Психология

История развития и достижений квантовой химии. Введение в курс квантовой химии

Лауреатами Нобелевской премии по химии 1998 года стали американские ученые Уолтер Кон и Джон Попл: Нобелевский Комитет отдал должное вычислительным методам квантовой химии.Работы лауреатов, выполненные в 60х годах, стали фундаментальным вкладом в теорию взаимодействия атомов в молекулах и поведения молекул, в их моделирование. А что же наши ученые? Как развивалась квантовая химия в СССР, а потом и в России?

Квантовая химия выделилась и развивалась в нашей стране в общем русле работ, проводившихся в ведущих научных школах мира. Её основу составляет квантовая механика, так что подчас квантовую химию называют квантовой механикой молекул. На самом же деле она включает гораздо более широкий круг проблем, чем собственно квантовая механика молекул, опираясь в своих построениях и на богатейший спектр экспериментальных химических исследований, и на те многочисленные закономерности, которые сформулированы в рамках теоретических представлений химии.

Тем не менее, математическая основа квантовой химии определяется аппаратом квантовой механики, основное уравнение которой ввел в 1926 г. Э. Шрёдингер . Последовавшее за этим бурное развитие идей квантовой механики привело к тому, что уже в 1930 году В. А. Фок получил систему одноэлектронных уравнений, которая была впоследствии названа уравнениями Хартри - Фока и которая предопределила развитие квантовой химии на многие годы вперед. Практически одновременно эти уравнения были получены и американским ученым Дж.Слэтером . И по сей день они используются либо непосредственно для молекулярных расчетов, либо являются исходной ступенью для различных квантовохимических методов более высоких приближений.

В прошлом году исполнилось 100 лет со дня рождения В. А. Фока . Этот юбилей широко отметили в Санкт-Петербурге и Москве, где, в частности, прошла совместная юбилейная сессия секций физики и химии Академии естественных наук России. В Новгороде при поддержке РФФИ прошла школа-конференция по квантовой химии, также посвященная этому юбилею.

Школа теоретиков, сложившаяся в Ленинградском государственном университете под руководством В. А. Фока, всегда занималась изучением атомных и молекулярных проблем, в частности расчетами электронной структуры, оптических переходов, электрических, магнитных и других свойств атомов и молекул. Из этой школы вышли многие хорошо известные во всем мире ученые, такие как М. Г. Веселов, М. И. Петрашень, Ю. Н. Демков, А. А. Киселев, Т. К. Ребане, А. В. Тулуб и многие другие, активно работающие и сегодня не только в Санкт-Петербурге, но и в других городах России и СНГ.

В Москве предпосылки для создания школы квантовой химии появились в 1931 году, когда в физико-химическом институте им. Л. Я. Карпова профессор Ивановского политехнического института Я. К. Сыркин основал лабораторию строения вещества и спектроскопии. В 1934 г. по рекомендации выдающегося физика Ю. Б. Румера в Москву приехал молодой немецкий ученый Г. Г. Гельман , автор вышедшей в 1937 году монографии "Квантовая химия", ставшей основным учебником по квантовой химии для нескольких поколений теоретиков, и автор фундаментальной теоремы квантовой химии -- теоремы Гельмана - Фейнмана (позднее американский физик Р. Фейнман сформулировал её независимо).

Первые шаги московской школы квантовой химии были связаны именно с физико-химическим институтом, в котором работали такие выдающиеся ученые, как Я. К. Сыркин, М. Е. Дяткина, В. Ф. Мамотенко, а в послевоенные годы - такие талантливейшие ученые, как А. А. Овчинников, И. Г. Каплан, В. В. Толмачев , создавшие впоследствии свои научные школы.

В 1946 году появилась книга Я. К. Сыркина и М. Е. Дяткиной "Химическая связь и строение молекул" - первая в нашей стране монография, в которой обсуждались вопросы строения различных классов неорганических и органических соединений на базе квантовохимических представлений того времени. Следует отметить, что М. Е. Дяткина была не только выдающимся специалистом в области квантовой химии, обладавшим замечательной интуицией, она была и удивительным педагогом, блестяще читавшим лекции студентам и сотрудникам многих институтов. Дяткина первая в стране начала расчеты сложных по тем временам органических и элементоорганических соединений (типа ферроцена) на основе метода молекулярных орбиталей

Бурное развитие квантовохимических исследований не только в Москве и Ленинграде, но и в других городах страны произошло в послевоенные годы. Появилась группа квантовой химии в Институте химической физики Академии наук СССР, которую возглавил Н. Д. Соколов, начавший теоретические исследования межмолекулярных взаимодействий и, прежде всего, водородной связи. Впоследствии многие годы он возглавлял все направление квантовой химии в стране.

Эта же группа под руководством С. И. Ветчинкина провела широкий круг исследований по теории оптических, фото- и рентгеноэлектронных спектров молекул, что повлекло за собой открытие новых механизмов усиления интенсивностей переходов и деградации энергии возбуждения, а также развитие многих аспектов теории элементарных процессов в газовой фазе. Последнее привело, в частности, к созданию в Институте химической физики лаборатории теории элементарных процессов в газах, которую возглавил Е. Е. Никитин.

Под руководством Я. К. Сыркина была создана группа по квантовой химии (далее преобразованная в лабораторию) в Институте общей и неорганической химии им. Н. А. Курнакова, положившая начало расчетам неорганических и координационных соединений. Из этой группы вышли такие замечательные специалисты, как Е. М. Шусторович, А. А. Левин (ныне глава лаборатории квантовой химии) и О. П. Чаркин . В ней же работала и М.Е. Дяткина. Под руководством А. А. Левина были начаты работы по квантовой химии твердого тела, которые продолжаются и в настоящее время; ему же принадлежит и первая монография в этой области ("Введение в квантовую теорию твердого тела"), изданная в 1974 г.

Отмечу, что квантовой химией твердого тела активно занимались и в санкт-петербургской школе, где под руководством Р. А. Эварестова был развит новый метод квантово-химического моделирования твердых тел.

В середине 50-х годов появился большой коллектив теоретиков в Вильнюсе (в Вильнюсском государственном университете - под руководством А.Б. Болотина и в Институте физики и математики АН ЛитССР - под руководством А.П. Юциса ), который разработал многие вопросы теоретико-группового анализа многоэлектронных систем, развил методы учета симметрии при расчетах больших органических молекул и методы расчета молекулярных интегралов, необходимых для неэмпирических расчетов молекул. Здесь же было подготовлено большое число специалистов по квантовой химии, работающих и поныне во многих городах нашей страны и за рубежом. Всесоюзное совещание по квантовой химии, которое состоялось в Вильнюсе в 1962 г., впервые собрало столь широкий круг специалистов, который до тех пор не удавалось собрать.

Большую роль в развитии квантовой химии сыграла организация в Киеве Института теоретической физики под руководством А. С. Давыдова и создания в нем отдела квантовой химии, который возглавил Ю.А.Кругляк.

Создание Академгородков в Новосибирске и Пущино, Дальневосточного научного центра сопровождалось быстрым появлением новых научных групп, занимающихся квантовой химией. В Новосибирске эти группы работали в целом ряде институтов. На сегодняшний день наиболее сильная из них -- лаборатория в Институте катализа СО РАН, возглавляемая Г. М. Жидомировым. Основное направление исследований этой лаборатории -- разработка расчетных методов и проведение расчетов систем, моделирующих адсорбционный комплекс на поверхности различных катализаторов. В этой же лаборатории Б. Н. Плахутин ведет уникальные работы по изучению структуры различных вариантов уравнений Хартри - Фока.

Сильные квантово-химические группы работали во многих городах страны, например в Дальневосточном государственном университете (под руководством В. И. Вовны ), в Иркутском государственном университете (под руководством Н. М. Витковской ), Ивановском химико-технологическом институте (под руководством К. С. Краснова и далее В. Г. Соломоника ). В 1945-1960 г.г.. начались работы по квантовой химии в Новгороде, Саратове, Томске, а также во многих республиках Советского Союза. Позже, в 60-е годы, были созданы крупные группы в Донецке (Донецкий научный центр АН УССР, под руководством М. М. Местечкина ) и в Ростове-на-Дону (Ростовский государственный университет им. А. А. Жданова, под руководством В. И. Минкина) . Если группа в Донецке была прежде всего нацелена на решение собственно квантовохимических задач (таких как исследование стабильности решений уравнений Хартри - Фока, использование матриц плотности и др.), то группа в Ростове имела четкую направленность на расчет и объяснение свойств органических соединений, на разработку теории строения неклассических структур и изучение механизмов органических реакций на основе тщательного анализа особенностей потенциальных поверхностей этих реакций. Сейчас эта группа представляет у нас в стране наиболее сильное квантово-химическое направление в изучении механизмов органических реакций. В этой же группе были начаты работы, объединяющие статистический и квантово-химический подходы при анализе структуры растворов.

Многоплановые исследования потенциальных поверхностей для химических реакций и разработка методов оценки возможных механизмов реакций органических соединений, а также квантово-химические расчеты параметров спин-спинового взаимодействия были выполнены на химическом факультете Московского университета под руководством Ю. А. Устынюка. Эти исследования успешно продолжаются и по сей день.

Квантово-химический анализ механизмов химических реакций, особенно реакций, протекающих в жидкой среде, потребовал создания новых методов, учитывающих реактивное поле среды, окружающей реагирующие молекулы, что и было сделано в работах М. В. Базилевского и его сотрудников в Научно-исследовательском физико-химическом институте им. Л. Я. Карпова.

В 1960 г. в лаборатории молекулярной спектроскопии химического факультета Московского государственного университета под руководством В. М. Татевского возникла группа квантовой механики молекул, которую с 1969 г. возглавил Н. Ф. Степанов, и которая к настоящему времени выросла в один из наиболее мощных центров квантовой химии в нашей стране. Здесь же готовят значительную долю кадров по квантовой химии, которых можно встретить, не только в отечественных институтах и университетах, но и за рубежом.

Для обеспечения неэмпирических квантово-химических расчетов малых молекул в группе впервые в нашей стране был создан уникальный комплекс программ, позволивший проводить расчеты на основе метода Хартри - Фока, метода конфигурационного взаимодействия, теории возмущений и многоконфигурационного метода самосогласованного поля. Помимо анализа ряда общих методических вопросов и расчетов электронной структуры молекул, в том числе в возбужденных электронных состояниях (А. И. Дементьев, В. И. Пупышев, А. В. Зайцевский) в группе были развиты новые методы исследования структуры колебательно-вращательного спектра высокосимметричных молекул (Б. И. Жилинский) , позволившие объяснить и обнаружить ряд новых эффектов во вращательных спектрах. В последние годы активно развиваются методы анализа и расчета характеристик эволюции возбужденных состояний слабосвязанных молекулярных комплексов (А. А. Бучаченко).

Представленное выше перечисление основных квантовохимических групп и направлений, будучи весьма беглым и неполным, отчетливо показывает многообразие интересов специалистов в области квантовой химии, работавших в нашей стране до 90- х годов. К сожалению, сегодня многие специалисты оказались за рубежом.

В то же время из этого перечисления видно, что в Советском Союзе и России квантовые химики всегда активно интересовались проблемами методического плана: создание новых методов, анализ возможностей этих методов, структура получающихся решений, устойчивость этих решений при малых изменениях параметров молекулярной системы и т.п. Напомню, что фактически методы конфигурационного взаимодействия и многоконфигурационного самосогласованного поля были развиты А. П. Юцисом и его школой, а также Г. Г. Дядюшей и В. А. Куприевичем . Ряд полуэмпирических методов был также разработан в нашей стране И. А. Мисуркиным, А. А. Багатурьянцом и др. На ранних этапах развития квантовой химии широко использовался метод свободного электрона, в анализе которого существенная роль также принадлежит нашим ученым.

Слабое развитие вычислительной техники, необходимой для решения весьма сложных расчетных задач, всегда выступало определенным тормозом для развития квантовой химии в нашей стране, что привело к несколько гипертрофированному (существующему в какой-то мере и по сей день) увлечению полуэмпирическими методами квантовой химии. Эти методы, каждый из которых имеет вполне ограниченную область применимости, требуют достаточно осторожного с ними обращения, что не всегда осознается работающими с ними химиками.

Потеря многих специалистов высочайшего класса, уехавших в другие страны, и постоянная потеря молодых специалистов, получающих здесь университетское образование в области квантовой химии, и уезжающих для дальнейшей учебы и работы за рубеж, также не способствуют активному развитию квантовой химии в России, что приводит к снижению объема и отчасти общего уровня работ. Отрадно лишь то, что ведущие квантово-химические центры страны пока что сохраняют свое положение мировых центров развития квантовой химии, ибо по сей день они находятся в тесном контакте с лучшими научными школами квантовой химии других стран.

К сожалению, многие работы российских ученых, прежде всего работы В. А. Фока, остались вне внимания Нобелевского комитета, хотя присуждение в 1998 г. Нобелевской премии по химии двум выдающимся специалистам по квантовой химии - Уолтеру Кону ("за развитие теории функционала плотности") и Джону Поплу ("за развитие вычислительных методов квантовой химии"), а ещё ранее Лайнусу Полингу, Роальду Хофману и Кеничи Фукуи - свидетельство признания мировой химической наукой той выдающейся роли квантовой химии, которую она играет в общем ансамбле химических исследований, как создатель единой основы современных химических представлений.

Н.Ф. Степанов
Московский Государственный Университет им. М.И. Ломоносова

Квантовая химия - это направление химии , рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики . Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Квантовая химия находится на стыке химии и квантовой физики (квантовой механики). Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне (моделях электронно-ядерного строения и взаимодействий, представленных с точки зрения квантовой механики). Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С квантовой химией неразрывно связана вычислительная химия - дисциплина, использующая математические методы квантовой химии, адаптированные для составления специальных компьютерных программ, используемых для расчета молекулярных свойств, амплитуды вероятности нахождения электронов в атомах , симуляции молекулярного поведения.

Общие сведения

Основной задачей квантовой химии является решение уравнения Шрёдингера и его релятивистского варианта (уравнение Дирака) для атомов и молекул. Уравнение Шрёдингера решается аналитически лишь для немногих систем (например, для моделей типа жёсткий ротатор (модель, описывающая линейные молекулы с постоянным межъядерным расстоянием. В такой модели уровни энергии зависят только от вращательного квантового числа.), гармонический осциллятор , одноэлектронная система). Реальные многоатомные системы содержат большое количество взаимодействующих электронов, а для таких систем не существует аналитического решения этих уравнений, и, по всей видимости, оно не будет найдено и в дальнейшем. По этой причине в квантовой химии приходится строить различные приближённые решения. Из-за быстрого роста сложности поиска решений с ростом сложности системы и требований к точности расчёта, возможности квантовохимических расчётов сильно ограничиваются текущим развитием вычислительной техники, хотя, наблюдаемые в последние два десятилетия революционные сдвиги в развитии компьютерной техники, приведшие к её заметному удешевлению, заметно стимулируют развитие прикладной квантовой химии. Решение уравнения Шрёдингера часто строится на уравнении Хартри-Фока-Рутана итерационным методом (SCF-self consistent field - самосогласованное поле) и состоит в нахождении вида волновой функции . Приближения, используемые в квантовой химии:

Строение атома

Согласно представлениям квантовой механики, атомы не имеют определённых границ, однако вероятность найти электрон, связанный с данным ядром, на расстоянии r от ядра быстро падает с увеличением r. Поэтому атому можно приписать некоторый размер .

Радиальная функция распределения вероятности нахождения электрона в атоме водорода обладает максимум при α 0 , как показано на рис.1. Этот наиболее вероятный радиус для электрона совпадает с боровским радиусом . Более размытое облако плотности вероятности, полученные при квантовомеханическом рассмотрении, значительно отличается от боровской модели атома и согласуется с принципом неопределённости Гейзенберга .

Лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение его наружных электронов. Это так называемый орбитальный радиус атома. В зависимости от порядкового номера элемента (Z) проявляется чёткая периодичность в изменении значений орбитальных атомных радиусов . На рис.2 представлена зависимость орбитальных радиусов от порядкового номера элемента.

Размер электронной оболочки атома более чем в 10 тысяч раз превышает размер его атомного ядра.

Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов . Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом . Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов - изотопу этого элемента.

Образование химической связи и строение молекул и твёрдых тел

Единственной молекулярной системой, для которой уравнение Шрёдингера может быть точно решено, является молекулярный ион водорода H 2 + , где единственный электрон движется в поле двух ядер (протонов). Длина химической связи в молекулярном ионе водорода H 2 + составляет 1,06 Å. Энергия разрыва химической связи в молекулярном ионе водорода H 2 + составляет 61 ккал/моль. Энергия притяжения электрона к обоим ядрам в одноэлектронной химической связи компенсирует энергию отталкивания протонов, которая на расстоянии 1,06 Å составляет 314 ккал/моль.

Поскольку точное решение уравнения Шрёдингера для атомно-молекулярных систем, содержащих более одного электрона, невозможно, возникли приближённые теории химической связи.

В 1958 г. на симпозиуме по теоретической органической химии, посвящённой памяти А.Кекуле, Полинг представил теорию изогнутой химической связи . Двойная и тройная химическая связь рассматривалась, как комбинация двух или трёх изогнутых одинарных связей .

Правила равного удаления электронов друг от друга непосредственно следует из закона Кулона, согласно которому электроны стремятся находиться на максимально удалённом расстоянии друг от друга. Например, молекулы типа BeH 2 имеют строго линейную конфигурацию. Атомы III группы таблицы Менделеева образуют тригональные молекулы, типа BF 3 . Атомы IV группы образуют тетраэдрические молекулы, типа CH 4 . Молекулы, образованные атомами V и VI групп, имеют геометрию тригональной бипирамиды и октаэдра, соответственно .

Физические, в том числе спектральные свойства атомов, молекул и твёрдых тел

Атомные спектры

Квантование энергии атомов проявляется в их спектрах поглощения (абсорбиционные спектры) и испускания (эмиссионные спектры). Атомные спектры имеют линейчатый характер (рис.3).

Возникновение линий в спектре обусловлено тем, что при возбуждении атомов электроны, принимая соответствующую порцию энергии, переходят на более высокий энергетический уровень. Переход электронов в состояние с более низким энергетическим уровнем сопровождается выделением кванта энергии (рис.4).

Наиболее простой спектр у атома водорода, линии которого образуют спектральные серии; их положение описывается выражением ν = R (1/n 1 2 - 1/n 2 2), где ν - волновое число линии, R - постоянная Ридберга, n - целые числа, причём n 2 > n 1 .

Спектральные серии водорода Переход на квантовый уровень n 1 Область спектра
Серия Лаймана 1 ультрафиолетовый
Серия Бальмера 2 видимый свет
Серия Пашена 3 инфракрасный
Серия Брэккета 4 далёкий инфракрасный
Серия Пфунда 5 ---
Серия Хэмпфри 6 ---

Аналогичные серии наблюдаются в спектрах водородоподобных ионов (например, He + , Li 2+). С увеличением числа электронов атомные спектры усложняются и закономерности в расположении линий становятся менее выраженными.

Поляризуемость атомов и молекул

Внешнее электрическое поле напряжённостью E, наложенное на систему взаимодействующих ядер и электронов (атомов, ионов, молекул), деформирует её, вызывая появление наведённого дипольного момента μ = α e E, где коэффициент α e имеет размерность объёма и является количественной мерой электронной поляризуемости (его также называют электронной поляризуемостью). На рис.5 представлена деформационная поляризация (смещение электронной оболочки) атома водорода под действием электрического поля протона. При снятии внешнего электрического поля наведённый дипольный момент исчезает. В случае взаимодействия атома водорода и протона имеет место образование молекулярного иона водорода H 2 + с простейшей одноэлектронной химической связью.

H + H + → H 2 + + 61 ккал/моль

Относительно недавно были получены достоверные данные по электронным поляризуемостям большинства атомов в свободном состоянии. Наибольшее значение электронной поляризуемости наблюдается у атомов щелочных металлов, а минимальное - у атомов инертных газов .

В случае многоядерных систем внешнее электрическое поле приводит как к деформации электронных оболочек, так и изменению равновесных расстояний между ядрами (длины связи). В соответствии с этим поляризуемость молекулы составляется из двух слагаемых: α = α e + α a , где α e - электронная поляризуемость, α a - атомная поляризуемость .

Ионизация атомов и молекул

При высокой напряжённости внешнего электрического поля, наложенного на систему взаимодействующих ядер и электронов происходит её ионизация - отрыв электрона от атома или молекулы и образование положительно заряженного иона - катиона. Процесс образования ионов из атомов или молекул всегда эндотермический. Количество энергии, необходимое для отрыва электрона от возбуждаемых атомов или молекул, принято называть энергией ионизации . Для многоэлектронных атомов энергия ионизации l 1 , l 2 , l 3 … соответствует отрыву первого, второго, третьего и т. д. электронов. При этом всегда l 1 < l 2 < l 3 …, так как увеличение числа оторванных электронов приводит к возрастанию положительного заряда образующегося иона. Изменение энергии отрыва первого электрона в зависимости от порядкового номера элемента приведено на рис.6.

Кривая имеет явно выраженный периодический характер. Наименьшей энергией ионизации (3-5 эв) обладают атомы щелочных металлов, имеющих по одному валентному электрону, наибольшей - атомы инертных газов, обладающих замкнутой электронной оболочкой.

В связи с низкими значениями энергии ионизации щелочных металлов атомы их под влиянием различных воздействий сравнительно легко теряют свои внешние электроны. Такая потеря происходит под действием освещения чистой поверхности щелочного металла. На этом явлении, которое носит название фотоэлектрического эффекта, основано действие фотоэлементов, то есть приборов, непосредственно трансформирующих световую энергию в электрическую . Квантовая природа фотоэлектрического эффекта установлена Эйнштейном , которому присуждена в 1921 г. Нобелевская премия за труды по теоретической физике, особенно за открытие законов фотоэффекта.

Сродство к электрону

Электрон, обладая отрицательным элементарным зарядом q=1,602 10 −19 Кл, как и всякий точечный электрический заряд создаёт вокруг себя электрическое поле с напряжённостью E. E=q/R 2 , где R - расстояние точки поля до электрона. Атом водорода, попадая в электрическое поле электрона, подвергается деформационной поляризации. Величина наведённого дипольного момента μ, прямо пропорциональна напряжённости электрического поля μ = α e E = Lq.

Величина смещения центра электронной оболочки атома водорода L обратно пропорциональна квадрату расстояния атома водорода к приближающемуся электрону R (рис.7). Сближение атома водорода и электрона возможно до тех пор, пока центры областей плотностей вероятности нахождения электронов не станут равноудалёнными от ядра объединённой системы - отрицательно заряженного иона водорода (гидрид-иона H -).

Энергетический эффект процесса присоединения электрона к нейтральному атому Э принято называть энергией сродства к электрону . В процессе присоединения электрона к нейтральному атома образуется отрицательно заряженный ион (анион) Э - .

Квантовая химия - раздел теоретической химии , в котором строение и свойства химических соединений, их взаимодействие и превращения в химических реакциях рассматриваются на основе представлений и с помощью методов квантовой механики.

Квантовая химия тесно связана с экспериментально установленными закономерностями в свойствах и поведении химических соединений.

Становление квантовой химии

Начало развитию квантовой химии положили работы ряда исследователей, выполненные в период становления квантовой механики. В. Гайзенберг (1926) впервые провел расчет атома гелия. В. Гайтлер и Ф. Лондон на примере молекулы водорода дали квантово-механическую интерпретацию ковалентной связи. Быстрое развитие в этот период самой квантовой механики, её математического аппарата привело к радужным надеждам на то, что в химии все становится предсказуемым, нужны лишь только хорошие расчетные методы, позволяющие решать уравнение Шрёдингера для каждой конкретной системы. Достаточно напомнить высказывание П. Дирака, относящееся к 1929 г. и долгое время повторявшееся во многих учебниках по квантовой механике и квантовой химии: “The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation” (Proc. Roy. Soc. A , 1929, v. 123, p. 714). Сегодня однако после длительного периода развития квантовой химии уже нет сомнений в том, что не все так просто с известностью законов, лежащих в основе химии, как таковой. К тому же эйфория от успехов первоначальных расчетов достаточно быстро прошла, хотя на долгие годы и осталось убеждение, что “природа химической связи” полностью прояснилась.

Подход Гайтлера и Лондона был развит далее в работах Дж. Слэтера и Л. Полинга и получил название метода валентных схем . На основе этих работ была дана интерпретация двум типам химической связи, ковалентной (Г. Н. Льюис) и ионной (В. Коссель), которая далее была дополнена практически непрерывным набором промежуточных типов: полярная связь, донорно-акцепторная и дативная связи, водородная связь, трехцентровая и многоцентровые связи и др.

Наряду с этими представлениями активно развивалась картина, присущая методу молекулярных орбиталей , в которой одноэлектронные волновые функции (орбитали ) относилиь ко всей молекуле в целом. Основы этого подхода были заложены в работах Ф.Хунда, Р. Малликена, Дж. Леннард-Джонса и Э. Хюккеля. Возникло, таким образом, две линии интерпретации, одна из них использовала идеологию метода валентных схем, основанную на представлениях о гибридизованных орбиталях атомов в молекулах и образовании на их основе локализованных орбиталей химических связей, вторая - идеологию метода молекулярных орбиталей, относящихся ко всей молекуле в целом и имеющих характер волновых функций отдельных электронов, находящихся в потенциальном поле ядер и усредненном поле остальных электронов.

Характерной особенностью этих подходов было то, что разрабатывались они практически только для не зависящих от времени, стационарных состояний: для интерпретации типов соответствующих химических связей, для оценок энергий переходов, для анализа распределения электронной плотности в конкретной молекуле и создаваемого ею электростатического потенциала и т. п. В какой-то степени получаемая информация использовалась и для анализа проблем, связанных с химическими реакциями, например для обсуждения реакционной способности соединений, что, хотя и косвенно, позволяло сопоставлять поведение соединений в однотипных реакциях.

Общая схема приближений при решении задач квантовой химии

Квантовохимическое рассмотрение молекулярных систем начинается с записи уравнения Шрёдингера, зависящего от всех переменных, определяющих положения электронов и ядер, и от времени. Для свободных систем или систем, находящихся во внешнем поле, не зависящем от времени, это уравнение сводится к стационарному уравнению, не содержащему времени в качестве переменной. Для стационарного уравнения далее обычно вводится адиабатическое приближение, согласно которому можно отдельно рассмотреть поведение электронов в поле произвольной, но фиксированной конфигурации ядер и поведение системы ядер в поле, полученном усреднением по всем возможным расположениям электронов. При этом получается, что энергия системы электронов для каждого ее состояния зависит от координат ядер, как от параметров, и в то же время она играет роль потенциала, определяющего поведение ядер молекулы для этого состояния электронов. С геометрической точки зрения электронная энергия как функция координат ядер может быть представлена многомерной поверхностью, называемой поверхностью потенциальной энергии .

Для электронного уравнения в качестве следующего шага сначала вводится одноэлектронное приближение , когда предполагается, что поведение каждого электрона определяется усредненным полем всех остальных электронов и следовательно - одноэлектронной функцией, называемой орбиталью либо при учете и спина электрона - спин-орбиталью. При этом волновая функция системы электронов представляется нормированным определителем, составленным из спин-орбиталей. Для нахождения спин-орбиталей был развит метод Хартри - Фока, или метод самосогласованного поля. Такой подход, не учитывает того обстоятельства, что на самом деле вероятность нахождения данного электрона в данной точке пространства должна зависеть от того, какова конкретная конфигурация остальных электронов, т.е. эта вероятность коррелирована с расположением остальных электронов в системе. Другими словами, волновая функция системы электронов должна учитывать электронную корреляцию .

Для учета электронной корреляции было предложено множество методов, основанных на вариационном принципе квантовой механики и теории возмущений. Во многих из них волновая функция электронной подсистемы молекулы представляется в виде линейной комбинации определителей, составленных из спин-орбиталей, а коэффициенты в этих линейных комбинациях определяются на основании различных критериев. Для упрощения расчетов представление в виде линейных комбинаций некоторых (базисных) функций с подлежащими определению коэффициентами часто используется и для молекулярных орбиталей.

При наличии внешнего поля, явно зависящего от времени, например при воздействии электромагнитного излучения на молекулу, обычно прибегают к рассмотрению поведения системы на основе теории возмущений, по крайней мере на тех временных интервалах, где такое рассмотрение допустимо.

Для решения ядерного уравнения также развито множество методов, начиная с простейшего подхода представления поверхности потенциальной энергии в виде многомерной параболы и кончая прямым численным решением задачи, по крайней мере для части ядерных переменных. При параболической аппроксимации потенциала задачу можно свести к нахождению решений для системы одномерных движений, называемых гармоническими колебаниями, или модами. Такой подход достаточно оправдан вблизи равновесной геометрической конфигурации ядер молекулы, однако его приходится уточнять, а следовательно, и усложнять (а подчас и отказываться от него) по мере перехода к возбужденным колебательным состояниям. При анализе динамических задач, когда требуется учет явной зависимости состояния системы от времени, часто прибегают к полуклассическому рассмотрению изменения состояния ядерной подсистемы, опираясь на значительность масс ядер.

Расцвет полуэмпирических методов

В связи с поиском приемлемых по своим затратам методов расчета электронной структуры молекул в 60-х годах прошлого столетия был предложен широкий спектр методов, основанных на пренебрежении частью интегралов, входящих в уравнения для определения коэффициентов в молекулярных орбиталях, представленных в виде линейной комбинации базисных функций. Возможность такого пренебрежения определялась тем, что входящие в интегралы произведения локализованных базисных функций при их центрировании на ядрах атомов, не связанных химически согласно структурной формуле молекулы, близки к нулю, т.е. их (дифференциальное) перекрывание было весьма малым. Все развиваемые в этот период методы опирались на приближение нулевого дифференциального перекрывания. С целью исправления вносимых при пренебрежении перекрыванием ошибок часть оставшихся интегралов заменялась на параметры, определяемые из сравнения получаемых результатов с экспериментальными данными, в силу чего сами методы приобрели характер полуэмпирических.

Существенной особенностью полуэмпирических методов того периода была опора на молекулярно-орбитальный подход. С целью приблизить общую картину описания электронной структуры к используемой в наглядной классической картине - атомы в молекуле, локализованные связи, неподеленные электронные пары и т. п. - параллельно предпринимались попытки перейти от орбиталей, относящихся ко всей молекуле, к орбиталям, локализованным на отдельных фрагментах. Был предложен ряд конструкций, приводящих к практически совпадающим результатам: появились орбитали, которые в существенной степени соответствовали остовным орбиталям атомов в молекулах, орбиталям отдельных связей и т.п. Будучи наглядными, такие конструкции теряли однако ряд полезных сторон молекулярно-орбитального подхода, связанных, в частности, с понятием орбитальной энергии, присущей каждому отдельному электрону в молекуле, понятием, которое широко использовалось при интерпретации молекулярных спектров, при оценках потенциалов ионизации и сродства к электрону.

На этом этапе развития представлений квантовой химии определяющую роль в достижении качественно правильных результатов играли представления о симметрии молекулярной системы в целом и о локальной симметрии её отдельных фрагментов. Именно эти представления, например, позволили И. В. Станкевичу и А. А. Бочвару предсказать возможность существования молекулы фуллерена С 60 за несколько лет до его получения. Именно эти представления позволили создать столь мощную по своей предсказательной силе конструкцию, как теория сохранения орбитальной симметрии, разработанную Р. Вудвордом и Р. Хоффманом.

В рамках теории сохранения орбитальной симметрии сохранялась идея о молекулярных орбиталях, однако они рассматривались уже не для одной, равновесной конфигурации ядер молекулы, а прослеживалось их изменение при некотором непрерывном переходе от одной конфигурации ядер к другой (от исходных веществ к продуктам реакции).При этом, естественно, было принято предположение о непрерывности изменения формы орбиталей и соответствующих орбитальных энергий. Сохранение симметрии конфигурации ядер при таком переходе и обусловленной ею симметрии молекулярных орбиталей, а также выяснение того, как меняются орбитальные энергии орбиталей одного и того же типа симметрии, позволило сформулировать правила, определяющие более вероятный или менее вероятный путь превращений в хода данной химической реакции.

Методы функционала плотности

Следующий важный шаг в развитии теоретических представлений, приближенных к обычным химическим представлениям, был связан с идеей, зародившейся практически на заре создания квантовой теории и сводящейся к следующему. Волновая функция многоатомной молекулы зависит от весьма большого числа переменных, а потому при ее использовании теряется наглядность представления результатов, ясность физической картины как таковой. Желательно было бы перейти к более простым функциям, например к функции распределения в пространстве электронной плотности, зависящей всего от трех пространственных переменных. В общей формулировке для произвольного электронного состояния этого сделать нельзя. Тем не менее, начиная с конца 30-х годов прошлого века предпринимались неоднократные попытки записать уравнения Хартри - Фока так, чтобы они содержали при вычислении потенциалов межэлектронного взаимодействия не орбитали, а только лишь электронную плотность. Были предложены методы, на модельном уровне учесть это стремление.

Существенный прогресс в этих попытках был достигнут лишь после того, как в 1964 году Вальтером Коном и Пьером Хоэнбергом была доказана теорема, утверждающая, что электронная волновая функция основного состояния однозначно определяется заданием распределения электронной плотности, так что электронная энергия, как впрочем и все другие свойства, определяются полностью заданием электронной плотности. К сожалению, при этот остался открытым вопрос, каков конкретный вид этих зависимостей от электронной плотности.

Из теоремы Хоэнберга - Кона следовало, что и молекулярные орбитали в приближении Хартри - Фока должны определяться заданием электронной плотности. Были получены в общем виде и уравнения типа уравнений Хартри - Фока с потенциалами, зависящими лишь от электронной плотности (уравнения Кона - Шэма). Однако и в этом случае явный вид этих потенциалов был не известен, что привело к широкому фронту поиска достаточно достоверных выражений для этих потенциалов. К тому же, коль скоро явный вид соответствующих потенциалов был неизвестен, то при конструировании аппроксимирующих выражений оказалось возможным эффективно учесть вклад в потенциалы и от электронной корреляции. На основе широкого поиска, в том числе и решения ряда модельных задач были предложены такие конструкции (содержащие, например, электронную плотность и ее первые производные по пространственным переменным), которые дали весьма обнадеживающие результаты при расчетах свойств основных электронных состояний многих молекулярных систем. Поскольку при этом расчеты существенно упростились, оказалось возможным использовать различные варианты такого подхода для многоатомных молекул, включающих десятки и сотни атомов. Эти варианты получили общее название методов функционала плотности. Они широко используются в настоящее время, будучи даже перенесенными и на возбужденные состояния.

Динамические модели

Задачи, связанные с изменение молекулярной системы во времени, определяются, как правило, динамикой ядерной подсистемы. Используемые здесь подходы меняются в широких пределах, однако потенциалы взаимодействия частиц в системе задаются в большинстве случаев либо на основе квантово-химических аппроксимаций, либо на основе модельных конструкций, опирающихся в свою очередь на результаты квантово-химических расчетов. Так, при анализе колебательных спектров жестких молекулярных систем обычно используют для потенциала гармоническое приближение, коэффициенты квадратичной формы которого оценивают на основе тех или иных приближений квантовой химии, межмолекулярное взаимодействие аппроксимируют линейными комбинациями кулоновского потенциала и потенциала Леннард-Джонса и т. п.

В тех же случаях, когда изменение системы во времени характеризуется качественными изменениями электронного состояния системы, приходится переходить к неэмпирической молекулярной динамике, для анализа которой потенциальная энергия электронной подсистемы рассчитывается для каждой конкретной ядерной конфигурации. Такие конструкции, хотя они и существенно более трудоемки и потому ограничены при расчетах меньшим числом атомов в молекуле, имеют заметно большую предсказательную силу. Исходным при этом является временное уравнение Шрёдингера, тогда как для решения его существует набор методов различного уровня и сложности, и точности получаемых результатов. Часть ядерных переменных может быть фиксирована, либо сможет рассматриваться некоторая траектория перемещения образа системы по потенциальной поверхности.

Стационарные квантово-химические расчеты в сочетании с анализом нормальных колебаний молекул позволяют оценить константу скорости процесса, например, при ионизации или диссоциации молекул либо при их столкновении при химической реакции. Тем не менее, при решении динамических задач остается еще ряд подлежащих решению проблем, например, проблема задания начальных условий, проблема эволюции со спонтанным излучением в ходе этой эволюции либо с переходами между состояниями и т.п.

Остается в том числе и проблема неадиабатического характера многих химических превращений.

Заключение

Подводя итог сказанному выше, можно преде всего отметить, что без квантовохимических расчетов в настоящее время не обходится практически ни одно серьезное исследование структуры или физико-химических свойств молекул либо установление связи различных свойств молекул с их строением, как впрочем и анализ элементарных процессов и стадий химических превращений (хотя бы на качественном уровне). Созданые в последней четверти прошедшего века и постоянно совершенствующиеся программы квантовохимических расчетов позволяют получать достоверную информацию о равновесной геометрической конфигурации молекул, о гармонических частотах колебаний и частотах первых электронных переходов, об энергиях превращений различного рода, о дипольных моментах, поляризуемостях и распределении заряда в молекулах, о параметрах, определяющих спектры ЭПР и ЯМР. Разработка методов функционала плотности, базирующихся в конечном итоге на полном или частичном учете статистического характера поведения систем с большим числом электронов, привела к их широкому распространению при расчетах многоэлектронных систем, в том числе систем, включающих тяжелые атомы.

На сегодняшний день созданы весьма изощренные методы расчета стационарных состояний. Многие из них, однако, применимы лишь для рассмотрения свойств основного состояния, тогда как серьезный анализ свойств возбужденных состояний в существенной степени остается вне современных возможностей. И это на самом деле одна из первоочередных проблем, которые придется решать в ближайшие годы, поскольку роль специфики возбужденных состояний в спектроскопии, их роль в химической кинетике , в проявлениях плотных систем возбужденных состояний при наличии тяжелых атомов и вблизи диссоциационных пределов несомненна. К тому же при химических реакциях вблизи переходного состояния от реагентов к продуктам реакции перестает быть справедливой слабая зависимость электронной волновой функции от конфигурации ядер, т. е. нарушается адиабатическое приближение, становятся значимыми подбарьерные переходы и т. п.

Состояние квантовой химии в настоящее время достигло такого уровня, когда стало возможным учитывать влияние среды на физико-химические характеристики и химическое поведение молекул. Это направление интенсивно развивалось за последние годы. Если на протяжении длительного времени в прошлом столетии среда учитывалась лишь на простейшем уровне за счет введения некоторого фиксированного значения диэлектрической постоянной, характеризующей однородную среду, то сейчас уже разработаны и более усложненные модели, позволяющие учесть неоднородность среды и ее изменение вблизи рассматриваемой молекулы. В этих моделях используются достаточно аккуратные потенциалы, создаваемые молекулами окружения, и, как правило, методы молекулярной динамики, позволяющие оптимизировать конфигурацию молекул окружения.

Особые подходы стали развиваться и при рассмотрении поведения наноразмерных молекулярных систем, где поверхностные эффекты играют определяющую роль при формировании равновесной конфигурации наносистемы и электростатического потенциала, создаваемого этой системой, при локализации дефектов в ней, при взаимодействии таких систем с биомолекулами и т. п. Бурное развитие нанотехнологий и нанохимии в существенной степени было подготовлено всем накопленным объемом теоретических, главным образом квантовохимических знаний.

Следует отметить также, что ряд направлений развития и методических подходов выше не были затронуты, поскольку они требуют отдельного обсуждения. Полностью остались без внимания проблемы и направления развития квантовой биохимии , проблемы расчета ровибронных состояний молекул в ангармоническом приближении, проблемы квантовой фотохимии, проблемы зародыше- и фазообразования и ряд других. Квантовая химия продолжает оставаться активно развивающейся наукой, в современном состоянии которой отчетливо просматриваются ближайшие перспективы как ее фундаментального, так и прикладного развития.

К сожалению, широкая доступность и разнообразие квантовохимических программ подчас приводит к кажущейся легкости их использования без должного понимания того, что техника эта требует весьма квалифицированного обращения. В частности, нередко можно встретить утверждения об ограниченности возможностей квантовохимическихметодов применительно к тем или иным системам - утверждения, в основном связанные с отсутствием понимания того, какие именно методы и в каком именно приближении могут и должны быть использованы при решении той или иной конкретной задачи.

Рекомендуема литература:

Степанов Н. Ф. Квантовая механика и квантовая химия. М.: «Мир», 2001. 519 c.

Цирельсон В. Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела. М.: « Бином», 2010. 496 с.

Барановский В. И. Квантовая механика и квантовая химия. М.: «Academia», 2008. 382 с.

Piela L. Ideas of quantum chemistry. “Elsevier”, 2007. XXXIV+ 1086 pp.

Глава I .1.

Введение в курс квантовой химии

Квантовая химия - это наука, изучающая природу химической связи в молекулах и твердых телах. К сожалению, в подавляющем большинстве химики в настоящее время не осознают парадоксальность химической связи.

Прежде всего, не ясна природа связывания, во многих случаях, о которых пойдет речь ниже, атомов в молекулы и твердые тела, так как физика, как впрочем, и химия, фактически не выделяет каких-либо специфических взаимодействий, ответственных за химическую связь. Более того, если рассуждать здраво, атомы не могут образовывать более сложные структуры вроде молекул и твердых тел! Действительно, если молекулы и твердые тела состоят из электронов, заряженных отрицательно, и ядер, заряженных положительно, то на первый взгляд любые вещества (как впрочем, и существа - например, мы с вами) существовать в принципе не могут: не смотря на то, что ядра и электроны притягиваются друг к другу, все ядра заряжены положительно, а значит - отталкиваются друг от друга, а значит стремятся разлетается как можно дальше друг от друга, электроны - тоже должны вести себя аналогично.

Таким образом, мы видим, что силе притяжения между ядрами и электронами противостоят сразу две «черные» силы электростатического отталкивания ядер и электронов друг от друга. Таким образом, здравый смысл отказывает в праве на существование молекулярным телам любой сложности.

Теперь проведем мысленный эксперимент: Представим себе, что мы гвоздями прибили к этой доске три заряда - два положительных, на расстоянии и один отрицательный - как раз посередине между ними. Запишем теперь всем хорошо известный закон Кулона для этой системы:

Таким образом, мы видим, что для такой простой системы, включающей два положительных заряда и один отрицательный, силы Кулоновского притяжения между ними в восемь раз превышают силы Кулоновского отталкивания. Вот это и есть самое грубое представление о связывании ядер и электронов в молекулярных системах.

На самом деле, как мы увидим дальше, природа химического связывания существенно сложнее. Это обусловлено тем, что и ядра, и электроны являются микрочастицами, для которых законы поведения существенно более сложны, нежели чем законы классической механики. Прежде всего, электроны в атомах и молекулах не ведут себя как частицы, их поведение в какой-то мере аналогично поведению заряженного газа. Как мы видели из вышеприведенных формул, система, состоящая из трех точечных зарядов неустойчива - она стремится слипнутся. Молекулы так себя не ведут из-за того, что электронный газ не может весь сконцентрироваться точно посередине между ядрами, а размыт по всему объему молекулы и, следовательно, вся система не может слипнуться, как это должно произойти в случае точечных зарядов. Других отличий микромира от макромира мы коснемся позднее.

В настоящее время квантовая химия является теоретической основой всех разделов химии - органической и неорганической, физической химии, различным видам спектроскопии и т.д. Квантовая химия успешно решает многие научные задачи - в стыковке со многими видами спектроскопии при помощи ее изучается строение вещества, исследуются механизмы протекания химических реакций, в том числе - и на поверхности, исследуются биологические и биолого-активные вещества, полезные или летальные свойства которых часто, если не сказать - практически всегда, связаны с их атомным и электронным строением, исследование структуры новых высокоперспективных материалов, таких, как например, высокотемпературные сверхпроводники, формы элементарного углерода, комплексы переходных металлов, динамические свойства атомов и ионов в различных кристаллических и молекулярных структурах, и многое, многое другое.

Результатом применения методов квантовой химии является информация о плотностях электронных состояний, распределение электронной плотности, потенциальные поверхности реакций и барьеры перегруппировок, расчет различных спектроскопических величин, таких как колебательные спектры, электронные и рентгеновские спектры, оптические спектры, параметры спектров ядерного и электронного магнитных резонансов.

В настоящее время квантовая химия является, пожалуй, самым дешевым, доступным и универсальным методом исследования атомной и электронной структур вещества. Правда необходимо понимать, что человечество, тем не менее, не может совсем отказаться от дорогостоящих экспериментальных методик исследования вещества, так как результаты квантово-химических исследований необходимо подтверждать ключевыми экспериментами.

Необходимо отметить, что между экспериментальными методами и теоретическим квантово-химическим методом, тем не менее, есть одна существенная разница: Если методами квантовой химии и молекулярной механики можно с одинаковым успехом исследовать как реальные, так и гипотетические структуры, то в эксперименте можно исследовать только то, что реально существует. Так, расчет молекулы тетраэдрана осуществим также легко, как и аналогичных расчет молекулы бутана, тогда как тетраэдран экспериментально исследовать невозможно, так как в чистом виде он до сих пор не получен (известно только одно его производное - тетра-трет-бутиловое).

Тем не менее, необходимо отметить ряд блестящих теоретических предсказаний квантовых химиков последних лет - работа Бочвара и Гальперн, теоретически предсказавших фуллерен и рассчитавших его электронную структуру, Корнилова - предсказавшего нанотрубы. Эти структуры спустя двадцать лет были обнаружены экспериментально сначала по ультрафиолетовым спектрам межзвездного газа, а затем синтезированы в лаборатории. В 1996 году за эти работы Кречмер и Смолли были удостоены Нобелевской премии по химии.

Впрочем, Нобелевской премиями были также награждены и другие квантовые химики - Поллинг - за теорию гибридизации и Хоффманн - за теорию верхних заполненных и нижних вакантных орбиталей. Эти красивые и чрезвычайно важные для химиков воззрения мы будем детально рассматривать позднее.

В настоящее время теоретические модели и методы квантовой химии, по сравнению с 50 - 70 годами, когда и были сделаны вышеперечисленные работы, резко усложнились. В настоящее время современные квантово-химические программы на современной элементной базе позволяют рассчитывать уникальные объекты, такие как белки, формы элементарного углерода, включающие в себя сотни и тысячи атомов, молекулы и твердые тела, в которые входят атомы переходных элементов, лантаноиды и актиноиды.

Тем не менее, методы квантовой химии стремительно дешевеют. Это связано, прежде всего, с прогрессом элементной базы вычислительной техники. Сравните - современные синхротроны - источники электронов, протонов, рентгеновского и ультрафиолетового синхротронного излучения стоят по несколько миллиардов долларов за штуку, тогда как массовые компьютеры - несколько тысяч долларов, рабочие станции - десятки тысяч и, в крайнем случае, большие суперкомпьютеры - до миллиона долларов.

В настоящее время, тем не менее, подавляющее большинство расчетов направлено на получение дополнительной информации об уже известных и реально существующих объектах. Но даже с учетом этого обстоятельства информативность теоретических методов существенно выше! Разве можно в одном эксперименте получить равновесную атомную структуру, дипольный момент, теплоту образования, потенциалах ионизации, распределении зарядов, порядках связей, спиновой плотности, изучить спектроскопические характеристики вещества? Безусловно, существует определенное ограничение достоверности получаемых результатов, однако ограничения методов квантовой химии известны, что позволяет во многих случаях реалистично оценивать их точность и адекватность. В ряде же случаев надежность получаемых квантово-химических данных даже выше, нежели чем экспериментальных. Так, экспериментальное определение теплоты образования полициклического алкана представляют собой длительную, дорогую, сложную и многоступенчатую процедуру, тогда как расчет займет несколько секунд на дешевом компьютере, причем точность будет даже выше, чем в эксперименте!

Однако очевидно, что это редкий случай. В подавляющем большинстве случаев качество результатов в значительной степени определяется адекватностью выбираемой модели. Так в качестве примера можно привести исследование потенциальной кривой образования/диссоциации молекулы водорода.


Первая кривая получается тогда, когда в качестве волновой функции системы выбирается синглет, т.е. когда спины электронов антипараллельны. Как видим, эта волновая функция хорошо описывает экспериментальную кривую только в области ее минимума. Вторая потенциальная кривая соответствует триплетной волновой функции (спины параллельны). Как видим, она хорошо описывает только диссоциационный предел с фактически не взаимодействующими атомами водорода. Как видим, реальную систему необходимо исследовать с использованием волновой функции, построенной из синглета и триплета.

С точки зрения химика представленная реакция уникальна - рекомбинация атомарного водорода на поверхности железа - это самая «горячая» химическая реакция, в ходе которой можно достигнуть десяти тысяч градусов!

Как уже упоминалось выше, квантовая химия основана на законах квантовой механики, описывающей поведение микрочастиц. Природа микромира существенным образом отлична от природы макромира. Человечество это начало осознавать в конце прошлого - начале этого веков. Именно в это время стало развиваться «неклассическое» (т.е. не древнегреческое) учение об атомизме, стала известна структура некоторых молекул и твердых тел. Выяснилось принципиальное отличие металлов, обладающих свободными электронами, от диэлектриков, их соответственно не имеющих.

В свою очередь стали известны и заряд электрона, равный -4.77*10 -23 СГСЕ, его масса - 9.1066*10 -28 г., масса атома водорода - 1.6734*10 -24 г. и ряд других вещей.

Тогда предполагалось, что микрообъекты можно описать классической механикой в сочетании со статистикой. Так, например, была создана молекулярно-кинетическая теория теплоты, которая хорошо описывала ряд наблюдаемых явлений.

В отличие от вещества, свет представляли в виде специфической материи, непрерывно распределенной в некоторой области пространства. Опыты по дифракции света выявили его волновые свойства, а электромагнитная теория Максвелла вскрыла единство природы света, радиоволн и рентгеновских лучей. В то время считалось, что все изменения, наблюдаемые как в веществе, так и в излучении непрерывны - энергии частиц, траектории, все характеристики меняются не скачкообразно, а непрерывно. На принципе непрерывности была построено и классическое представление о взаимодействии света с веществом. Поглощение света представлялось «засасыванием» электромагнитного поля веществом, а испускание - соответственно «истечением». Из опытов с макроскопическими телами известно, что неравномерно движущееся заряженное тело испускает электромагнитные волны, постепенно теряя энергию.

Однако вскоре обнаружились ряд непонятных эффектов, которые никоим образом не могли быть объяснены с точки зрения классической механики и электродинамики. Так оказалось неясным поведение теплоемкости кристаллов при низких температурах, не понятно было, почему свободные электроны не вносят вклад в теплоемкость металлов, наконец, было установлено резкое расхождение экспериментальной и теоретической картин спектра теплового излучения атомов («ультрафиолетовая» и «инфракрасные» катастрофы).

Для объяснения «ультрафиолетовой» катастрофы Планк в 1900 году предложил гипотезу о том, что свет излучается/поглощается дискретными порциями - квантами. Энергия кванта связана с его частотой по следующей формуле:

где h = 1.05*10 -27 эрг*сек - постоянная Планка, - циклическая частота, равная 2 p n , а линейная частота n =1/T , где T - период колебаний. Удивительный факт - Планк до конца своих дней не мог поверить в революционность и результативность собственной гипотезы и считал ее просто неким курьезом.

Но дальше пошло еще хуже! Эйнштейн, опираясь на представления Планка, высказал предположение о том, что свет не только поглощается и испускается порциями, но и распространяется аналогично -квантами. Квант света был назван фотоном, свойства которого были изучены в тонких опытах Вавилова. Позднее была предложена модель волнового пакета, качественно объясняющая особенности поведения фотонов, в частности - фотоэффекта. Позднее был обнаружен эффект Комптона по упругому рассеянию электронов на фотонах


Вывод из всех этих экспериментов был на первый взгляд странный - фотон может вести себя и как частица, и как волна.

Затем были получены аналогичные результаты и для электронов. Так, Франк и Герц, измеряя электрический ток в парах ртути. Схема опыта была такова: Через пары ртути пропускался поток электронов, скорость которых и, следовательно, энергия, постепенно увеличивалась. До некоторого времени, электроны, сталкиваясь с атомами ртути, почти не теряют своей энергии, то есть удары упругие, так что электрический ток соответствует закону Ома, приблизительно равен приложенной разнице потенциалов. Когда же энергия электронов становится равной 4.9 эВ, ток резко падает. Это происходит потому, что электрон теряет энергию, сталкиваясь с атомом ртути, возбуждая его. Таким образом, возбудить атом ртути, передавая ему энергию менее 4.9 эВ. невозможно. Оказалось, однако, что возбуждения не происходит и тогда, когда энергия электрона больше величины 4.9 эВ.

На дискретность возможных состояний атомов указывает и опыт Штерна и Герлаха, в котором пучок атомов, обладающих магнитным моментом, направляют в неоднородное магнитное поле, которое отклоняет атом от прямолинейного пути таким образом, что угол отклонения зависит от ориентации магнитного момента атома по отношению к полю. С точки зрения классической физики возможны любые ориентации магнитного момента атома в поле, поэтому при попадании на экран после прохождения их сквозь магнитное поле должно получится размытое пятно, соответствующее изображению щели, ограничивающей поток в начале пути. В действительности наблюдается два резких изображения щели, т.е. пучок разделяется на две (в общем случае - несколько) части. Это можно объяснить, что магнитный момент приобретает только строго определенные значения, таким образом, магнитные состояния атома дискретны.

Однако наиболее ярким фактом, противоречащим законам классической физики, оказался факт самого существования атомов. В опыте Резерфорда впервые была установлена ядерная модель атома: в центре находится очень маленькое ядро (10 -13 см.), несущее положительный заряд +ze , а вокруг находятся z отрицательно заряженных электронов, заполняющих пространство атома (10 -8 см.).

Первое противоречие такой картины было в следующем: согласно теории электричества неподвижная система зарядов не может быть устойчивой. Если же предположить, что электроны вращаются вокруг ядра, то, двигаясь с ускорением, они должны постоянно испускать электромагнитное излучение, терять энергию и, в конце концов, упасть на ядро.

Другим опытом, противоречащим традиционной картине мира был фотоэффект - пороговое значение энергии ионизации вещества, причем он однозначно свидетельствует о корпускулярной природе самих электронов.

С другой стороны было получено неопровержимое свидетельство того, что электрон является волной! Это были опыты по интерференции электронов.

Непонятными с классической точки зрения оказались и спектры атомов, которые состоят из отдельных линий, соответствующих определенным частотам возбуждения. Наиболее просты спектры водорода и водородоподобных атомов, частоты которых описываются формулой:

w = const z 2 (1/n k 2 - 1/n m 2 )

Никакой классической моделью было не возможно объяснить такую форму атомных спектров.

В 1913 году Нильс Бор предложил первую неклассическую модель атома - модель атома Бора. В этой модели электроны считались корпускулами, обладающими при этом удивительными свойствами, которые были определены в постулатах модели:

1. Электроны могут находится только на строго определенных орбитах - стационарных орбитах, при этом атом не поглощает и не испускает свет.

2. Переход электронов может происходить только с одной стационарной орбиты на другую.

Из этой модели вытекали сразу множество важных следствий: так были получены квантовые числа, при помощи которых удалось описать линейчатые спектры атомов, магнитные моменты атомов, оценить радиусы орбит и скорости вращения электронов на них. Как дальше мы увидим, квантовые числа, впервые полученные в модели Бора, имеют четкий физический смысл.

Однако значение момента одновалентного атома не соответствовало этой картине. Поэтому Юленбек и Гаудсмит предположили, что в создании магнитного момента атома существенную роль играет собственный момент электрона, который возникает из-за того, что электрон, являясь заряженным шариком, вращается вокруг своей оси, в результате чего у него возникает механический и магнитный моменты.

Безусловно, модель атома Бора не могла объяснить строение более сложных, не водородоподобных атомов. Теперь это делается в рамках квантовой механики, решая уравнение Шредингера для систем ядер и электронов. Однако, тем не менее, часто химики пользуются с успехом другим простым модельным подходом, основанным на традиционной картине химической связи - молекулярной механике.

В этом подходе считается, что химическая связь представляет собой пружинку, которую можно или растягивать, или сжимать, а молекулу - как набор атомов. Сейчас существует много эмпирических способов задания свойств химической связи - так называемы валентные поля. В общем виде молекулярная механика ищет минимум энергии, используя потенциальные кривые, типа кривой Морзе, и закон Гука. Учитываются в таких подходах и потенциалы угловых деформаций, которые, как правило, выбираются в квадратичной форме. Включаются в этот подход и торсионные функции, и взаимодействия типа Ван-дер-Ваальса. С использованием всех этих потенциальных функций находится энергия системы и затем ищется конфигурация с наименьшей энергией, оптимизируя задачу по 3n-6 координатам. В этом подходе часто с хорошей точностью получаются структура молекул и фрагментов твердых тел, теплоты образования, энергии стерического напряжения.

Этот и другие подходы в настоящее время реализованы в наборе компьютерных программ, с которыми мы будем позже знакомится.