Здоровье

Квантовая химия – наука грядущего. Появление квантовой химии

Квантовая химия

Квантовая химия - это направление химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики . Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. . Квантовая химия находится на стыке химии и квантовой физики (квантовой механики). Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне (моделях электронно-ядерного строения и взаимодействий, представленных с точки зрения квантовой механики). Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С квантовой химией неразрывно связана вычислительная химия - дисциплина использующая математические методы квантовой химии, адаптированные для составления специальных компьютерных программ, используемых для расчета молекулярных свойств, амплитуды вероятности нахождения электронов в атомах , симуляции молекулярного поведения.

Общие сведения

Основной задачей квантовой химии является решение уравнения Шредингера и его релятивистского варианта (уравнение Дирака) для атомов и молекул. Уравнение Шредингера решается аналитически, учитывая следующие ограничения: жёсткий ротатор, гармонический осциллятор , одноэлектронная система. Но реальные многоатомные системы содержат большое количество взаимодействующих электронов, а для таких систем не существует аналитического решения этих уравнений, и, по всей видимости, оно не будет найдено и в дальнейшем. По этой причине в квантовой химии приходится строить различные приближённые, обычно численные или получисленные решения. Из-за быстрого роста сложности поиска решений с ростом сложности системы и требований к точности расчёта, возможности квантовохимических расчётов сильно ограничиваются текущим развитием вычислительной техники, хотя, наблюдаемые в последние два десятилетия революционные сдвиги в развитии компьютерной техники, приведшие к её заметному удешевлению, заметно стимулируют развитие прикладной квантовой химии. Решение уравнения Шредингера строится на уравнении Хартри-Фока-Рутана итерационным методом (SCF-self consistent field - самосогласованное поле) и состоит в нахождении вида волновой функции . Приближения, используемые в квантовой химии:

Однако большинство физиков не разделяло убеждений Э.Шрёдингера, так как доказательств существования электрона как отрицательно заряженного облака не существовало на тот момент. Общепринятой точка зрения стала лишь благодаря работам Макса Борна , который обосновал вероятностную трактовку квадрата волновой функции. За фундаментальное исследование в области квантовой механики, особенно за статистическую (вероятностную) интерпретацию волновой функции , М.Борну была присуждена в 1954 году

область теоретической химии, в которой вопросы строения и реакционной способности химических соединений, химические связи рассматриваются на основе представлений и методов квантовой механики (См. Квантовая механика). Квантовая механика в принципе позволяет рассчитывать свойства атомно-молекулярных систем, исходя только из Шрёдингера уровнения (См. Шрёдингера уравнение), Паули принципа и универсальных физических постоянных. Различные физические характеристики молекулы (энергия, электрические и магнитные дипольные моменты и др.) могут быть получены как собственные значения операторов соответствующих величин, если известен точный вид волновой функции. Однако для систем, содержащих 2 и более электронов, пока не удалось получить точного аналитического решения уравнения Шрёдингера. Если же использовать функции с очень большим числом переменных, то можно получить приближённое решение, по числовой точности аппроксимирующее сколь угодно точно идеальное решение, Тем не менее, несмотря на использование современных ЭВМ с быстродействием порядка сотен тысяч и даже миллионов операций в секунду, подобные «прямые» решения уравнения Шрёдингера пока что осуществлены только для систем с несколькими электронами, например молекул H 2 и LiH. Поскольку химиков интересуют системы с десятками и сотнями электронов, приходится идти на упрощения. Поэтому для описания таких систем были выдвинуты различные приближённые квантовохимические теории, более или менее удовлетворительные в зависимости от характера рассматриваемых задач: теория валентных связей, заложенная в 1927 В. Гейтлером и Ф. Лондоном в Германии, а в начале 30-х гг. развитая Дж. Слейтером и Л. Полингом в США; кристаллического поля теория, предложенная немецким учёным Х. Бете в 1929 и в последующие годы разрабатывавшаяся американским учёным Ван Флеком (своё применение в химии она получила в 1950-е гг. как теория поля лигандов благодаря исследованиям английского учёного Л. Оргела и датских учёных К. Йоргенсена и К. Бальхаузена). В конце 1920-х гг. появилась теория молекулярных орбиталей (МО), разработанная Дж. Леннардом-Джонсом (Великобритания), Р. Малликеном (США), Ф. Хундом (Германия) и развивавшаяся затем многими др. исследователями (см. Молекулярных орбиталей метод). Долгое время эти приближённые теории сосуществовали и даже дополняли друг друга. Однако теперь, когда достигнуты огромные успехи в синтезе молекул и определении их структуры, а вычислительная техника получила широкое развитие, симпатии исследователей склонились в сторону теории МО. Это объясняется тем что только теория МО выработала универсальный язык, в принципе пригодный для описания любых молекул, строение которых отличается очень большим разнообразием и сложностью. Теория МО включает наиболее общие физические представления об электронном строении молекул и (что не менее важно) использует математический аппарат, наиболее пригодный для проведения количественных расчётов на ЭВМ.

Теория МО исходит из того, что каждый электрон молекулы находится в поле всех ее атомных ядер и остальных электронов. Теория атомных орбиталей (АО), описывающая электронное строение атомов, включается в теорию МО как частный случай, когда в системе имеется только одно атомное ядро. Далее, теория МО рассматривает все химические связи как многоцентровые (по числу атомных ядер в молекуле) и тем самым полностью делокализованные. С этой точки зрения всякого рода преимущественная локализация электронной плотности около определённой части атомных ядер есть приближение, обоснованность которого должна быть выяснена в каждом конкретном случае. Представления В. Косселя (См. Коссель) о возникновении в химических соединениях обособленных ионов (изоэлектронных атомам благородных газов) или воззрения Дж. Льюиса (США) об образовании двухцентровых двухэлектронных химических связей (выражаемых символикой валентного штриха) естественно включаются в теорию МО как некоторые частные случаи.

В основе теории МО лежит одноэлектронное приближение, при котором каждый электрон считается квазинезависимой частицей и описывается своей волновой функцией. Обычно вводится и др. приближение - одноэлектронные МО получаются как линейные комбинации АО (приближение ЛКАО - МО).

Если принять указанные приближения, то, используя только универсальные физические постоянные и не вводя никаких экспериментальных данных (разве только равновесные межъядерные расстояния, причём в последнее время всё чаще обходятся и без них), можно проводить чисто теоретические расчёты (расчёты ab initio, лат. «от начала») по схеме метода самосогласованного поля (См. Самосогласванное поле) (ССП; метода Хартри - Фока). Такие расчёты ССП - ЛКАО - МО сейчас стали возможны уже для систем, содержащих несколько десятков электронов. Здесь основные трудности заключаются в том, что приходится вычислять громадное количество интегралов. Хотя подобные расчёты являются громоздкими и дорогостоящими, получающиеся результаты не всегда удовлетворительны, во всяком случае, с количественной стороны. Это объясняется тем, что, несмотря на различные усовершенствования схемы ССП (например, введение конфигурационного взаимодействия и др. способов учёта корреляции электронов), исследователи в конечном счёте ограничены возможностями одноэлектронного приближения ЛКАО - МО.

В связи с этим большое развитие получили полуэмпирические квантовохимические расчёты. Эти расчёты также восходят к уравнению Шрёдингера, но вместо того чтобы вычислять огромное количество (миллионы) интегралов, большую часть из них опускают (руководствуясь порядком их малости), а остальные упрощают. Потерю точности компенсируют соответствующей калибровкой параметров, которые берутся из эксперимента. Полуэмпирические расчёты пользуются большой популярностью, ибо оптимальным образом сочетают в себе простоту и точность в решении различных проблем.

Описанные выше расчёты нельзя непосредственно сравнивать с чисто теоретическими (неэмпирическими) расчётами, так как у них разные возможности, а отсюда и разные задачи. Ввиду специфики используемых параметров при полуэмпирическом подходе нельзя надеяться получить волновую функцию, удовлетворительно описывающую различные (а тем более все) одноэлектронные свойства. В этом состоит коренное отличие полуэмпирических расчётов от расчётов неэмпирических, которые могут, хотя бы в принципе, привести к универсальной волновой функции. Поэтому сила и привлекательность полуэмпирических расчётов заключаются не в получении количественной информации как таковой, а в возможности интерпретации получаемых результатов в терминах физико-химических концепций. Только такая интерпретация и приводит к действительному пониманию, так как без неё на основании расчёта можно лишь констатировать те или иные количественные характеристики явлений (которые надёжнее определить на опыте). Именно в этой специфической особенности полуэмпирических расчётов и заключается их непреходящая ценность, позволяющая им выдерживать конкуренцию с полными неэмпирическими расчётами, которые по мере развития вычислительной техники становятся всё более легко осуществимыми.

Что касается точности полуэмпирических квантовохимических расчётов, то она (как и при любом полуэмпирическом подходе) зависит скорее от умелой калибровки параметров, нежели от теоретической обоснованности расчётной схемы. Так, если выбирать параметры из оптических спектров каких-то молекул, а затем рассчитывать оптические спектры родственных соединений, то нетрудно получить великолепное согласие с экспериментом, но такой подход не имеет общей ценности. Поэтому основная проблема в полуэмпирических расчётах заключается не в том, чтобы вообще определить параметры, а в том, чтобы одну группу параметров (например, полученных из оптических спектров) суметь использовать для расчётов др. характеристик молекулы (например, термодинамических). Только тогда появляется уверенность, что работа ведётся с физически осмысленными величинами, имеющими некое общее значение и полезными для концепционного мышления.

Кроме количественных и полуколичественных расчётов, современная К. х. включает ещё большую группу результатов качественного рассмотрения. Зачастую удаётся получать весьма убедительную информацию о строении и свойствах молекул без всяких громоздких расчётов, используя различные фундаментальные концепции, основанные главным образом на рассмотрении симметрии.

Соображения симметрии играют важную роль в К. х., так как позволяют контролировать физический смысл результатов приближённого рассмотрения многоэлектронных систем. Например, исходя из точечной группы симметрии молекулы, можно вполне однозначно решить вопрос об орбитальном вырождении электронных уровней независимо от выбора расчётного приближения. Знание степени орбитального вырождения часто уже достаточно для суждения о многих важных свойствах молекулы, таких как потенциалы ионизации, магнетизм, конфигурационная устойчивость и ряд других. Принцип сохранения орбитальной симметрии лежит в основе современного подхода к механизмам протекания согласованных химических реакций (правила Вудворда - Гофмана). Указанный принцип может быть, в конечном счёте, выведен из общего топологического рассмотрения областей связывания и антисвязывания в молекуле.

Следует иметь в виду, что современная химия имеет дело с миллионами соединений и её научный фундамент не является монолитным. В одних случаях успех достигается уже при использовании чисто качественных представлений К. х., в других - весь её арсенал оказывается недостаточным. Поэтому, оценивая современное состояние К. х., всегда можно привести много примеров, свидетельствующих как о силе, так и о слабости современной квантовохимической теории. Ясно лишь одно: если раньше уровень квантовохимических работ ещё мог определяться технической сложностью применённого расчётного аппарата, то теперь доступность ЭВМ выдвигает на первый план физико-химическую содержательность исследований. С точки зрения внутренних интересов К. х. наибольшую ценность, вероятно, представляют попытки выйти за пределы одноэлектронного приближения. В то же время для утилитарных целей в различных областях химии одноэлектронное приближение таит ещё много неиспользованных возможностей. См. также Химическая связь, Валентность.

Лит . см. при ст. Валентность и Химическая связь.

Е. М. Шусторович.

  • - диффузия, при к-рой в перемещении атомов гл. роль играет туннельный переход, а не обычный надбарьерный переход атомов из одного положения равновесия в другое...

    Физическая энциклопедия

  • - жидкость, св-ва к-рой определяются квант. эффектами...

    Физическая энциклопедия

  • - в квантовой оптике, характеристика интерференции квант. состояний поля излучения. Динамич. системы в квант. теории имеют более сложное описание, чем в классической...

    Физическая энциклопедия

  • - раздел теоретич. химии, в к-ром строение и св-ва хим. соединений, их взаимод. и превращения в хим. р-циях рассматриваются на основе представлений и с помощью методов квантовой механики...

    Химическая энциклопедия

  • - физ. Означает, что квантовое состояние одного кубита оказывается неразрывно связано с состоянием другого...

    Универсальный дополнительный практический толковый словарь И. Мостицкого

  • - ...

    Энциклопедический словарь нанотехнологий

  • - - раздел логики, изучающий применение логических методов в квантовой механике. Различают логику квантовой механики и квантовую логику...

    Философская энциклопедия

  • - метафизика предельно малых, логически узких, конкретных понятий и внепонятийных единичностей, элементарных мыслимостей. Это метафизики не духа или бытия, а сада, дерева, кухни, посуды.....

    Проективный философский словарь

  • - жидкость, свойства к-рой определяются квантовыми эффектами: сохранением жидкого состояния до абс. нуля темп-ры, сверхтекучестью, существованием нулевого звука и др. Квантовые эффекты в жидкости начинают...
  • - раздел теоретич. химии, в к-ром строение и свойства хим. соединений, реакц. способность, кинетика и механизм хим. реакций рассматриваются на основе представлений квантовой механики...

    Естествознание. Энциклопедический словарь

  • - область теоретич. химии, в к-рой вопросы строения и реакционной способности хим. соединений, вопросы химической связи рассматриваются на осн. представлений и методов квантовой механики...

    Большой энциклопедический политехнический словарь

  • - "...51) квантовая криптография - совокупность технических приемов по созданию совместно используемого ключа для защиты информации путем измерения квантово-механических свойств физической системы;.....

    Официальная терминология

  • - жидкость, свойства которой определяются квантовыми эффектами...
  • - область теоретической химии, в которой вопросы строения и реакционной способности химических соединений, химические связи рассматриваются на основе представлений и методов квантовой механики...

    Большая Советская энциклопедия

  • - КВАНТОВАЯ жидкость - обычный жидкий гелий при низких температурах. Квантовая жидкость в отличие от прочных тел остается жидкостью вплоть до самых близких к абсолютному нулю температур...
  • - раздел теоретической химии, в котором строение и свойства химических соединений, реакционная способность, кинетика и механизм химических реакций рассматриваются на основе представлений квантовой механики...

    Большой энциклопедический словарь

"Квантовая химия" в книгах

Квантовая физика

Из книги Сериал «Теория Большого взрыва» от А до Я автора Рикман Эми

Квантовая физика Квантовая физика – один из самых сложных разделов физики, что делает его идеальной областью исследования для «ботаников». Квантовая физика, которую называют также квантовой теорией или квантовой механикой, изучает поведение самых маленьких открытых

Глава седьмая КВАНТОВАЯ ФИЗИКА И КВАНТОВАЯ ТЕОРИЯ ПОЛЯ

Из книги Амбарцумян автора Шахбазян Юрий Левонович

Глава седьмая КВАНТОВАЯ ФИЗИКА И КВАНТОВАЯ ТЕОРИЯ ПОЛЯ Квантование пространства и времени Гейзенберга, Амбарцумяна и ИваненкоНесмотря на свою перегруженность, Виктор Амазаспович не упускал возможности бывать в других обсерваториях страны. Были установлены хорошие

II. Квантовая революция

Из книги автора

II. Квантовая революция

Квантовая медицина

Из книги Пришельцы из Будущего: Теория и практика путешествий во времени автора Голдберг Брюс

Квантовая медицина Более развитые путешественники во времени (IV - VI тысячелетия) обладают сложными медицинскими знаниями, которые позволяют им производить регенерацию утраченных органов и жить несколько сотен лет (в нашем исчислении). При этом они не прибегают к

Квантовая физика

Из книги Фаза. Взламывая иллюзию реальности автора Радуга Михаил

Квантовая физика Когда у меня появилась фаза, я получил самое интересное из того, что вообще может быть в нашей жизни. Все остальные практики и феномены просто померкли в сравнении с ней и больше не стоили моего внимания. Еще до 20 лет я понял, что мне не хватит всей жизни,

Квантовая Нарния

Из книги Тень и реальность автора Свами Сухотра

Квантовая Нарния Многим из нас известно из научно-популярных журналов и книг, что квантовая теория предполагает существование так называемых «альтернативных миров», оказывающих влияние на наш мир. Предположим, Люси вместо того, чтобы просто заявить о том, что она

КВАНТОВАЯ ТЕОРИЯ

Из книги Субъекты, объекты, данные и ценности автора Пирсиг Роберт М

КВАНТОВАЯ ТЕОРИЯ Первым делом я обнаружил, что объем литературы по квантовой теории огромен, и для не-математика большая его часть непостижима. Физики, пытающиеся объяснить квантовую теорию обычным языком, отмечают, что пытаться обсуждать ее в не-математических понятиях

17.2.3. Квантовая гравитация / квантовая космология

Из книги Далекое будущее Вселенной [Эсхатология в космической перспективе] автора Эллис Джордж

17.2.3. Квантовая гравитация / квантовая космология Последние исследования в области квантовой космологии включают в себя модель Хартла / Хокинга , инстантон Тьюрока / Хокинга, сценарии «до Большого взрыва», брейнкосмологию и т. д. Хотя эти сценарии совершенно различны,

5.17. Квантовая сцепленность

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

Квантовая механика

автора Минделл Арнольд

Квантовая механика Примерно до 1900 г. и до появления квантовой механики материя считалась совокупностью воображаемых частиц. В механике Ньютона каждая частица в большей степени представляет собой математическое понятие, нежели реальность. Такая частица обладает массой

Квантовая электродинамика

Из книги Квантовый ум [Грань между физикой и психологией] автора Минделл Арнольд

Квантовая электродинамика Физики решили объяснять поля в терминах частиц потому, что понятие частицы было приемлемым в физике. Физики объясняют поля с помощью квантовой электродинамики (КЭД) – одной из самых полезных и общепринятых физических теорий. Квантовая

Квантовая химия

Из книги Большая Советская Энциклопедия (КВ) автора БСЭ

Квантовая химия - это направление химии , рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики . Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Квантовая химия находится на стыке химии и квантовой физики (квантовой механики). Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне (моделях электронно-ядерного строения и взаимодействий, представленных с точки зрения квантовой механики). Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С квантовой химией неразрывно связана вычислительная химия - дисциплина, использующая математические методы квантовой химии, адаптированные для составления специальных компьютерных программ, используемых для расчета молекулярных свойств, амплитуды вероятности нахождения электронов в атомах , симуляции молекулярного поведения.

Общие сведения

Основной задачей квантовой химии является решение уравнения Шрёдингера и его релятивистского варианта (уравнение Дирака) для атомов и молекул. Уравнение Шрёдингера решается аналитически лишь для немногих систем (например, для моделей типа жёсткий ротатор (модель, описывающая линейные молекулы с постоянным межъядерным расстоянием. В такой модели уровни энергии зависят только от вращательного квантового числа.), гармонический осциллятор , одноэлектронная система). Реальные многоатомные системы содержат большое количество взаимодействующих электронов, а для таких систем не существует аналитического решения этих уравнений, и, по всей видимости, оно не будет найдено и в дальнейшем. По этой причине в квантовой химии приходится строить различные приближённые решения. Из-за быстрого роста сложности поиска решений с ростом сложности системы и требований к точности расчёта, возможности квантовохимических расчётов сильно ограничиваются текущим развитием вычислительной техники, хотя, наблюдаемые в последние два десятилетия революционные сдвиги в развитии компьютерной техники, приведшие к её заметному удешевлению, заметно стимулируют развитие прикладной квантовой химии. Решение уравнения Шрёдингера часто строится на уравнении Хартри-Фока-Рутана итерационным методом (SCF-self consistent field - самосогласованное поле) и состоит в нахождении вида волновой функции . Приближения, используемые в квантовой химии:

Строение атома

Согласно представлениям квантовой механики, атомы не имеют определённых границ, однако вероятность найти электрон, связанный с данным ядром, на расстоянии r от ядра быстро падает с увеличением r. Поэтому атому можно приписать некоторый размер .

Радиальная функция распределения вероятности нахождения электрона в атоме водорода обладает максимум при α 0 , как показано на рис.1. Этот наиболее вероятный радиус для электрона совпадает с боровским радиусом . Более размытое облако плотности вероятности, полученные при квантовомеханическом рассмотрении, значительно отличается от боровской модели атома и согласуется с принципом неопределённости Гейзенберга .

Лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение его наружных электронов. Это так называемый орбитальный радиус атома. В зависимости от порядкового номера элемента (Z) проявляется чёткая периодичность в изменении значений орбитальных атомных радиусов . На рис.2 представлена зависимость орбитальных радиусов от порядкового номера элемента.

Размер электронной оболочки атома более чем в 10 тысяч раз превышает размер его атомного ядра.

Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов . Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом . Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов - изотопу этого элемента.

Образование химической связи и строение молекул и твёрдых тел

Единственной молекулярной системой, для которой уравнение Шрёдингера может быть точно решено, является молекулярный ион водорода H 2 + , где единственный электрон движется в поле двух ядер (протонов). Длина химической связи в молекулярном ионе водорода H 2 + составляет 1,06 Å. Энергия разрыва химической связи в молекулярном ионе водорода H 2 + составляет 61 ккал/моль. Энергия притяжения электрона к обоим ядрам в одноэлектронной химической связи компенсирует энергию отталкивания протонов, которая на расстоянии 1,06 Å составляет 314 ккал/моль.

Поскольку точное решение уравнения Шрёдингера для атомно-молекулярных систем, содержащих более одного электрона, невозможно, возникли приближённые теории химической связи.

В 1958 г. на симпозиуме по теоретической органической химии, посвящённой памяти А.Кекуле, Полинг представил теорию изогнутой химической связи . Двойная и тройная химическая связь рассматривалась, как комбинация двух или трёх изогнутых одинарных связей .

Правила равного удаления электронов друг от друга непосредственно следует из закона Кулона, согласно которому электроны стремятся находиться на максимально удалённом расстоянии друг от друга. Например, молекулы типа BeH 2 имеют строго линейную конфигурацию. Атомы III группы таблицы Менделеева образуют тригональные молекулы, типа BF 3 . Атомы IV группы образуют тетраэдрические молекулы, типа CH 4 . Молекулы, образованные атомами V и VI групп, имеют геометрию тригональной бипирамиды и октаэдра, соответственно .

Физические, в том числе спектральные свойства атомов, молекул и твёрдых тел

Атомные спектры

Квантование энергии атомов проявляется в их спектрах поглощения (абсорбиционные спектры) и испускания (эмиссионные спектры). Атомные спектры имеют линейчатый характер (рис.3).

Возникновение линий в спектре обусловлено тем, что при возбуждении атомов электроны, принимая соответствующую порцию энергии, переходят на более высокий энергетический уровень. Переход электронов в состояние с более низким энергетическим уровнем сопровождается выделением кванта энергии (рис.4).

Наиболее простой спектр у атома водорода, линии которого образуют спектральные серии; их положение описывается выражением ν = R (1/n 1 2 - 1/n 2 2), где ν - волновое число линии, R - постоянная Ридберга, n - целые числа, причём n 2 > n 1 .

Спектральные серии водорода Переход на квантовый уровень n 1 Область спектра
Серия Лаймана 1 ультрафиолетовый
Серия Бальмера 2 видимый свет
Серия Пашена 3 инфракрасный
Серия Брэккета 4 далёкий инфракрасный
Серия Пфунда 5 ---
Серия Хэмпфри 6 ---

Аналогичные серии наблюдаются в спектрах водородоподобных ионов (например, He + , Li 2+). С увеличением числа электронов атомные спектры усложняются и закономерности в расположении линий становятся менее выраженными.

Поляризуемость атомов и молекул

Внешнее электрическое поле напряжённостью E, наложенное на систему взаимодействующих ядер и электронов (атомов, ионов, молекул), деформирует её, вызывая появление наведённого дипольного момента μ = α e E, где коэффициент α e имеет размерность объёма и является количественной мерой электронной поляризуемости (его также называют электронной поляризуемостью). На рис.5 представлена деформационная поляризация (смещение электронной оболочки) атома водорода под действием электрического поля протона. При снятии внешнего электрического поля наведённый дипольный момент исчезает. В случае взаимодействия атома водорода и протона имеет место образование молекулярного иона водорода H 2 + с простейшей одноэлектронной химической связью.

H + H + → H 2 + + 61 ккал/моль

Относительно недавно были получены достоверные данные по электронным поляризуемостям большинства атомов в свободном состоянии. Наибольшее значение электронной поляризуемости наблюдается у атомов щелочных металлов, а минимальное - у атомов инертных газов .

В случае многоядерных систем внешнее электрическое поле приводит как к деформации электронных оболочек, так и изменению равновесных расстояний между ядрами (длины связи). В соответствии с этим поляризуемость молекулы составляется из двух слагаемых: α = α e + α a , где α e - электронная поляризуемость, α a - атомная поляризуемость .

Ионизация атомов и молекул

При высокой напряжённости внешнего электрического поля, наложенного на систему взаимодействующих ядер и электронов происходит её ионизация - отрыв электрона от атома или молекулы и образование положительно заряженного иона - катиона. Процесс образования ионов из атомов или молекул всегда эндотермический. Количество энергии, необходимое для отрыва электрона от возбуждаемых атомов или молекул, принято называть энергией ионизации . Для многоэлектронных атомов энергия ионизации l 1 , l 2 , l 3 … соответствует отрыву первого, второго, третьего и т. д. электронов. При этом всегда l 1 < l 2 < l 3 …, так как увеличение числа оторванных электронов приводит к возрастанию положительного заряда образующегося иона. Изменение энергии отрыва первого электрона в зависимости от порядкового номера элемента приведено на рис.6.

Кривая имеет явно выраженный периодический характер. Наименьшей энергией ионизации (3-5 эв) обладают атомы щелочных металлов, имеющих по одному валентному электрону, наибольшей - атомы инертных газов, обладающих замкнутой электронной оболочкой.

В связи с низкими значениями энергии ионизации щелочных металлов атомы их под влиянием различных воздействий сравнительно легко теряют свои внешние электроны. Такая потеря происходит под действием освещения чистой поверхности щелочного металла. На этом явлении, которое носит название фотоэлектрического эффекта, основано действие фотоэлементов, то есть приборов, непосредственно трансформирующих световую энергию в электрическую . Квантовая природа фотоэлектрического эффекта установлена Эйнштейном , которому присуждена в 1921 г. Нобелевская премия за труды по теоретической физике, особенно за открытие законов фотоэффекта.

Сродство к электрону

Электрон, обладая отрицательным элементарным зарядом q=1,602 10 −19 Кл, как и всякий точечный электрический заряд создаёт вокруг себя электрическое поле с напряжённостью E. E=q/R 2 , где R - расстояние точки поля до электрона. Атом водорода, попадая в электрическое поле электрона, подвергается деформационной поляризации. Величина наведённого дипольного момента μ, прямо пропорциональна напряжённости электрического поля μ = α e E = Lq.

Величина смещения центра электронной оболочки атома водорода L обратно пропорциональна квадрату расстояния атома водорода к приближающемуся электрону R (рис.7). Сближение атома водорода и электрона возможно до тех пор, пока центры областей плотностей вероятности нахождения электронов не станут равноудалёнными от ядра объединённой системы - отрицательно заряженного иона водорода (гидрид-иона H -).

Энергетический эффект процесса присоединения электрона к нейтральному атому Э принято называть энергией сродства к электрону . В процессе присоединения электрона к нейтральному атома образуется отрицательно заряженный ион (анион) Э - .

Квантовая химия - это направление химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики . Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Квантовая химия находится на стыке химии и квантовой физики (квантовой механики). Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне (моделях электронно-ядерного строения и взаимодействий, представленных с точки зрения квантовой механики). Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С квантовой химией неразрывно связана вычислительная химия - дисциплина, использующая математические методы квантовой химии, адаптированные для составления специальных компьютерных программ, используемых для расчета молекулярных свойств, амплитуды вероятности нахождения электронов в атомах , симуляции молекулярного поведения.

Энциклопедичный YouTube

    1 / 5

    ✪ Квантовая химия (рассказывает химик Иван Бушмаринов)

    ✪ 15x4 - 15 минут о квантовой химии

    ✪ Введение к квантовую химию

    ✪ Урок 3.3. Глубины материи. Квантовая механика в зеркале химии. Химические связи

    ✪ строение АТОМА ➽ физика и химия ➽ Видеоурок

    Субтитры

Общие сведения

Основной задачей квантовой химии является решение уравнения Шредингера и его релятивистского варианта (уравнение Дирака) для атомов и молекул. Уравнение Шредингера решается аналитически лишь для немногих систем (например, для моделей типа жёсткий ротатор (модель, описывающая линейные молекулы с постоянным межъядерным расстоянием. В такой модели уровни энергии зависят только от вращательного квантового числа.), гармонический осциллятор , одноэлектронная система). Реальные многоатомные системы содержат большое количество взаимодействующих электронов, а для таких систем не существует аналитического решения этих уравнений, и, по всей видимости, оно не будет найдено и в дальнейшем. По этой причине в квантовой химии приходится строить различные приближённые решения. Из-за быстрого роста сложности поиска решений с ростом сложности системы и требований к точности расчёта, возможности квантовохимических расчётов сильно ограничиваются текущим развитием вычислительной техники, хотя, наблюдаемые в последние два десятилетия революционные сдвиги в развитии компьютерной техники, приведшие к её заметному удешевлению, заметно стимулируют развитие прикладной квантовой химии. Решение уравнения Шредингера часто строится на уравнении Хартри-Фока-Рутана итерационным методом (SCF-self consistent field - самосогласованное поле) и состоит в нахождении вида волновой функции . Приближения, используемые в квантовой химии:

Строение атома

Согласно представлениям квантовой механики, атомы не имеют определённых границ, однако вероятность найти электрон, связанный с данным ядром, на расстоянии r от ядра быстро падает с увеличением r. Поэтому атому можно приписать некоторый размер .

Радиальная функция распределения вероятности нахождения электрона в атоме водорода обладает максимум при α 0 , как показано на рис.1. Этот наиболее вероятный радиус для электрона совпадает с боровским радиусом . Более размытое облако плотности вероятности, полученные при квантовомеханическом рассмотрении, значительно отличается от боровской модели атома и согласуется с принципом неопределённости Гейзенберга .

Лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение его наружных электронов. Это так называемый орбитальный радиус атома. В зависимости от порядкового номера элемента (Z) проявляется чёткая периодичность в изменении значений орбитальных атомных радиусов . На рис.2 представлена зависимость орбитальных радиусов от порядкового номера элемента.

Размер электронной оболочки атома более чем в 10 тысяч раз превышает размер его атомного ядра.

Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов . Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом . Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов - изотопу этого элемента.

Образование химической связи и строение молекул и твёрдых тел

Единственной молекулярной системой, для которой уравнение Шрёдингера может быть точно решено, является молекулярный ион водорода H 2 + , где единственный электрон движется в поле двух ядер (протонов). Длина химической связи в молекулярном ионе водорода H 2 + составляет 1,06 Å. Энергия разрыва химической связи в молекулярном ионе водорода H 2 + составляет 61 ккал/моль. Энергия притяжения электрона к обоим ядрам в одноэлектронной химической связи компенсирует энергию отталкивания протонов, которая на расстоянии 1,06 Å составляет 314 ккал/моль.

Поскольку точное решение уравнения Шрёдингера для атомно-молекулярных систем, содержащих более одного электрона, невозможно, возникли приближённые теории химической связи.

В 1958 г. на симпозиуме по теоретической органической химии, посвящённой памяти А.Кекуле, Полинг представил теорию изогнутой химической связи . Двойная и тройная химическая связь рассматривалась, как комбинация двух или трёх изогнутых одинарных связей .

Правила равного удаления электронов друг от друга непосредственно следует из закона Кулона, согласно которому электроны стремятся находиться на максимально удалённом расстоянии друг от друга. Например, молекулы типа BeH 2 имеют строго линейную конфигурацию. Атомы III группы таблицы Менделеева образуют тригональные молекулы, типа BF 3 . Атомы IV группы образуют тетраэдрические молекулы, типа CH 4 . Молекулы, образованные атомами V и VI групп, имеют геометрию тригональной бипирамиды и октаэдра, соответственно .

Физические, в том числе спектральные свойства атомов, молекул и твёрдых тел

Атомные спектры

Квантование энергии атомов проявляется в их спектрах поглощения (абсорбиционные спектры) и испускания (эмиссионные спектры). Атомные спектры имеют линейчатый характер (рис.3).

Возникновение линий в спектре обусловлено тем, что при возбуждении атомов электроны, принимая соответствующую порцию энергии, переходят на более высокий энергетический уровень. Переход электронов в состояние с более низким энергетическим уровнем сопровождается выделением кванта энергии (рис.4).

Наиболее простой спектр у атома водорода, линии которого образуют спектральные серии; их положение описывается выражением ν = R (1/n 1 2 - 1/n 2 2), где ν - волновое число линии, R - постоянная Ридберга, n - целые числа, причём n 2 > n 1 .

Спектральные серии водорода Переход на квантовый уровень n 1 Область спектра
Серия Лаймана 1 ультрафиолетовый
Серия Бальмера 2 видимый свет
Серия Пашена 3 инфракрасный
Серия Брэккета 4 далёкий инфракрасный
Серия Пфунда 5 ---
Серия Хэмпфри 6 ---

Аналогичные серии наблюдаются в спектрах водородоподобных ионов (например, He + , Li 2+). С увеличением числа электронов атомные спектры усложняются и закономерности в расположении линий становятся менее выраженными.

Поляризуемость атомов и молекул

Внешнее электрическое поле напряжённостью E, наложенное на систему взаимодействующих ядер и электронов (атомов, ионов, молекул), деформирует её, вызывая появление наведённого дипольного момента μ = α e E, где коэффициент α e имеет размерность объёма и является количественной мерой электронной поляризуемости (его также называют электронной поляризуемостью). На рис.5 представлена деформационная поляризация (смещение электронной оболочки) атома водорода под действием электрического поля протона. При снятии внешнего электрического поля наведённый дипольный момент исчезает. В случае взаимодействия атома водорода и протона имеет место образование молекулярного иона водорода H 2 + с простейшей одноэлектронной химической связью.

H + H + → H 2 + + 61 ккал/моль

Относительно недавно были получены достоверные данные по электронным поляризуемостям большинства атомов в свободном состоянии. Наибольшее значение электронной поляризуемости наблюдается у атомов щелочных металлов, а минимальное - у атомов инертных газов .

В случае многоядерных систем внешнее электрическое поле приводит как к деформации электронных оболочек, так и изменению равновесных расстояний между ядрами (длины связи). В соответствии с этим поляризуемость молекулы составляется из двух слагаемых: α = α e + α a , где α e - электронная поляризуемость, α a - атомная поляризуемость .

Ионизация атомов и молекул

При высокой напряжённости внешнего электрического поля, наложенного на систему взаимодействующих ядер и электронов происходит её ионизация - отрыв электрона от атома или молекулы и образование положительно заряженного иона - катиона. Процесс образования ионов из атомов или молекул всегда эндотермический. Количество энергии, необходимое для отрыва электрона от возбуждаемых атомов или молекул, принято называть энергией ионизации . Для многоэлектронных атомов энергия ионизации l 1 , l 2 , l 3 … соответствует отрыву первого, второго, третьего и т. д. электронов. При этом всегда l 1 < l 2 < l 3 …, так как увеличение числа оторванных электронов приводит к возрастанию положительного заряда образующегося иона. Изменение энергии отрыва первого электрона в зависимости от порядкового номера элемента приведено на рис.6.

Кривая имеет явно выраженный периодический характер. Наименьшей энергией ионизации (3-5 эв) обладают атомы щелочных металлов, имеющих по одному валентному электрону, наибольшей - атомы инертных газов, обладающих замкнутой электронной оболочкой.

В связи с низкими значениями энергии ионизации щелочных металлов атомы их под влиянием различных воздействий сравнительно легко теряют свои внешние электроны. Такая потеря происходит под действием освещения чистой поверхности щелочного металла. На этом явлении, которое носит название фотоэлектрического эффекта, основано действие фотоэлементов, то есть приборов, непосредственно трансформирующих световую энергию в электрическую . Квантовая природа фотоэлектрического эффекта установлена Эйнштейном , которому присуждена в 1921 г. Нобелевская премия за труды по теоретической физике, особенно за открытие законов фотоэффекта.

Сродство к электрону

Электрон, обладая отрицательным элементарным зарядом q=1,602 10 −19 Кл, как и всякий точечный электрический заряд создаёт вокруг себя электрическое поле с напряжённостью E. E=q/R 2 , где R - расстояние точки поля до электрона. Атом водорода, попадая в электрическое поле электрона, подвергается деформационной поляризации. Величина наведённого дипольного момента μ, прямо пропорциональна напряжённости электрического поля μ = α e E = Lq.

Величина смещения центра электронной оболочки атома водорода L обратно пропорциональна квадрату расстояния атома водорода к приближающемуся электрону R (рис.7). Сближение атома водорода и электрона возможно до тех пор, пока центры областей плотностей вероятности нахождения электронов не станут равноудалёнными от ядра объединённой системы - отрицательно заряженного иона водорода (гидрид-иона H -).

Энергетический эффект процесса присоединения электрона к нейтральному атому Э принято называть энергией сродства к электрону . В процессе присоединения электрона к нейтральному атома образуется отрицательно заряженный ион (анион) Э - :

Э + e - → Э -

На рис.8 представлена зависимость энергии сродства к электрону атомов от порядкового номера элемента. Наибольшим средством к электрону обладают p-элементы VII группы (галогены).

Взаимодействие отдельных молекул, энергетические барьеры на пути трансформаций молекул

Межмолекулярное взаимодействие - это электромагнитное взаимодействие электронов и ядер одной молекулы с электронами и ядрами другой. Межмолекулярное взаимодействие зависит от расстояния R между молекулами и их взаимной ориентации и определяется потенциальной энергией. Энергия притяжения молекул может быть представлена в виде трёх составляющих: ориентационной Еор, индукционной Еинд, и дисперсионной Едисп.

КВАНТОВАЯ ХИМИЯ, раздел теоретической химии, в котором строение и свойства химических соединений, их взаимодействия и превращения в химических реакциях рассматриваются на основе представлений и методов квантовой механики, а также методов, разработанных на основе этих представлений. Квантовая химия широко использует также экспериментально установленные закономерности в свойствах и поведении химических соединений, в том числе закономерности классической теории химического строения. Квантовая химия позволяет установить электронную структуру молекулярных систем (прежде всего, распределение электронной плотности и его изменение во времени), равновесные свойства, такие как геометрическое строение, энергия диссоциации, потенциалы ионизации и сродство к электрону и многие другие. На основе энергетических свойств совместно с методами статистической термодинамики квантовая химия даёт возможность рассчитать термодинамические свойства веществ в газовой фазе, учесть изменение свойств атомов и молекул при воздействии внешних полей и оценить наиболее вероятные результаты химических превращений.

Историческая справка . Начало квантовой химии положили работы ряда исследователей, выполненные в период становления квантовой механики. В. Гейзенберг (1926) провёл квантово-механический расчёт основного состояния атома гелия. В. Гайтлер и Ф. Лондон (1927) дали квантово-механическую интерпретацию ковалентной связи на примере молекулы водорода; этот подход был развит Дж. Слэтером (1931) и Л. Полингом (1931) в виде метода валентных схем (валентных связей метода). В этот же период Ф. Хунд (1927-28), Р. Малликен (1927-28), Дж. Леннард-Джонс (1929) и Э. Хюккель (1930) заложили основы молекулярных орбиталей метода. Одновременно появились основополагающие работы Д. Хартри (1927), Дж. Слэтера (1930) и В. А. Фока (1930) по использованию концепции молекулярных орбиталей для квантово-химических расчётов молекул - так называемый метод самосогласованного поля (метод Хартри - Фока), а также работы Дж. Слэтера (1929-1930) по учёту конфигурационного взаимодействия. Последующее развитие квантовой химии было связано с именами многих выдающихся учёных, в том числе лауреатов Нобелевской премии Л. Полинга, Р. Хофмана, К. Фукуи, Дж. Попла, У. Кона.

Современное состояние. Для получения количественных данных о свойствах и превращениях химических соединений используется широкий спектр методов квантовой химии, получивших мощный импульс для своего развития благодаря развитию вычислительной техники и одновременно самих способствовавших её быстрому совершенствованию.

Основное уравнение, определяющее квантовое состояние атомов, молекул и более сложных систем, - временное Шрёдингера уравнение, решением которого при заданных начальных условиях является функция состояния системы, или волновая функция; знание волновой функции даёт возможность рассчитать все характеристики таких систем в любой момент времени. Большинство задач квантовой химии и по сей день связано, однако, с рассмотрением стационарных состояний, т. е. состояний, энергия которых и другие физические и физико-химические свойства не зависят от времени. В этом случае основным уравнением становится стационарное уравнение Шрёдингера, а комбинации его решений, как правило, используются и для нахождения волновых функций состояний, явно зависящих от времени. И стационарное, и временное уравнения Шрёдингера в общем случае зависят не только от пространственных переменных, но и от спинов составляющих систему частиц.

Поскольку подавляющее большинство задач квантовой химии аналитически точно не решаются, используют различные приближённые подходы, базирующиеся на вариационном методе и различных вариантах теории возмущений. Если при этом в качестве исходной информации о молекулярной системе используют только данные о числе электронов и ядер в системе, их зарядах и массах, то имеют дело с неэмпирическими методами, если же используется и дополнительная информация, базирующаяся на сравнении результатов расчётов с экспериментальными данными, то методы приобретают характер полуэмпирических.

Для молекул и молекулярных ионов исходным, как правило, является адиабатическое приближение: предполагая, что центр масс молекулы покоится, сначала рассматривают квантовые состояния подсистемы электронов, находящихся в потенциальном поле фиксированных в пространстве ядер, а затем решают задачу о поведении ядер в поле электронов, усреднённом по всем пространственным их расположениям. Исходной предпосылкой для введения такого приближения послужило существенное различие масс ядер и электронов, когда в рамках представлений классической теории скорости движения ядер и электронов отличаются друг от друга в десятки и сотни раз. Уравнение Шрёдингера для подсистемы электронов (электронное уравнение) и его решения (электронные волновые функции и значения электронной энергии) параметрически зависят от координат ядер, тогда как в уравнении Шрёдингера для ядер в качестве потенциала фигурирует электронная энергия.

В наиболее распространённом подходе следующим шагом является введение одноэлектронного приближения, согласно которому квантовое состояние каждого электрона в электронной подсистеме определяется отдельной волновой функцией (спин-орбиталью), зависящей от пространственных переменных и спина электрона, а также параметрически - от переменных ядер. Поскольку согласно принципу Паули волновая функция для подсистемы электронов должна быть антисимметричной по отношению к перестановкам индексов электронов, электронная волновая функция в этом приближении может быть записана в виде определителя, составленного из спин-орбиталей, - так называемого нормированного определителя (или детерминанта Слэтера). Спин-орбитали находят на основе вариационного принципа, который приводит к решению системы взаимосвязанных одноэлектронных уравнений, причём состояние каждого электрона определяется усреднённым полем всех остальных электронов. Эти уравнения носят название уравнений Хартри - Фока (или уравнений самосогласованного поля). Дальнейшие упрощения сводятся подчас к замене отдельных входящих в расчёт величин численными значениями, заимствуемыми из сравнения результатов расчётов с экспериментальными данными, т. е. переходят к полуэмпирическим методам.

В то же время решения уравнений Хартри - Фока используются и для построения более точных приближений, потребность в которых связана с тем, что квантовое состояние всей системы электронов определяется каждой конкретной конфигурацией их пространственного расположения, а не состояниями электронов в усреднённом поле остальных. Кулоновское отталкивание электронов друг от друга на малых расстояниях между ними не учитывается усреднённым полем. Другими словами, в рамках одноэлектронного приближения не учитывается электронная корреляция взаимного расположения электронов в пространстве. Для учёта электронной корреляции разработан ряд методов, из которых наиболее простой - метод конфигурационного взаимодействия: в исходном определителе Слэтера последовательно проводят замену одной, двух и т. д. орбиталей на орбитали, не вошедшие в исходный определитель, но полученные при решении уравнений Хартри - Фока, и получают функции, отвечающие определённым заполнениям орбиталей или электронным конфигурациям. Далее при необходимости эти функции преобразуют в функции, собственные для операторов спина и имеющие ту или иную симметрию (так называемые конфигурационные функции состояния), после чего составляют их линейную комбинацию и на основе вариационного принципа находят наилучшие коэффициенты перед этими функциями. Более сложный вариант метода конфигурационного взаимодействия, в котором как коэффициенты линейной комбинации, так и сами орбитали находят на основе вариационного принципа, носит название многоконфигурационного метода самосогласованного поля.

Набор конфигурационных функций состояния может быть использован и в рамках различных вариантов теории возмущений. В частности, наиболее широко применимы теория возмущений Мёллера - Плессета, в которой в качестве оператора Гамильтона «невозмущённой» задачи фигурирует сумма одноэлектронных операторов уравнений Хартри - Фока, и теория связанных кластеров, в которой используется некоторая техника объединения определителей Слэтера в группы - кластеры.

Широкое распространение получили различные варианты метода функционала плотности, начальные варианты которого были основаны на теореме Хоэнберга - Кона, согласно которой для основного состояния электронная энергия является функционалом только электронной плотности. Однако точный вид этого функционала неизвестен, поэтому были предложены многочисленные приближённые выражения, которые заменяют функционалы, зависящие от функций двух электронов, в выражении для энергии многоэлектронной системы на функционалы электронной плотности и её производных по пространственным переменным, что позволило учесть и корреляционную составляющую полной электронной энергии. Получающиеся при этом уравнения достаточно просты по своей структуре, что дало возможность, с одной стороны, иметь достаточно точные результаты, а с другой - распространить возможности расчётов на многоатомные молекулы, включающие сотни и тысячи атомов.

Во всех рассмотренных выше приближениях одноэлектронные функции записываются в виде разложений по некоторым конечным наборам заранее заданных функций (базисных функций). Определению при этом подлежат коэффициенты перед базисными функциями в таких разложениях.

Электронная энергия как функция пространственных переменных ядер фигурирует в качестве потенциала в ядерном уравнении Шрёдингера, т. е. уравнении, определяющем возможные квантовые состояния ядер молекулярной системы. Геометрически эта функция может быть представлена многомерной поверхностью, называемой поверхностью потенциальной энергии (или потенциальной поверхностью). Как правило, такую поверхность или её отдельные сечения по тем или иным переменным приближённо представляют в аналитическом виде. После отделения составляющей волновой функции, отвечающей вращению системы ядер как целого, решают ядерное волновое уравнение, зависящее от относительных переменных ядер или от смещений ядер относительно друг друга. По этой причине получаемые решения обычно называют колебательными волновыми функциями и колебательными уровнями энергии.

Возможности и перспективы развития. Анализ электронного строения молекул (распределения электронной плотности, особенностей электронных волновых функций и др.) позволил объяснить различие типов химических связей, особенности этих связей и возможности существования таких, например, соединений, как ферроцен и фуллерен (предсказанный до его синтеза на основе квантово-химического подхода), существование соединений с гипервалентными атомами, в которых, например, атом углерода соединён с пятью или шестью атомами бора, и т. п. Введённые на начальных этапах развития квантовой химии понятия - гибридизация атомных орбиталей, трёх и многоцентровые связи, порядки связей, индексы реакционной способности и многие другие - стали общепринятыми понятиями химии. В 1960-е годы был сформулирован и разработан принцип сохранения орбитальной симметрии в химических реакциях (смотри Вудворда - Хофмана правила).

Развитие вычислительной квантовой химии позволило рассчитывать с высокой точностью такие важные характеристики молекул, как равновесные межъядерные расстояния и валентные углы не только в основном, но и в возбуждённых состояниях, энергетические барьеры внутреннего вращения и барьеры перехода между различными конформациями, энергии активации элементарных стадий химических реакций, вероятности квантовых переходов при различных воздействиях на систему и многие другие. Квантовая химия позволяет выяснять, в каких случаях неприменимо адиабатическое приближение (смотри, например, Яна-Теллера эффект), как связаны электрические и магнитные свойства веществ со строением их молекул (что способствовало активному внедрению магнитно-резонансных методов в химических исследованиях), как можно направленно менять каталитические свойства веществ и т. д. В связи с развитием нанохимии и нанотехнологий особую роль приобрели данные, получаемые при квантово-химических расчётах нанокластеров, нанотрубок и квантовых точек.

Квантово-химические расчёты потенциальных поверхностей создали основу для решения проблем, связанных с анализом динамики ядер при взаимодействии с внешними полями и при химических превращениях. Совместно с данными фемтосекундной спектроскопии стало возможным рассматривать на количественном уровне изменения во времени (релаксацию) квантовых состояний молекулярных систем после их возбуждения, при упругих и неупругих столкновениях с другими атомами или молекулами. Продолжает сохранять актуальность рассмотрение взаимодействия молекул с лазерным излучением и их направленные превращения под влиянием такого излучения.

Квантовая химия играет определяющую теоретическую роль при изучении взаимодействия молекул со средой, в том числе при адсорбции и каталитических превращениях, при анализе влияния дефектов структуры на свойства веществ, при изучении электрических и магнитных свойств соединений с молекулярной структурой, при анализе отклика нежёстких молекул на внешние воздействия и во многих других случаях. Важными для квантовой химии остаются проблемы установления специфики отдельных состояний молекул и особенностей превращения молекул в различных процессах, получение и накопление достоверных численных данных высокой точности по свойствам молекул, квантово-химический анализ молекулярных систем в пограничных областях перехода от молекул к конденсированному веществу, разработка новых представлений и методов квантово-химического изучения химических соединений и их превращений.

Лит.: Степанов Н. Ф. Квантовая механика и квантовая химия. М., 2001; Майер И. Избранные главы квантовой химии. Доказательства теорем и вывод формул. М., 2006; Piela L. Ideas of quantum chemistry. Amst.; Boston, 2007.