Разное

Типы систем по термодинамическим параметрам. Системы в термодинамике

Долгое время среди физиков и представителей других наук был способ описания того, что они наблюдают в процессе своих экспериментов. Отсутствие единого мнения и наличие большого количества терминов, взятых «с потолка», приводило к путанице и недопониманиям среди коллег. Со временем каждый раздел физики приобрел свои устоявшиеся определения и единицы измерения. Так появились термодинамические параметры, объясняющие большинство макроскопических изменений в системе.

Определение

Параметры состояния, или термодинамические параметры, - это ряд физических величин, которые все вместе и каждая в отдельности могут дать характеристику наблюдаемой системе. К ним относятся такие понятия, как:

  • температура и давление;
  • концентрация, магнитная индукция;
  • энтропия;
  • энтальпия;
  • энергии Гиббса и Гельмгольца и многие другие.

Выделяют интенсивные и экстенсивные параметры. Экстенсивными называются те, которые находятся в прямой зависимости от массы термодинамической системы, а интенсивными - которые определяются другими критериями. Не все параметры одинаково независимы, поэтому для того, чтобы вычислить равновесное состояние системы, необходимо определять сразу несколько параметров.

Кроме того, среди физиков существуют некоторые терминологические разногласия. Одна и та же физическая характеристика у разных авторов может называться то процессом, то координатой, то величиной, то параметром, а то и просто свойством. Все зависит от того, в каком контенте ученый ее использует. Но в некоторых случаях существуют стандартизированные рекомендации, которых должны придерживаться составители документов, учебников или приказов.

Классификация

Существует несколько классификаций термодинамических параметров. Так, исходя из первого пункта, уже известно, что все величины можно разделить на:

  • экстенсивные (аддитивные) - такие вещества подчиняются закону сложения, то есть их значение зависит от количества ингредиентов;
  • интенсивные - они не зависят от того, сколько вещества было взято для реакции, так как при взаимодействии выравниваются.

Исходя из того, в каких условиях находятся вещества, составляющие систему, величины можно разделить на те, которые описывают фазовые реакции и химические реакции. Кроме того, нужно учитывать вступающих в реакцию. Они могут быть:

  • термомеханические;
  • теплофизические;
  • термохимические.

Помимо этого, любая термодинамическая система выполняет определенную функцию, поэтому параметры могут характеризовать работу или теплоту, получаемую в результате реакции, а также позволяют рассчитать энергию, необходимую для переноса массы частиц.

Переменные состояния

Состояние любой системы, в том числе термодинамической, можно определить по сочетанию ее свойств или характеристик. Все переменные, которые полностью определяются только в конкретный момент времени и не зависят от того, как именно система пришла в это состояние, называются термодинамическими параметрами (переменными) состояния или функциями состояния.

Система считается стационарной, если переменные функции с течением времени не изменяются. Один из вариантов - это термодинамическое равновесие. Любое, даже самое малое изменение в системе, - уже процесс, а в нем может быть от одного до нескольких переменных термодинамических параметров состояния. Последовательность, в которой состояния системы непрерывно переходят друг в друга, называют «путь процесса».

К сожалению, путаница с терминами все еще имеет место, так как одна и та же переменная может быть как независимой, так и результатом сложения нескольких функций системы. Поэтому такие термины, как «функция состояния», «параметр состояния», «переменная состояния» могут рассматриваться в виде синонимов.

Температура

Один из независимых параметров состояния термодинамической системы - это температура. Она представляет собой величину, которая характеризует количество кинетической энергии, приходящееся на единицу частиц в термодинамической системе, находящейся в состоянии равновесия.

Если подходить к определению понятия с точки зрения термодинамики, то температура является величиной обратно пропорциональной изменению энтропии после добавления в систему теплоты (энергии). Когда система равновесна, то значение температуры одинаково для всех ее «участников». В случае если имеется разница температур, то энергия отдается более нагретым телом и поглощается более холодным.

Существуют термодинамические системы, в которых при добавлении энергии беспорядочность (энтропия) не возрастает, а наоборот - уменьшается. Кроме того, если подобная система будет взаимодействовать с телом, температура которого больше, чем ее собственная, то она отдаст свою кинетическую энергию этом телу, а не наоборот (исходя из законов термодинамики).

Давление

Давлением называется величина, характеризующая силу, воздействующую на тело, перпендикулярно его поверхности. Для того чтобы вычислить этот параметр, необходимо все количество силы разделить на площадь объекта. Единицами измерения этой силы будут паскали.

В случае с термодинамическими параметрами газ занимает весь доступный ему объем, и, кроме того, молекулы, его составляющие, непрерывно хаотично двигаются и сталкиваются друг с другом и с сосудом, в котором находятся. Именно эти удары и обуславливают давление вещества на стенки сосуда либо на тело, которое помещено в газ. Сила распространяется во всех направлениях одинаково именно из-за непредсказуемого движения молекул. Чтобы увеличить давление, необходимо повысить температуру системы, и наоборот.

Внутренняя энергия

К основным термодинамическим параметрам, зависящим от массы системы, относят и внутреннюю энергию. Она складывается из кинетической энергии, обусловленной движением молекул вещества, а также из потенциальной энергии, появляющейся, когда молекулы взаимодействуют между собой.

Этот параметр является однозначным. То есть значение внутренней энергии постоянно всякий раз, как система оказывается в нужном состоянии, независимо от того, каким путем оно (состояние) было достигнуто.

Невозможно изменить внутреннюю энергию. Она складывается из теплоты, выделяемой системой и работы, которая ею производится. Для некоторых процессов учитываются и другие параметры, такие как температура, энтропия, давление, потенциал и количество молекул.

Энтропия

Второе начало термодинамики гласит, что энтропия не уменьшается. Другая формулировка постулирует, что энергия никогда не переходит от тела с более низкой температурой к более нагретому. Это, в свою очередь, отрицает возможность создания вечного двигателя, так как нельзя всю энергию, имеющуюся у тела, перевести в работу.

Само понятие «энтропия» было введено в обиход еще в середине 19 века. Тогда оно воспринималось как изменение количества тепла к температуре системы. Но такое определение подходит только к процессам, которые постоянно находятся в состоянии равновесия. Из этого можно вывести следующее заключение: если температура тел, составляющих систему, стремится к нулю, то и энтропия будет равна нулю.

Энтропия как термодинамический параметр состояния газа используется в качестве указания на меру беспорядочности, хаотичности движения частиц. Ее используют, чтобы определить распределение молекул в определенной области и сосуде, либо чтобы посчитать электромагнитную силу взаимодействия между ионами вещества.

Энтальпия

Энтальпия представляет собой энергию, которая может быть преобразована в теплоту (или работу) при постоянном давлении. Это потенциал системы, которая находится в состоянии равновесия, в случае если исследователю известен уровень энтропии, число молекул и давление.

В случае, если указывается термодинамический параметр идеального газа, вместо энтальпии используют формулировку «энергия расширенной системы». Для того чтобы легче было объяснить себе эту величину, можно представить сосуд, наполненный газом, который равномерно сжимается при помощи поршня (например, двигатель внутреннего сгорания). В этом случае энтальпия будет равна не только внутренней энергии вещества, но и работе, которую необходимо произвести, чтобы привести систему в необходимое состояние. Изменение данного параметра зависит только от начального и конечного состояния системы, а путь, которым оно будет получено, роли не играет.

Энергия Гиббса

Термодинамические параметры и процессы, в большинстве своем, связаны с энергетическим потенциалом веществ, составляющих систему. Так, энергия Гиббса является эквивалентом полной химической энергии системы. Она показывает, какие изменения будут происходить в процессе химических реакций и будут ли вещества взаимодействовать вообще.

Изменение количества энергии и температуры системы в процессе протекания реакции затрагивает такие понятия, как энтальпия и энтропия. Разница между этими двумя параметрами как раз и будет называться энергией Гиббса или изобарно-изотермическим потенциалом.

Минимальное значение данной энергии наблюдается в том случае, если система находится в равновесии, а ее давление, температура и количества вещества остаются неизменными.

Энергия Гельмгольца

Энергия Гельмгольца (по другим источникам - просто свободная энергия) представляет собой потенциальное количество энергии, которое будет потеряно системой при взаимодействии с телами, не входящими в нее.

Понятие свободной энергии Гельмгольца часто используется для того, чтобы определить, какую максимальную работу способна выполнить система, то есть сколько высвободится теплоты при переходе веществ из одного состояния в другое.

Если система находится в состоянии термодинамического равновесия (то есть она не совершает никакой работы), то уровень свободной энергии находится на минимуме. А значит, изменение других параметров, таких как температура, давление, количество частиц, также не происходит.

Термодинамика - наука, которая изучает тепловые явления, происходящие в телах, не связывая их с молекулярным строением вещества.

В термодинамике считается, что все тепловые процессы в телах характеризуются только лишь макроскопическими параметрами - давлением, объёмом и температурой. А так как их невозможно применить к отдельно взятым молекулам или атомам, то, в отличие от молекулярно-кинетической теории, в термодинамике молекулярное строение вещества в тепловых процессах не учитывается.

Все понятия термодинамики сформулированы как обобщение фактов, наблюдаемых в ходе экспериментов. Из-за этого её называют феноменологической (описательной) теорией тепла.

Термодинамические системы

Термодинамика описывает тепловые процессы, происходящие в макроскопических системах. Такие системы состоят из огромного количества частиц - молекул и атомов, и называются термодинамическими.

Термодинамической системой можно считать любой объект, который можно увидеть невооружённым глазом или с помощью микроскопов, телескопов и других оптических приборов. Главное, чтобы размеры системы в пространстве и время её существования позволяли провести измерения её параметров - температуры, давления, массы, химического состава элементов и др., с помощью приборов, не реагирующих на воздействие отдельных молекул (манометров, термометров и др.).

Для химиков термодинамическкой системой является смесь химических веществ, взаимодействующих между собой в процессе химической реакции. Астрофизики назовут такой системой небесное тело. Смесь горючего с воздухом в автомобильном двигателе, земной шар, наше тело, пишущая ручка, тетрадь, станок и др. - это также термодинамические системы.

Каждая термодинамическая система отделена от окружающей среды границами. Они могут быть реальными - стеклянные стенки пробирки с химическим веществом, корпус цилиндра в двигателе и т.п. А могут быть и условными, когда, например, изучают образование облака в атмосфере.

Если такая система не обменивается с внешней средой ни энергией, ни веществом, то её называют изолированной или замкнутой .

Если же система обменивается с внешней средой энергией, но не обменивается веществом, то она называется закрытой .

Открытая система обменивается с внешней средой и энергией, и веществом.

Термодинамическое равновесие

Это понятие также введено в термодинамику, как обобщение результатов экспериментов.

Термодинамическим равновесием называют такое состояние системы, при котором все её макроскопические величины - температура, давление, объём и энтропия - не изменяются во времени, если система является изолированной. В такое состояние может самопроизвольно перейти любая замкнутая термодинамическая система, если остаются постоянными все внешние параметры.

Самый простой пример системы в состоянии термодинамического равновесия - термос с горячим чаем. Температура в нём одинакова в любой точке жидкости. Хотя термос можно назвать изолированной системой лишь приблизительно.

Любая замкнутая термодинамическая система самопроизвольно стремится перейти в термодинамическое равновесие, если не меняются внешние параметры.

Термодинамический процесс

Если меняется хотя бы один из макроскопических параметров, то говорят, что в системе происходит термодинамический процесс . Такой процесс может возникнуть, если изменяются внешние параметры или система начинает получать или передавать энергию. В результате она переходит в другое состояние.

Вспомним пример с чаем в термосе. Если мы опустим в чай кусочек льда и закроем термос, то сразу же появится разница в температурах в разных частях жидкости. Жидкость в термосе будет стремиться к выравниванию температур. Из областей с более высокой температурой тепло будет передаваться туда, где температура ниже. То есть, будет происходить термодинамический процесс. В конце концов, температура чая в термосе снова станет одинаковой. Но она уже будет отличаться от первоначальной температуры. Состояние системы изменилось, так как изменилась её температура.

Термодинамический процесс происходит, когда ночью остывает песок, нагретый на пляже в жаркий день. К утру его температура понижается. Но как только взойдёт солнце, процесс нагревания начнётся снова.

Внутренняя энергия

Одно из главных понятий термодинамики - внутренняя энергия .

Все макроскопические тела обладают внутренней энергией, которая является суммой кинетических и потенциальных энергий всех частиц (атомов и молекул), из которых состоит тело. Эти частицы взаимодействуют только между собой и не взаимодействуют с частицами окружающей среды. Внутренняя энергия зависит от кинетической и потенциальной энергии частиц и не зависит от положения самого тела.

U = E k +E p

Внутренняя энергия изменяется с изменением температуры. Молекулярно-кинетическая теория объясняет это изменением скорости движения частиц вещества. Если температура тела растёт, то растёт и скорость движения частиц, расстояние между ними становится больше. Следовательно, увеличивается их кинетическая и потенциальная энергия. При понижении температуры происходит обратный процесс.

Для термодинамики важнее не величина внутренней энергии, а её изменение. А изменить внутреннюю энергию можно с помощью процесса теплопередачи или совершая механическую работу.

Изменение внутренней энергии механической работой

Бенджамин Румфорд

Внутреннюю энергию тела можно изменить, совершив над ней механическую работу. Если работа совершается над телом, то механическая энергия превращается во внутреннюю энергию. А если работу совершает тело, то его внутренняя энергия превращается в механическую.

Почти до конца XIX века считалось, что существует невесомое вещество - теплород, которое передаёт тепло от тела к телу. Чем больше теплорода втекает в тело, тем теплее оно будет, и наоборот.

Однако в 1798 г. англо-американский учёный граф Бенджамин Румфорд стал сомневаться в теории теплорода. Причиной тому были нагревания стволов пушек при сверлении. Он предположил, что причиной нагревания является механическая работа, которая совершается во время трения сверла о ствол.

И Румфорд провёл эксперимент. Чтобы увеличить силу трение, взяли тупое сверло, а сам ствол поместили в бочку с водой. К концу третьего часа сверления вода в бочке закипела. Это означало, что ствол получил тепло при совершении механической работы над ним.

Теплопередача

Теплопередачей называют физический процесс передачи тепловой энергии (теплоты) от одного тела к другому либо при непосредственном контакте, либо через разделяющую перегородку. Как правило, теплота передаётся от более тёплого тела к более холодному. Это процесс заканчивается, когда система приходит в состояние термодинамического равновесия.

Энергия, которую получает или отдаёт тело при теплопередаче, называется количеством теплоты .

По способу передачи теплоты теплообмен можно разделить на 3 вида: теплопроводность, конвенция, тепловое излучение.

Теплопроводность

Если между телами или частями тел существует температурная разница, то между ними будет происходить процесс теплопередачи. Теплопроводностью называют процесс переноса внутренней энергии от более нагретого тела (или его части) к менее нагретому телу (или его части).

К примеру, нагрев на огне один конец стального прута, через некоторое время мы почувствуем, что и другой его конец также становится тёплым.

Стеклянную палочку, один конец которой раскалён, мы легко держим за другой конец, не обжигаясь. Но если мы попробуем проделать такой же эксперимент с железным прутом, у нас ничего не получится.

Разные вещества по-разному проводят тепло. Каждое из них имеет свой коэффициент теплопроводности , или удельной проводимости , численно равный количеству теплоты, которая проходит через образец толщиной 1 м, площадью 1 м 2 за 1 секунду. За единицу температуры принимают 1 К.

Лучше всего проводят тепло металлы. Это их свойство мы используем в быту, готовя пищу в металлических кастрюлях или на сковородках. А вот их ручки не должны нагреваться. Поэтому их делают из материалов с плохой теплопроводностью.

Теплопроводность жидкостей меньше. А газы обладают слабой теплопроводностью.

Мех животных также плохо проводит тепло. Благодаря этому они не перегреваются в жаркую погоду и не замерзают в холодную.

Конвенция

При конвенции теплота передаётся струями и потоками газа или жидкости. В твёрдых телах конвенции нет.

Как возникает конвенция в жидкости? Когда мы ставим на огонь чайник с водой, нижний слой жидкости нагревается, его плотность уменьшается, он движется вверх. Его место занимает более холодный слой воды. Через какое-то время он тоже нагреется и тоже поменяется местами с более холодным слоем. И т.д.

Подобный процесс происходит и в газах. Не случайно батареи отопления размещают в нижней части комнаты. Ведь нагретый воздух всегда поднимается в верхнюю часть комнаты. А нижний, холодный, наоборот, опускается. Затем он нагревается также и вновь поднимается, а верхний слой за это время остывает и опускается.

Конвенция бывает естественная и принудительная.

Естественная конвенция постоянно происходит в атмосфере. В результате этого происходят постоянные перемещения тёплых воздушных масс вверх, а холодных - вниз. В результате возникает ветер, облака и другие природные явления.

Когда естественной конвенции недостаточно, применяю принудительную конвенцию. Например, потоки тёплого воздуха перемещают в комнате с помощью лопастей вентилятора.

Тепловое излучение

Солнце нагревает Землю. При этом не происходит ни теплопередачи, ни конвенции. Так почему же тела получают тепло?

Дело в том, что Солнце является источником теплового излучения.

Тепловое излучение - это электромагнитное излучение, возникающее за счёт внутренней энергии тела. Все окружающие нас тела излучают тепловую энергию. Это может быть видимое световое излучение настольной лампы, или источники невидимых ультрафиолетовых, инфракрасных или гамма-лучей.

Но тела не только излучают тепло. Они его также и поглощают. Одни в большей степени, другие в меньшей. Причём тёмные тела и нагреваются, и охлаждаются быстрее, чем светлые. В жаркую погоду мы стараемся надеть светлую одежду, потому что она поглощает меньше тепла, чем одежда тёмных тонов. Автомобиль тёмного цвета нагревается на солнце гораздо быстрее, чем стоящий с ним рядом автомобиль, имеющий светлую окраску.

Это свойство веществ по-разному поглощать и излучать тепло используется при создании систем ночного видения, систем самонаведения ракет на цель и др.


Одна и та же система может находиться в различных состояниях. Каждое состояние системы характеризуется определенным набором значений термодинамических параметров. К термодинамическим параметрам относятся температура, давление, плотность, концентрация и т.п. Изменение хотя бы только одного термодинамического параметра приводит к изменению состояния системы в целом. При постоянстве термодинамических параметров во всех точках системы (объема) термодинамическое состояние системы называют равновесным .

Различают гомогенные и гетерогенные системы. Гомогенные системы состоят из одной фазы, гетерогенные – из двух или нескольких фаз. Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.

Для количественного описания поведения термодинамической системы вводят параметры состояния - величины, которые однозначно определяют состояние системы в заданный момент времени. Параметры состояния могут быть найдены только на основании опыта. Термодинамический подход требует, чтобы они могли быть измеримы опытным путём с помощью макроскопических приборов. Число параметров велико, однако не все из них имеют существенное значение для термодинамики. В простейшем случае любая термодинамическая система должна обладать четырьмя макроскопическими параметрами: массой M , объёмом V , давлением p и температурой T . Первые три из них определяются достаточно просто и хорошо известны из курса физики.

В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их.

Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

1. Изохорический процесс . Закон Шарля. V = const.

Изохорическим процессом называется процесс, протекающий при постоянном объёме V . Поведение газа при этом изохорическом процессе подчиняется закону Шарля :

При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

График изохорического процесса на РV -диаграмме называется изохорой . Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры:

где Р 0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град -1 . График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7.


Рис. 1.7

2. Изобарический процесс. Закон Гей-Люссака. Р = const.

Изобарическим процессом называется процесс, протекающий при постоянном давлении Р . Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака :

При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

График изобарического процесса на VT -диаграмме называется изобарой . Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8).


Рис. 1.8

Уравнение изобары:

где α =1/273 град -1 - температурный коэффициент объёмного расширения . График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.


Рис. 1.9

3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

График изотермического процесса на РV -диаграмме называется изотермой . Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10).


Рис. 1.10

Уравнение изотермы:

(1.4.5)

4. Адиабатический процесс (изоэнтропийный):

Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится N A =6,02·10 23 молекул (число Авогадро).

7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

8. Объединённый газовый закон (Закон Клапейрона).

В соответствии с законами Бойля – Мариотта (1.4.5) и Гей-Люссака (1.4.3) можно сделать заключение, что для данной массы газа

газовые сме­си . В качестве примера можно назвать продукты сгорания топлива в двигателях внутреннего сгорания, топках печей и па­ровых котлов, влажный воздух в сушиль­ных установках и т. п.

Основным законом, определяющим поведение газовой смеси, является закон Дальтона: полное давление смеси иде­альных газов равно сумме парциальных давлений всех входящих в нее компо­нентов:

Парциальное давление pi - давление, которое имел бы газ, если бы он один при той же температуре занимал весь объем смеси.

Способы задания смеси. Состав га­зовой смеси может быть задан массовы­ми, объемными или мольными долями.

Массовой долей называется отношение массы отдельного компонента Мi , к массе смеси М:

Очевидно, что и .

Массовые доли часто задаются в процентах. Например, для сухого воздуха ; .

Объемная доля представляет собой отношение приведенного объема газа V, к полному объему смеси V: .

Приведенным называется объем, который занимал бы компонент газа, ес­ли бы его давление и температура равня­лись давлению и температуре смеси.

Для вычисления приведенного объема запишем два уравнения состоя­ния i -го компонента:

; (2.1)

.

Первое уравнение относится к состоянию компонента газа в Смеси, когда он имеет парциальное давление pi и занимает пол­ный объем смеси, а второе уравнение - к приведенному состоянию, когда давле­ние и температура компонента равны, как и для смеси, р и Т. Из уравнений следует, что

Просуммировав соотношение (2.2) для всех компонентов смеси, получим с учетом закона Дальтона ,откуда . Объемные доли также часто задаются в процентах. Для воз­духа , .

Иногда бывает удобнее задать со­став смеси мольными долями. Моль­ной долей называется отношение количества молей Ni рассматриваемого компонента к общему количеству молей смеси N .

Пусть газовая смесь состоит из N1 молей первого компонента, N2 молей вто­рого компонента и т. д. Число молей смеси , а мольная доля компонента будет равна .

В соответствии с законом Авогадро объемы моля любого газа при одинако­вых р и Т, в частности при температуре и давлении смеси, в идеально газовом состоянии одинаковы. Поэтому приве­денный объем любого компонента может быть вычислен как произведение объема моля на число молей этого компо­нента, т. е. а объем смеси - по формуле . Тогда , и, следовательно, задание смесильных газов мольными долями равно заданию ее объемными долями.

Газовая постоянная смеси газов . Просуммировавуравнения (2.1) для всех компонен­тов смеси, получим . Учитывая , можно записать

, (2.3)

. (2.4)

Полная энергия термодинамической системы представляет собой сумму кинетической энергии движения всех тел, входящих в систему, потенциальной энергии взаимодействия их между собой и с внешними телами и энергии, содержащейся внутри тел системы. Если из полной энергии вычесть кинетическую энергию, характеризующую макроскопическое движение системы как целого, и потенциальную энергию взаимодействия её тел с внешними макроскопическими телами, то оставшаяся часть будет представлять собой внутреннюю энергию термодинамической системы.
Внутренняя энергия термодинамической системы включает в себя энергию микроскопического движения и взаимодействия частиц системы, а так же их внутримолекулярную и внутриядерную энергии.
Полная энергия системы (а, следовательно, и внутренняя энергия) также как потенциальная энергия тела в механике может быть определена с точностью до произвольной константы. Поэтому, если любые макроскопические движения в системе и взаимодействия её с внешними телами отсутствуют, можно принять "макроскопические" составляющие кинетической и потенциальной энергий равными нулю и считать внутреннюю энергию системы равной её полной энергии. Такая ситуация имеет место в случае, когда система находится в состоянии термодинамического равновесия.
Введём характеристику состояния термодинамического равновесия - температуру. Так называется величина, зависящая от параметров состояния, например, от давления и объёма газа, и являющаяся функцией внутренней энергии системы. Эта функция обычно имеет монотонную зависимость от внутренней энергии системы, то есть растёт с ростом внутренней энергии.
Температура термодинамических систем, находящихся в состоянии равновесия, обладает следующими свойствами:
Если две равновесные термодинамические системы, находятся в тепловом контакте и имеют одинаковую температуру, то совокупная термодинамическая система находится в состоянии термодинамического равновесия при той же температуре.
Если какая-либо равновесная термодинамическая система имеет одну и ту же температуру с двумя другими системами, то эти три системы находятся в термодинамическом равновесии при одной и той же температуре.
Таким образом, температура есть мера состояния термодинамического равновесия. Для установления этой меры уместно ввести понятие теплопередачи.
Теплопередачей называется передача энергии от одного тела к другому без переноса вещества и совершения механической работы.
Если между телами, находящимися в тепловом контакте друг с другом, теплопередача отсутствует, то тела имеют одинаковые температуры и находятся в состоянии термодинамического равновесия друг с другом.
Если в изолированной системе, состоящей из двух тел, эти тела находятся при разных температурах, то теплопередача будет осуществляться таким образом, чтобы энергия передавалась от более нагретого тела менее нагретому. Этот процесс будет продолжаться до тех пор, пока температуры тел не сравняются, и изолированная система из двух тел не достигнет состояния термодинамического равновесия.
Для возникновения процесса теплопередачи необходимо создание потоков теплоты, то есть требуется выход из состояния теплового равновесия. Поэтому равновесная термодинамика не описывает процесс теплопередачи, а только его результат - переход в новое равновесное состояние. Описание самого процесса теплопередачи выполнено в шестой главе, посвящённой физической кинетике.
В заключении необходимо отметить, что если одна термодинамическая система обладает более высокой температурой, чем другая, то она не обязательно будет обладать и большей внутренней энергией, несмотря на возрастание внутренней энергии каждой системы с повышением её температуры. Например, больший объём воды может обладать большей внутренней энергией даже при более низкой температуре, чем у меньшего объёма воды. Однако, в этом случае теплопередача (перенос энергии) будет происходить не от тела с большей внутренней энергией к телу с меньшей внутренней энергие

Термодинамическая система – совокупность макроскопических тел, которые могут взаимо-действовать между собой и с другими телами (внешней средой) – обмениваться с ними энергией и веществом. Обмен энергией и веществом может происходить как внутри самой системы между ее частями, так и между системой и внешней средой. В зависимости от возможных способов изоляции системы от внешней среды различают несколько видов термодинамических систем.

Открытой системой называется термодинамическая система, которая может обмениваться веществом и энергией с внешней средой. Типичными примерами таких систем могут служить все живые организмы, а также жидкость, масса которой непрерывно уменьшается вследствие испарения или кипения.

Термодинамическая система называется закрытой , если она не может обмениваться с внешней средой ни энергией, ни веществом. Замкнутой системой будем называть термодина-мическую систему, изолированную в механическом отношении, т.е. не способную к обмену энергией с внешней средой путем совершения работы. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной , если она не может обмениваться с другими системами энергией путем теплообмена.

Термодинамическими параметрами (параметрами состояния) называются физические величины, служащие для характеристики состояния термодинамической системы.

Примерами термодинамических параметров являются давление, объем, температура, концентрация. Различают два типа термодинамических параметров: экстенсивные и интенсивные . Первые пропорциональны количеству вещества в данной термодинамической системе, вторые не зависят от количества вещества в системе. Простейшим экстенсивным параметром является объем V системы. Величину v , равную отношению объема системы к ее массе, называют удельным объе-мом системы. Простейшими интенсивными параметрами являются давление р и температура Т .

Давлением называется физическая величина

где dFn – модуль нормальной силы, действующей на малый участок поверхности тела пло-
щадью dS .

Если давление и удельный объем имеют ясный и простой физический смысл, то гораздо более сложным и менее наглядным является понятие температуры. Заметим прежде всего, что понятие температуры, строго говоря, имеет смысл только для равновесных состояний системы.

Равновесное состояние термодинамической системы – состояние системы, при котором все параметры имеют определенные значения и в котором система может оставаться сколько угодно долго. Температура во всех частях термодинамической системы, находящейся в равно-весном состоянии, одинакова.

При теплообмене между двумя телами с различной температурой происходит передача теплоты от тела с большей температурой к телу с меньшей температурой. Этот процесс прекра-щается, когда температуры обоих тел выравниваются.

Температура системы, находящейся в равновесном состоянии, служит мерой интенсивности теплового движения атомов, молекул и других частиц, образующих систему. В системе частиц, описываемых законами классической статистической физики и находящихся в равновесном состоянии, средняя кинетическая энергия теплового движения частиц прямо пропорциональна термодинамической температуре системы. Поэтому иногда говорят, что температура характе-ризует степень нагретости тела.

При измерении температуры, которое можно производить только косвенным путем, исполь-зуется зависимость от температуры целого ряда физических свойств тела, поддающихся прямому или косвенному измерению. Например, при изменении температуры тела изменяются его длина и объем, плотность, упругие свойства, электрическое сопротивление и т.д. Изменение любого из этих свойств является основой для измерений температуры. Для этого необходимо, чтобы для одного (выбранного) тела, называемого термометрическим телом, была известна функциональная зависимость данного свойства от температуры. Для практических измерений температуры применяются температурные шкалы, установленные с помощью термометрических тел. В Международной стоградусной температурной шкале температура выражается в градусах Цельсия (°С) [А. Цельсий (1701–1744) – шведский ученый] и обозначается t , причем принимается, что при нормальном давлении 1,01325 × 10 5 Па температуры плавления льда и кипения воды равны, соответственно, 0 и 100 °С. В термодинамической температурной шкале температура выражается в Кельвинах (К) [У. Томсон, лорд Кельвин (1821–1907) – английский физик], обозначается Т и называется термодинамической температурой. Связь между термодинамической температурой Т и температурой по стоградусной шкале имеет вид T = t + 273,15.

Температура T = 0 К (по стоградусной шкале t = –273,15 °С) называется абсолютным нулем температуры, или нулем по термодинамической шкале температур.

Параметры состояния системы разделяются на внешние и внутренние. Внешними парамет-рами системы называются физические величины, зависящие от положения в пространстве и различных свойств (например электрических зарядов) тел, которые являются внешними по отношению к данной системе. Например, для газа таким параметром является объем V сосуда,
в котором находится газ, ибо объем зависит от расположения внешних тел – стенок сосуда. Атмосферное давление является внешним параметром для жидкости в открытом сосуде. Внутренними параметрами системы называются физические величины, зависящие как от положения внешних по отношению к системе тел, так и от координат и скоростей частиц, образующих данную систему. Например, внутренними параметрами газа являются его давление и энергия, которые зависят от координат и скоростей движущихся молекул и от плотности газа.

Под термодинамическим процессом понимают всякое изменение состояния рассматривае-мой термодинамической системы, характеризующееся изменением ее термодинамических параметров. Термодинамический процесс называется равновесным , если в этом процессе система проходит непрерывный ряд бесконечно близких термодинамически равновесных состояний. Реальные процессы изменения состояния системы всегда происходят с конечной скоростью и поэтому не могут быть равновесными. Очевидно, однако, что реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается, поэтому такие процессы называют квазистатическими .

Примерами простейших термодинамических процессов могут служить следующие процессы:

а) изотермический процесс, при котором температура системы не изменяется (T = const);

б) изохорный процесс, происходящий при постоянном объеме системы (V = const);

в) изобарный процесс, происходящий при постоянном давлении в системе (p = const);

г) адиабатный процесс, происходящий без теплообмена между системой и внешней средой.

Термодинамическая система – это часть материального мира, отделенная от окружающей среды реальными или воображаемыми границами и являющаяся объектом исследования термодинамики. Окружающая среда значительно больше по объему, и поэтому изменения в ней незначительны по сравнению с изменением состояния системы. В отличие от механических систем, которые состоят из одного или нескольких тел, термодинамическая система содержит очень большое число частиц, что порождает совершенно новые свойства и требует иных подходов к описанию состояния и поведения таких систем. Термодинамическая система представляет собой макроскопический объект .

Классификация термодинамических систем

1. По составу

Термодинамическая система состоит из компонентов. Компонент - это вещество, которое может быть выделено из системы и существовать вне ее, т.е. компоненты – это независимые вещества.

Однокомпонентные.

Двухкомпонентные, или бинарные.

Трехкомпонентные – тройные.

Многокомпонентные.

2. По фазовому составу – гомогенные и гетерогенные

Гомогенные системы имеют одинаковые макроскопические свойства в любой точке системы, прежде всего температуру, давление, концентрацию, а также многие другие, например, показатель преломления, диэлектрическую проницаемость, кристаллическую структуру и др. Гомогенные системы состоят из одной фазы.

Фаза – это однородная часть системы, отделенная от других фаз поверхностью раздела и характеризующаяся своим уравнением состояния. Фаза и агрегатное состояние – перекрывающиеся, но не идентичные понятия. Агрегатных состояний только 4, фаз может быть гораздо больше.

Гетерогенные системы состоят минимум из двух фаз.

3. По типам связей с окружающей средой (по возможностям обмена с окружающей средой).

Изолированная система не обменивается с окружающей ни энергией, ни веществом. Это идеализированная система, которую, в принципе нельзя экспериментально изучать.

Закрытая система может обмениваться с окружающей средой энергией, но не обменивается веществом.



Открытая система обменивается и энергией, и веществом

Состояние ТДС

Состояние ТДС – это совокупность всех ее измеримых макроскопических свойств, имеющих, следовательно, количественное выражение. Макроскопический характер свойств означает, что их можно приписать только к системе в целом, а не отдельным частицам, которые составляют ТДС (Т, р, V, c, U, n k). Количественные характеристики состояния связаны между собой. Поэтому существует минимальный набор характеристик системы, называемых параметрами , задание которых позволяет полностью описать свойства системы. Количество этих параметров зависит от типа системы. В простейшем случае для закрытой гомогенной газовой системы в состоянии равновесия достаточно задать только 2 параметра. Для открытой системы кроме этих 2 характеристик системы требуется задать число молей каждого компонента.

Термодинамические переменные подразделяются:

- внешние , которые определяются свойствами и координатами системы в окружающей среде и зависят от контактов системы с окружением, например, масса и количество компонентов, напряженность электрического поля, число таких переменных ограничено;

- внутренние, которые характеризуют свойства системы, например, плотность, внутренняя энергия, число таких параметров неограниченно;

- экстенсивные, которые прямо пропорциональны массе системы или числу частиц, например, объем, энергия, энтропия, теплоемкость;

-интенсивные, которые не зависят от массы системы, например, температура, давление.

Параметры ТДС связаны между собой соотношением, которое носит название уравнение состояние системы. Общий вид его f (p,V, T) = 0. Одна из важнейших задач ФХ – найти уравнение состояния любой системы. Пока точное уравнение состояния известно лишь для идеальных газов (уравнение Клапейрона - Менделеева).

pV = nRT, (1.1)

где R – универсальная газовая постоянная = 8.314 Дж/(моль.К) .

[p] = Па, 1атм = 1,013*10 5 Па = 760 мм рт.ст.,

[V] = м 3 , [T] = К, [n] = моль, N = 6.02*1023 моль-1. Реальные газы лишь приближенно описываются данным уравнением, и чем выше давление и ниже температура, тем больше отклонение от данного уравнения состояния.

Различают равновесное и неравновесное состояния ТДС.

Классическая термодинамика обычно ограничивается рассмотрением равновесных состояний ТДС. Равновесие - это такое состояние, к которому самопроизвольно приходит ТДС, и в котором она может существовать бесконечно долго в отсутствие внешних воздействий. Для определения равновесного состояния всегда требуется меньшее количество параметров, чем для неравновесных систем.

Равновесное состояние подразделяют на:

- устойчивое (стабильное) состояние, при котором всякое бесконечно малое воздействие вызывает только бесконечно малое изменение состояния, а при устранении этого воздействия система возвращается в исходное состояние;

- метастабильное состояние, при котором некоторые конечные воздействия вызывают конечные изменения состояния, которые не исчезают при устранения этих воздействий.

Изменение состояния ТДС связанное с изменением хотя бы одной из ее термодинамических переменных, называют термодинамическим процессом . Особенностью описания термодинамических процессов является то, что они характеризуются не скоростями изменения свойств, а величинами изменений. Процесс в термодинамике – это последовательность состояний системы, ведущая от начального набора термодинамических параметров к - конечному. Различают следующие термодинамические процессы:

- самопроизвольные , для осуществления которых не надо затрачивать энергию;

- несамопроизвольные , происходящие только при затрате энергии;

- необратимые (или неравновесные) – когда в результате процесса невозможно возвратить систему к первоначальному состоянию.

-обратимые – это идеализированные процессы, которые проходят в прямом и обратном направлении через одни и те же промежуточные состояния, и после завершения цикла ни в системе, ни в окружающей среде не наблюдается никаких изменений.

Функции состояния – это характеристики системы, которые зависят только от параметров состояния, но не зависят от способа его достижения.

Функции состояния характеризуются следующими свойствами:

Бесконечно малое изменение функции f является полным дифференциалом df;

Изменение функции при переходе из состояния 1 в состояние 2 определяется только этими состояниями ∫ df = f 2 – f 1

В результате любого циклического процесса функция состояния не изменяется, т.е. равна нулю.

Теплота и работа – способы обмена энергией между ТДС и окружающей средой. Теплота и работа характеристики процесса, они не являются функциями состояния.

Работа - форма обмена энергией на макроскопическом уровне, когда происходят направленное перемещение объекта. Работа считается положительной, если ее совершает система против внешних сил.

Теплота – форма обмена энергией на микроскопическом уровне, т.е. в форме изменения хаотического движения молекул. Принято считать положительной теплоту, полученную системой, и работу, совершенную над ней, т.е. действует “эгоистический принцип”.

Наиболее часто используемыми единицами измерения энергии и работы, в частности, в термодинамике являются джоуль (Дж) в системе СИ и внесистемная единица – калория (1 кал = 4,18 Дж).

В зависимости от характера объекта различают разные виды работы:

1. Механическая - перемещение тела

dА мех = - F ех dl. (2.1)

Работа – скалярное произведение 2-х векторов силы и перемещения, т.е.

|dА мех | = F dl cos α. Если направление внешней силы противоположно перемещению, совершаемому внутренними силами, то cos α < 0.

2. Работа расширения (чаще всего рассматривается расширение газа)

dА = - р dV (1.7)

Однако нужно иметь в виду, что это выражение справедливо только для обратимого протекания процесса.

3. Электрическая – перемещение электрических зарядов

dА эл = -jdq, (2.2)

где j - электрический потенциал.

4. Поверхностная – изменение площади поверхности,

dА поверхн. = -sdS, (2.3)

где s - поверхностное натяжение.

5. Общее выражение для работы

dА = - Ydx, (2.4)

Y – обобщенная сила, dx - обобщенная координата, таким образом работа может рассматриваться как произведение интенсивного фактора на изменение экстенсивного.

6. Все виды работы, кроме работы расширения, называются полезной работой (dА’ ). dА = рdV + dА’ (2.5)

7. По аналогии можно ввести понятие химической работы, когда направленно перемещается k -ое химическое вещество, n k – экстенсивное свойство, при этом интенсивный параметр m k называется химическим потенциалом k -ого вещества

dА хим = -Sm k dn k . (2.6)