и сотни раз, например до 10% циркония, гафния, тантала, вольфрама. Введение в титан 20-30% молибдена делает этот сплав настолько устойчивым к любым концентрациям соляной, серной и других кислот, что он может заменить даже золото в работе с этими кислотами. Наибольший эффект достигается благодаря добавкам в титан четырех металлов платиновой группы: платины, палладия, родия и рутения. Достаточно всего 0,2% этих металлов, чтобы снизить скорость коррозии титана в кипящих концентрированных соляной и серной кислотах в десятки раз. Следует отметить, что благородные платиноиды влияют лишь на стойкость титана, а если добавлять их, скажем, в железо, алюминий, магний, разрушение и коррозия этих конструкционных металлов не уменьшаются.

Каковы же физические свойства титана, сделавшие его лучшим из всех, известных конструкционных металлов?

Титан весьма тугоплавкий металл. Долгое время, считалось, что он плавится при 1800° С, однако в середине 50-х гг. английские ученые Диардорф и Xeйc установили температуру плавления для чистого элементарного титана. Она составила 1668±3°C. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, ренин, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте:

Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства: низкая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан - легкий металл, его плотность при 0° С составляет всего 4,517 г/см 3 , а при 100° С - 4,506 г/см 3 . Титан относится к группе металлов с удельной массой менее 5 г/см 3 . Сюда входят все щелочные металлы (натрий, калий, литий, рубидий, цезий) с удельной массой 0,9-1,5 г/см 3 , магний (1,7 г/см 3), алюминий (2,7 г/см 3) и др. Титан более чем в 1,5 раза тяжелее алюминия, и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см 3). Однако, занимая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механическим свойствам во много раз превосходит и алюминий и железо.

Каковы же эти свойства, которые позволяют широко использовать титан как конструкционный материал? Прежде всего, прочность металла, т. е. его способность сопротивляться разрушению, а также необратимому изменению формы (пластические деформации). В зависимости от вида напряженного состояния - растяжения, сжатия, изгиба и других условий испытания (температура, время) для характеристики прочности металла используются различные показатели: предел текучести, временное сопротивление, предел усталости и др. По всем этим показателям титан значительно превосходит алюминий, железо и даже многие лучшие марки стали.

Удельная прочность сплавов титана может быть повышена в 1,5-2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Другие же металлы либо просто не выдерживают таких температур, либо сильно разупрочняются.

Чистый титан - высокопластичный металл, что обусловлено благоприятным соотношением осей "с" и "а" в его гексагональной решетке и наличием в ней множества систем плоскостей скольжения и двойникования. Хотя и считается, что металлы с гексагональной кристаллической решеткой очень пластичны, титан в силу указанных особенностей его кристаллов стоит в одном ряду с высокопластичными металлами, имеющими иной тип кристаллической решетки. В результате чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо, вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.

Интересно отметить, что титан долгие годы, вплоть до получения чистого металла, рассматривали как очень хрупкий материал. Связано это было с наличием в титане примесей, особенно азота, кислорода, углерода и др. Даже их небольшое количество влияет, и весьма существенно, на свойства титана, в том числе на его пластичность. То же самое можно сказать и о твердости титана. Она тем выше, чем больше в металле примесей. Так, твердость титана, содержащего тысячные доли процента кислорода, азота, углерода, железа, составляет 400-600 МПа, а при содержания тех же примесей в сотые доли процента твердость его повышается до 900-1000 МПа.

Почему это происходит? Кислород и азот хорошо растворимы в титане, особенно в его низкотемпературной α-модификации. С их внедрением в октаэдрические пустоты кристаллов титана начинается деформация его кристаллической решетки, повышается жесткость межатомных связей и, как следствие, увеличивается твердость, прочность, предел текучести, снижается пластичность металла. Самой вредной примесью является водород: даже незначительные количества его резко снижают пластичность металла и особенно его ударную вязкость. Углерод растворяется в титане в гораздо меньшей степени и мало влияет на понижение пластичности металла. Железо ухудшает механические свойства титана, только если его содержится 0,5% и выше. Другие металлы почти не воздействуют на эти свойства.

Итак, чистый читан - это твердый, прочный, пластичный, достаточно вязкий и упругий металл. Твердость его по шкале Бринеля составляет около 1000 мн/м 2 . Для сравнения укажем, что железо имеет всего 350-450 мн/м 2 , медь - 350, магний литой - 294, магний деформированный - 353, а алюминий - всего 170 мн/м 2 . Модуль нормальной упругости титана 108 тыс. мн/м 2 , по упругости он лишь немного уступает меди и стали, но является более упругим, чем алюминий и магний.

Титан имеет высокий предел текучести - примерно 250 мн/м 2 . Это выше в 2,5 раза, чем у железа, в 3 раза, чем у меди, и почти в 20 раз, чем у алюминия. Следовательно, титан лучше этих металлов сопротивляется сминающим ударим и другим нагрузкам, способным деформировать титановые детали.

Высота и вязкость титана. Он отлично противостоит воздействию сколовых и сдвиговых ударов и нагрузок. Этой выносливостью объясняется еще одно замечательное свойство титана - исключительная стойкость его в условиях кавитации, т. е. при усиленной "бомбардировке" металла в жидкой среде пузырьками воздуха, которые образуются при быстром движении или вращении металлической детали в жидкой среде. Эти пузырьки воздуха, лопаясь на поверхности металла, вызывают очень сильные микроудары жидкости о поверхность движущегося тела. Они быстро разрушают многие материалы, и металлы в том числе, а вот титан прекрасно противостоит кавитации.

Испытания в морской воде быстровращающихся дисков из титана и других металлов показали, что при вращении в течение двух месяцев титановый диск практически не потерял в массе. Внешние края его, где скорость вращения, а, следовательно, и кавитация максимальны, не изменились. Другие диски не выдержали испытания: у всех внешние края оказались поврежденными, а многие из них вовсе разрушились.

Титан обладает еще одним удивительным свойством - "памятью". В сплаве с некоторыми металлами (например, с никелем) он "запоминает" форму изделия, которую из него сделали при определенной температуре. Если такое изделие потом деформировать, например, свернуть в пружину, изогнуть, то оно останется в таком положении на долгое время. После нагревания до той температуры, при которой это изделие было сделано, оно принимает первоначальную форму. Это свойство титана широко используется в космической технике (на корабле разворачиваются вынесенные в космическое пространство большие антенны, до этого компактно сложенные). Недавно это свойство титана стали использовать медики для бескровных операции на сосудах: в больной, суженный сосуд вводится проволочка из титанового сплава, а потом она, разогреваясь до температуры тела, скручивается в первоначальную пружинку и расширяет сосуд.

Заслуживают внимания температурные, электрические и магнитные свойства титана. Он обладает сравнительно низкой теплопроводностью, всего 22,07 Вт/(м К), что приблизительно в 3 раза ниже теплопроводности железа, в 7 раз - магния, в 17-20 раз - алюминия и меда. Соответственно и коэффициент линейного термического расширения у титана ниже, чем у других конструкционных металлов: при комнатной температуре (20° С) у титана он равен 8,5 10 -6 /°С, у железа - 11,7 10 -6 /°С, у меди- 17 10 -6 /°С, у алюминия - 23,9/°С. Сравнительно невелика и электропроводность титана. Объясняется, это свойство довольно высоким электрическим сопротивлением титана: при комнатной температуре оно составляет 42,1 10 -6 Ом см. С повышением температуры электросопротивление титана еще больше увеличивается, а с понижением ее резко надает, вблизи абсолютного нуля титан становится сверхпроводимым.

Титан - типичный парамагнетик, его магнитная восприимчивость при 20° С всего 3,2±0,4 10 -6 ед. Как известно, парамагнитными являются алюминий и магний, а вот медь диамагнитна, железо - ферромагнетик.

Мы рассмотрели химические и физические свойства титана, которые в целом благоприятствуют широкому использованию этого металла. Однако у титана есть немало и отрицательных качеств. Например, он может самовозгораться, а в некоторых случаях даже и взрываться.

Уже говорилось, что в концентрированной азотной кислоте титан исключительно стоек, а вот в красной дымящей, пересыщенной окислами азота, защитная пленка диоксида титана на поверхности металла моментально разрушается и чистый титан начинает реагировать с кислотой со взрывом. Такая реакция была причиной взрыва титановых топливных баков одной из американских космических ракет. Со взрывом реагирует титан и с сухим хлором. Есть способ предотвратить эти взрывные реакции. Стоит добавить в дымящую красную азотную кислоту всего 1-2% воды, а в сухой хлор и того меньше - 0,5-1%, и на поверхности металла тут же появится защитная пленка. Дальнейшее окисление титана предотвратится и взрыва не произойдет.

В виде тонкой стружки, опилок или порошка титан может самовозгораться даже без подвода тепла извне. Такие случаи наблюдались при его испытаниях на разрыв в атмосфере кислорода в момент разрыва. Это объясняется опять-таки высокой активностью свежей, неокисленной поверхности титана и сильной экзотермичностью реакции его взаимодействии с кислородом.

Титан может гореть не только в атмосфере кислорода, но даже в атмосфере азота, являющегося также сильным окислителем титана. Поэтому гасить горящий титан азотом, как и водой, углекислым газом, нельзя: они разлагаются, выделяя кислород, который затем взаимодействует с раскаленным титаном и дает взрыв.

Еще одним недостатком титана является его способность сохранять высокие физико-механические свойства лишь до температуры 400-450° С, а с добавками некоторых легирующих металлов - до 600° С, и здесь у него есть серьезные конкуренты - жаропрочные спецстали. Однако в минусовом диапазоне температур титану равных нет. Железо становится хрупким уже при температуре -40° С, специальные низкотемпературные стали - ниже -100° С. А вот титан и его сплавы не разрушаются при температурах до -253° С (в жидком водороде) и даже до -260° С (в жидком гелии). Это очень важное свойство титана открывает ему большие перспективы для использования в криогенной технике и для работы в космическом пространстве.

Титан реагирует со многими металлами. При трении с деталями из более мягкого металла титан может срывать с них металлические частицы и прилеплять к себе металл, а из более твердого, наоборот, частицы титана будут срываться с титановой детали и покрывать другую деталь. Причем никакая жировая или масляная смазка не помогает исключить взаимоналипание частиц. В течение небольшого времени это явление можно ослабить, лишь применив в качестве смазки чешуйчатые молибденит или графит. А вот сваривается титан с другими металлами очень плохо. Практически полностью эта проблема пока не решена, хотя сварка титановых изделий проходит отлично.

Титан - твердый металл, как мы уже знаем, тверже железа, алюминия, меди. Но все же не тверже специальных, особотвёрдых инструментальных сталей, из которых делают острые инструменты, ножи, скальпели. Здесь титан неприменим.

Титан - плохой проводник электричества и тепла. Проводов из него не сделаешь, а вот то, что он один из очень немногих металлов является при низких температурах сверхпроводником электричества, открывает ему большие перспективы в электрической технике передачи энергии на большие расстояния.

Титан - парамагнитный металл: он не намагничивается, как железо, в магнитном поле, но и не выталкивается из него, как медь. Его магнитная восприимчивость очень слаба, это свойства можно использовать при строительстве, например, немагнитных кораблей, приборов, аппаратов.

Итак, титан имеет больше достоинств, чем недостатков, и то, что он по иным характеристикам уступает некоторым специальным сталям и сплавам, компенсируется одним важнейшим обстоятельством. Легкость, прочность, пластичность, твердость, стойкость и многие другие качества соединены в одном металле так органично, что это сулит титану большое будущее.

Прежде чем рассказать, как используются титан, его сплавы и соединения сегодня и какие перспективы открываются перед этим металлом в недалеком завтра, рассмотрим подробно, как распространен этот удивительный металл в нашей Вселенной, на планете Земля, в каком виде встречается в породах земной коры, какие месторождения образует, как добываются, обогащаются руды, перерабатываются концентраты. Проследим долгий и нелегкий путь получения чистого титана, его обработки и использования человеком.

Титан (Titanium), Ti,- химический элемент IV группы периодической системы
элементов Д. И. Мен­делеева. Порядковый номер 22, атомный вес 47,90. Состоит
из 5 устойчивых изотопов; получены также искус­ственно радиоактивные изотопы.

В 1791 году английский химик У. Грегор нашёл в песке из местечка Менакан
(Англия, Корнуолл) новую «зем­лю», названную им менакановой. В 1795 году
немецкий химик М. Клаирот открыл в минерале рутиле неизвестную еще землю, металл которой он назвал Титан [в греч. мифологии титаны - дети Урана (Неба) и Геи (Земли)]. В 1797 году Клапрот доказал тождество этой земли с открытой У. Грегором. Чистый титан выде­лен в 1910 году американским химиком Хантером посредством восстановления четырёххлористого титана натрием в железной бомбе.

Нахождение в природе

Титан относится к числу наиболее распространённых в природе элементов, его
содержание в земной коре составляет 0,6% (весовых). Встречается главным образом
в ви­де двуокиси TiO2 или её соединений - титанатов. Известно свыше
60 минералов, в состав которых входит титан Он содержится также в поч­ве, в
животных и растительных организмах. Ильме­нит FeTiO3 и
рутил TiO2 служат основным сырьём для получения титана. В
качестве источника титана приобретают значение шлаки от плавки
титано-магнетитов и ильменита.

Физические и химические свойства

Титан существует в двух состояниях: аморфный - темносерый порошок, плотность 3,392-3,395г/см3, и кристаллический, плотность 4,5 г/см
3. Для кристаллического титана известны две модификации с точкой
перехода при 885° (ниже 885° устойчивая гексагональная фор­ма, выше -
кубическая); t°пл. ок. 1680°; t кип. выше 3000°. Титан активно поглощает газы (водород, кислород, азот), которые делают его очень
хрупким. Технический металл поддаётся горячей обработ­ке давлением. Совершенно чистый металл может быть прокатан на холоду. На воздухе при обыкновенной температуре титан не изменяется, при накаливании образует смесь окиси Ti2 O3 и нитрида TiN. В токе кислорода при красном калении окисляется до двуокиси TiO2. При высоких температурах реаги­рует с углеродом,
кремнием, фосфором, серой и др. Устойчив к морской воде, азотной кислоте,
влажному хлору, органическим кислотам и сильным щелочам. Рас­творяется в
серной, соляной и плавиковой кислотах, лучше всего - в смеси HF и HNO3
. Добавление к кислотам окислителя предохраняет металл от кор­розии при
комнатной температуре. В соединениях проявляет валентность 2, 3 и 4. Наиболее устойчивы и имеют наибольшее практическое значение соединения Ti(IV). Наименее устойчивы производные Ti(II). Соединения Ti(III) устойчивы в растворе и являются сильными восстановителями. С кислородом титан даёт амфотерную двуокись титана, закись Ti0 и окись Ti2O3, имеющие
основной характер, а также некоторые промежуточные окислы и перекись TiO3
. Галогениды четырёхвалентного титана, за исключением TiCl4 -
кристаллические тела, легкоплавкие и летучие в водном растворе гидрализованы, склонны к образованию комплексных соединений, из которых в технологии и аналитической практике имеет значение фтортитанат калия K2TiF6. Важное значение имеют карбид TiC и нитрид TiN- металлоподобные вещества, отличающиеся большой твёрдостью (карбид титан тверже карборунда), туго­плавкостью (TiC, t°пл. 3140°; TiN, t°пл. 3200°) и хо­рошей
электропроводностью.

Получение

Соединения титана получили применение в промышлен­ности в начале 20 в.
Организация производства титана относится к 1946 (в 1948 выплавлено 10 m, 72OO т в 1954 и ок. 20000 т в 1955). Способ получония основан на
восстановлении четырёххлористого титана металлическим магнием в атмосфере
аргона или гелия. Компактный металл получается переплавкой в дуговых печах.
Компактный металл высокой чистоты образуется при термической диссоциации
тетраиодида титана. Большое значение приобрело восстановление TiCI4
натрием вместо магния.

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.

Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO 2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB 2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

Многих интересует немного загадочный и не до конца изученный титан - металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.

Самый прочный и самый хрупкий металл

Его открыли двое ученых с разницей в 6 лет - англичанин У. Грегор и немец М. Клапрот. Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией - королевой фей.
Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.

22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.

Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.

Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него.
Металл характеризуется низкой плотностью и высокой прочностью. Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства. При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким.
Эта особенность обуславливает наличие 2 видов материала: чистого и технического.

  1. Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
  2. Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.

Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.

Титан теряет прочность при малейшем присутствии в нем примесей других металлов

Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность. Вещество не реагирует на элементы, находящиеся в окружающей атмосфере.
Изменение параметров начинается при повышении температуры до +400°С и выше. Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы.
Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.

Титан и конкуренция с другими металлами

Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:

  1. По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов.
    Антикоррозионные характеристики титана значительно превышают показатели других металлов.
  2. При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
  3. При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
  4. Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
  5. Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
  6. Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.

Какими способами получают титан?

Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:

  • ильменит;
  • рутил;
  • анатаз;
  • перовскит;
  • брукит.

Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.

Добыча титана — дорогой и трудозатратный процесс

Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:

  1. Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество — тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
  2. Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап — разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
  3. Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
  4. Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры — +1300…+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.

Области применения

Применение титана зависит от степени его очистки от примесей. Наличие даже небольшого количества других химических элементов в составе сплава титана кардинально меняет его физико-механические характеристики.

Титан с некоторым количеством примесей называется техническим. Он имеет высокие показатели коррозийной стойкости, это легкий и очень прочный материал. От этих и других показателей зависит его применение.

  • В химической промышленности из титана и его сплавов изготавливают теплообменники, различного диаметра трубы, арматуру, корпуса и детали для насосов различного назначения. Вещество незаменимо в местах, где требуются высокая прочность и стойкость к кислотам.
  • На транспорте титан используют для изготовления деталей и агрегатов велосипедов, автомобилей, железнодорожных вагонов и составов. Применение материала уменьшает вес подвижных составов и автомобилей, придает легкость и прочность велосипедным деталям.
  • Большое значение титан имеет в военно-морском ведомстве . Из него изготавливают детали и элементы корпусов для подводных лодок, пропеллеры для лодок и вертолетов.
  • В строительной промышленности применяется сплав цинк-титан. Он используется как отделочный материал для фасадов и кровель. Этот очень прочный сплав имеет важное свойство: из него можно изготавливать архитектурные детали самой фантастической конфигурации. Он может принимать любую форму.
  • В последнее десятилетие титан широко применяют в нефтедобывающей отрасли . Сплавы его применяют при изготовлении оборудования для сверхглубокого бурения. Материал используется для изготовления оборудования для добычи нефти и газа на морских шельфах.

У титана очень широкая область применения

Чистый титан имеет свои области применения. Он нужен там, где необходима стойкость к высоким температурам и при этом должна сохраняться прочность металла.

Его применяют в:

  • авиастроении и космической отрасли для изготовления деталей обшивки, корпусов, элементов крепления, шасси;
  • медицине для протезирования и изготовления сердечных клапанов и других аппаратов;
  • технике для работы в криогенной области (здесь используют свойство титана — при снижении температуры усиливается прочность металла и не утрачивается его пластичность).

В процентном соотношении использование титана для производства различных материалов выглядит так:

  • на изготовление краски используется 60 %;
  • пластик потребляет 20 %;
  • в производстве бумаги используют 13 %;
  • машиностроение потребляет 7 % получаемого титана и его сплавов.

Сырье и процесс получения титана дорогостоящие, затраты на его производство компенсируются и окупаются сроком службы изделий из этого вещества, его способностью не менять свой внешний вид за весь период эксплуатации.

В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан - это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза - меди и железа. Ещё один важный показатель - это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента , титановая проволока , титановые трубы , титановые втулки , титановый круг , титановый пруток .

Химические свойства

Чистый титан - это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана - это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана - это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.